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VANISHING SUMS OF ROOTS OF UNITY 

Abstract. In the present survey article we deal with the problem of classifying 
relations of length k, ^2-=1 ai(i - 0, where a,: are given complex numbers and £,: 
are roots of unity. We describe results due to several authors and discuss in detail 
a generalization of a certain theorem due to J. H. Conway and A. J. Jones. The 
Theorem assumes that the a; are rational numbers and bounds in a best possible way 
the primes dividing the common order of the roots £,:, provided suitable normalizations 
have been carried out. The generalization, obtained jointly with R. Dvornicich, deals 
with arbitrary coefficients. The method of proof differs completely from the one of 
Conway and Jones, which seems not to extend at once to cover the general case. 
A cruciai role is played by a result in linear algebra which seems to have some 
independent interest and which has certain features in common with H. B. Mann's 
theorem on addition of sequences of integers. 

The subject to be discussed below originates with the question of classifying 

equations J2i=o C* — 0> where Q are roots of unity. Besides some interest of this problem 

in itself, such relations arise naturally in a number of contexts, as remarked for instance 

in [3], §7. Also, they constitute the simplest type of the so called S-unìt equations, whose 

remarkable applications in Number Theory are well known. 

Actually, we shall allow arbitrary nonzero complex coefficients cu and consider the 

equation J2ì=o ciid = 0; we shall view for the moment k and the az 's as fixed and try 

to find out the possibilities for the Ci's. On multiplying throughout by.^J"1, say, we may 

normalize the relation. Also, we may write the various relevant roots of 1 as powers of a 

single one, so our equation becomes 

fe-i 
(1) ao + 5ZfliCni=0 

ì= i 

for some root of unity (, of exact order Q, say. We may agree that no = 0 ar ,d choose ( 

of order as small as possible, which corresponds to the assumption (Q, n i , . . . , rik-i) = 1. 

Our aim is to find a bound for Q in terms of the given data. For such a bound to be 
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possibly true, another normalization has to be carried out, namely we assume (1) to be 
irreducible, i.e. that no proper nonempty subsum vanìshes. Splitting any relation into a 
"disjoint union" of irreducible ones shows that this assumption causes no loss of generality; 
also, examples may be immediately constructed of reducible relations with given length k 
and given coefficients a^'s, but unbounded Q.1 

Assuming the relation (1) to be irreducible and the a?'s to be rational numbers, a 
bound for Q was first produced by H.B.Mann [8] in 1965. By means of a simple but 
elegant argument, he showed that Q must divide the product Ylp<k P °f P rime numbers up 
to k. In particular the bound for Q is independent of the coefficients and, by the prime 
number theorem, takes the form logQ < k -f- o(k). The irreducibility of the cyclotomic 
polynomials of prime order proves that each prime p < k may in fact occur as a divisor of 
the common order of the roots, so Mann's theorem is best possible for special values of Q. 

For general Q, the result was improved by J.H.Conway and AJJones [3] in 1976; 
they discussed trigonometrie diophantine equations from various points of view and proved, 
among other things, again on Mann's assumptions, that Q is squarefree (which follows from 
Mann's theorem too) and that (Thm. 5 in [3]) 

(2) 5 > - 2 ) < * - 2 . 
P\Q 

Also, they produced examples proving that the inequality is best possible for every choice 
of squarefree Q. As remarked in [3], (2) leads to \ogQ < C^k log k + O(l) for every 
C > 1, improving on the estimate which comes from Mann's result. 

Next, comes the analogous question for coefficients a* lying in a number field L of 
degree d, say (we shall see in a moment that the case of general a^'s may be easily reduced 
to this). After a partial result by J.H.Loxton [7], A.Schinzel [10] proved in 1988 (as a 
lemma) that there is some bound for Q depending only on k and d. His proof used Van 
der Waerden's theorem on arithmetic progressions and so led to enormous values for such 
a bound. Although this was suffìcient for Schinzel's purposes, the problem remained open 
to obtain a more realistic estimate. It is to be remarked that a straightforward adaptation 
of Mann's method leads to a bound depending on the discriminant of L too, not just on k 
and d. Before going on we point out two simple but important remarks, stated explicitly 
in [4], but appearing already in [12]: 

Let (1) be irreducible and set L := Q(a0,..., ajc-i). Then there exists an irreducible 

relation a*0 + Ylì=o ai(ni = ®> wn*re ai € £o := Q(C) H L. 

1 i fSi = E2 = 0 are two relations, consider Si + ££2 for any root of unity £. 
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(This shows in particular why we can reduce to algebraic coeffìcients.) We sketch the 

proof. Let Wj, j E J run through a basis for the vector space generated by the a?:'s over 

Lo, and write ai = ^ atjWj with coeffìcients in L0. Plugging into (1) and observing that 

L and Q(() are linearly disjoint over L0 we derive equations J2Ì=o aij(ni — 0, fpr j € J. 

We can form linear combinations of the equations, with coeffìcients £j G Lo to produce 

a new relation J^ì'Jo (12 j €jai,j)(ni ~ 0, hopefully irreducible. Plainly the set of vectors 

(€j)jej £ L57 which correspond to a given possible splitting of the relation, form a vector 

subspace of LQ. The possible splittings are finite in number, so, if each such subspace is 

proper, their union is strictly contained in LQ and we can choose any (^j)jej outside the 

union. If some splitting gave the entire space LQ, then the originai relation would also split 

in the same way, a contradiction. 

This observation allows us to assume at once L C Q(C)- Now, it is possible to show 

that pa+1\Q =>• pa\d (see [12], p. 175 or [4] for two simple different arguments). This 

allows us to restrict to primes p\\Q, since we can bound quite well the others. 

Combining Mann's method with certain supplementary considerations of algebraic 

and combinatorial nature, U.Zannier [12] proved in 1989 a result which may be considered 

as the analogue of Mann's for the case of algebraic ai and which led in particular to the 

inequality log Q < ea°> 1 ìog(dk)^-j:, where e is a certain absolute Constant and ao(d) is 

the number of divisors of d? But here I would like to discuss in some detail the analogue 

of the Conway-Jones's theorem rather than this, so, instead of giving any detail about the 

proofs in [12], I will recali an assertion that turned out to be a byproduct of those methods, 

which will be useful later. Namely we have (see Remark 3 in [12]): 

Ifp\\Q then the number of incongruent ones modulo p among the n?; 's is at least 

(3) ! + / " * • 
Observe, by the way, that this is sufficient to produce a bound for Q depending only on 

k,d; also, as in thè case of Mann's theorem, the inequality is the best that we can say 

taking into account a single prime factor of Q. 

We remark that the very ingenious proof of (2) given in [3] does not seem to extend at 

once to the case of general coefficient field. Together with R.Dvornicich we have obtained,. 

on completely different lines, a result which holds for general L and, in case L = Q, gives 

an inequality which is even more precise than (2).3 

2 A treatment of (1) in the case of complex coeffìcients appears also in Lemma 3.1, p. 40 of [1]. It 
is proved that, even if the relation is reducible, (n^~nj has order bounded in terms of the a,-'s, for 
some i ^ j . This follows also from both [10] and [12]. 
3 The proof of Thm. 5 in [3] also leads to a result more precise than (2). A third independent proof 
of (2) has been obtained by W.M.Schmidt (unpublished). 
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To state it, let G := Gal(Q(0/£) and define Q : G -+ C by Q(a) = a((ni). Then 
we have 

THEO REM 1. tf{\) is irreducible, then 

dimc{Co^...;c^1)>l+X(7£^^^-1)• 
P\\Q{P l , ) 

Here and in the sequel (v0ì...,vs) denotes the vector space generated by the V(. We 
remark that it is possible to prove that the left side of the inequality is just the dimension 
of the numbers £n ' over L; however the proof given below leads naturally tò the above 
statement. 

The left side is in any case < k — 1, so when d = 1 we obtain (2). On the other 
hand the theorem does not seem to follow formally from (2) even in the case L = Q. 

The proof we have found works by induction on the number r of primes p\Q. When 
r — 1, a simple argument suffices to derive the result from (3) (see [4]). To operate the 
induction we use a general result in linear algebra, which seems to have some interest in 
itself and represents the cruciai step. To state it we need a few definitions. For S a set, 
let A(S) denote the space of complex functions on S. For / E A(X),g E A(Y) define 
f*ge A(X x Y) by (/*</)(*, y) = f(x)g(y). 

Let now X,Y be arbitrary sets and let fi,... fm E A(X) generate a space of 
dimension a and gì,... ,gm E A(Y) generate a space of dimension b. We have 

THEOREM 2. Assume we have an irreducible relation Y^i=i fi * 9i — ®- ̂ hen 
fi * 9ì> 1 ^ i < m> generate a space of dimension > o'-f- 6 — 1. 

In particular we deduce m > a + 6, but this may be proved trivially in a direct way, 
even without assuming irreducibility. An equivalent, and perhaps better, statement may be 
obtained letting fi, gì be elements of vector spaces V, W resp., and replacing fi * cji with 
the tensors fi<3gi. The above formulation turns out to be more suitable for our application. 
Also, one may deduce an analogous result valid for any number of sets of in functions. 

Before giving a sketch of the proof of Theorem 2 we show how Theorem 1 follows 
from it. Let Q = pQi, where p/lQi and write ( = ptp, where p,ip are suitable primitive 
p-lh and Qi-th roots of unity resp.. Equation (l) reads Yli=o(aiPni)'tl;n-i ~ ® a n d m a v 

be considered as an irreducible relation among the •ipni, with coefficients in L{p). We 
have remarked that this implies a similar relation, also irreducible, with coefficients in 
F := L(p) n®(i/>). Let Gx = Ga\(Q(i/>)/F) and consider the functions ^ : Gì -^ C 



Vanìshing sums of roots of unity 491 

defined by r/>*(<r) = <r(i/)ni). Then, by induction, we have 

d i m c W , . . . , ^ . _ : L ) > l + ^ ( lJl - 1 ) 
i\\Qx ' ' l j 

where di = [F : Q]; simple Galois theory shows that di\d, so the inequality holds with d 
in place of d\. A similar argument, reversing the roles of p, 0, shows that 

dimc(pj, • • •, pj_i) > jfzYl)' 

Again, simple Galois theory shows that G contains a subgroup isomorphic to Gì x Gì such 
that £*(</i,</2) = V'J<(óri)p*(</2) and Theorem 2 finally gives what we want. 

We shall now sketch a proof of Theorem 2. This is based on the treatment of the 
following related problem. Suppose H, W are subspaces of A(S) of finite dimensions j,8. 
Define {HW) as the space generated by HW := {/uu : / j ^ , t o G W } and let <j) be 
its dimension. We would like to bound </> from below. Here we have an analogy with 
certain results on addìtìon of sequences of naturai numbers or residue classes: well known 
theorems of Cauchy-Davenport-Chowla (for the case of integers modulo m) and H.B.Mann 
(for the case of infinite sequences) give, under appropriate conditions, a lower bound for 
the cardinality (or the density, as the case may be) of the sum of two sequences in terms 
of the sum of the analogous quantities for the sequences in question. Here the produci of 
functions replaces the sum of integers and the dimension replaces the cardinality (or the 
density). In analogy we would like to compare ^ with 7 + 6 (in contrast with the upper 
bound j8). We can see this analogy also in the proof of Lemma 1 below, which has certain 
features in common with the proofs of the quoted theorems, as given e.g. in [5]. 

An obstruction for <j> > j + 6 to hold is certainly the existence of many elements 
h &H such that hW C W, for example. In fact we have, somewhat conversely, 

LEMMA 1. Assume that H contains the function, denoted 1, with Constant value 
1. There exist spaces H' C H, W' D W such that 

( i ) lGW'. 

(ii) H'W CW C (HW). 

(ni) dim H' -f <j) > y + S. 

We remark that the assumption about 1 (which could be relaxed) will be relevant 
later. The proof proceeds by induction on 7. If 7 = 1 we just choose W = W,H' —H. 
Assume 7 > 2 and the lemma true up to 7 - 1. If HW C W we again choose W' — W, 
H' = H. Otherwise, let / E W be such that Hi (£_ W and define Lt as the linear map 

L < : ^ ^ ^ T ' Lt(v) = vt + W. 
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Also, defìne Ti" := ker Lu W := W + Ttt and let 7", 8" be resp. the dimensions of these 
spaces. We have, plainly, 

(4) T " + ^ = 7 + ^ 7 > 7 " . 

Moreover le Ti". Observe that 

(5) (W"W")C(WW). 

In fact ft">V C WW trivially, while H"Ht = ft'ft"* C 70V in view of the defìnition of 
Ti". Since 7 > 7" we may apply the induction hypothesis to Ti" and W". It is now an 
easy matter to conclude, using (4) and (5). 

Lemma 1 contains the kernel of the proof of Theorem 2. To complete it we however 
need another lemma. 

LEMMA 2. Let S = {1,2, . . . , 772} and let W C T be subspaces of A(S). Define 
H := {A G A(S) : AW G J7}. Then, either dim Ti + dim W < 1 + àimJ7 or Ti contains 
the characteristic function of a suitable proper nonempty subset of S. 

For the proof, apply Lemma 1 to H and W. Observe that {TiW) C T by defìnition 
so, if the first alternative is not verified we have that, by (iii) of Lemma 1, dimTY' > 2. 
If 4̂ is the subalgebra of ^4(5) generated by 'H\ then , 4 c K . In fact, by iteration of (ii) 
of Lemma 1, we have AW C W. In particular AW C W C T and the claim follows 
in view of the present defìnition of Ti. Since dim Ti' > 2, there exists some nonconstant 
function f G Ti''. Set f(5) = {/1, . . . , / / v }, so h > 2. Now, it is immediate to verify that the 
function x '•= (Il*</i(A ~ / 0 ) _ 1 Yli<h(*~f* '*)> w m c n belongs to ^4, is the characteristic 
function of {x G 5 : f(ic) = / / J , which is a proper nonempty subset of 5. 

We can now conclude the proof of Theorem 2. Let S.= { 1 , . . . , 772}, so ̂ 4(5) = Cm . 
Let Ti C Cm be the subspace 

m 

fl:=-{(Alj...Am}:£Ai/i*# = 0} 

and set 
m 

^:={(6, . . . ,{m):£&/.- = Ó}: 
For j / e Y write </(?/) := (gi(y),..., <7m(?/))- We have 

W = {A = (Ai, . . . , Am) : Xg(y) G T^y G F} . 

Hence, defining W as the subspace of A(S) generated by the \ectors g(y)ìy G Y, we are 
in position to apply Lemma 2. Since the relation Y^fi*9i = ® i s irreducible, we see that 

file:///ectors
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Ti cannot contain the characteristic function of any nonempty proper subset of 5 , whence 

the first alternative of that lemma holds, i.e. dim H + dim W < 1 + diro T. But it is readily 

verified that dim H = m - dim(/i * g\,... , / m *gm), dim.77 = m - a, dim W = b. This 

completes the proof. 

We may mention that Theorem 2 admits an application, analogous to the present one, 

to the problem of the classification of linear relations among a given number of characteristic 

functions of arithmetical progressions, a subject having to do with the so-called covering 

systems of congruences, but appearing in other contexts as well (see [4]). 

We conclude by briefly mentioning a few other problems involving equations in roots 

of unity. First, there was a conjecture of Lang saying that, for an irreducible polynomial 

/ € C[x, y], either the equation /(Ci,C2) = 0 has finitely many solutions in roots of unity 

Ci,C2» or / is a polynomial of the form aXn + bXm or cXnYm + d. Equivalently, Lang 

formulates the statement by saying that // a curve has infinite intersection with the group 

of torsion points on a torus, then the curve is the translation of a subtorus. 

This appears as Theorem 6.1, p. 201 of [6]; proofs by Ihara, Serre and Tate are 

quoted and Tate's proof is reproduced. Also, Liardet's proof is given of the more precise 

Theorem 6.4, p. 203. That theorem makes the above statement explicit, by bounding the 

maximum order of a torsion-solution of /(Ci ̂ 2) = 0 in terms of the degree of / and 

the degree of the field L generated by the coefficients (provided of course / is not of the 

above exceptional type).4 These problems have been discussed, in more general form, also 

by Ruppert [9]. Among other things, he gives in certain cases best possible bounds for the 

number of solutions. 

Forgetting the precise form of the mentioned bounds, it is easy to derive such results 

from what we have discussed previously. In fact, the equation /(Ci,C2) = 0 may be plainly 

written as a vanishing linear combination of roots of unity, with coefficients in L. This 

relation may not be irreducible, but a possible nontrivial vanishing subsum corresponds 

to an equation flf(Ci » C2) = 0» where g is a certain polynomial, depending on the subsum, 

whose terms are a subset of the terms appearing in / . If / is an irreducible polynomial 

then, by Bezout's theorem, the equations / = g = 0 have finitely many common roots, their 

number depending only on deg / . So we may deal with the reducible vanishing sums. To 

the remaining ones we may apply e.g. Theorem 1 to complete the argument: the conclusion 

will be that, if xayb and xcyd are any two terms appearing in / then the order of Ci _cC2~d 

is bounded in terms of d e g / and the degree of L. This will imply a bound for the orders 

of C11C2» except when / has the above special form. (Due to the use of Bezout's theorem 

4 Liardet actually proved more general results on torsion points of C* modulo a finitely generated 
subgroup. See [6] for references and description of this work. 
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the final bound will depend on the degree of / rather than the number of its terms only.) 

We remàrk that the bound so obtained will be effective. We also point out that a 

similar argument will prove an analogous result valid for polynomials in any number of 

variables. 

More recently S. Zhang [13], [14] and E. Bombieri, U. Zannier [2] studied the 
distribution of points of small height on subvarieties of G^, where the height is now 
defined by taking the sum of the Weil height of the coordinates. We do not discuss in 
detail the results of such papers, but we remark that they are relevant fiere, since the points 
of GJJj having zero height are precisely the torsion points, those whose coordinates are 
roots of unity. As special cases of such results, one finds again the above mentioned 
conjecture of Lang, in a far more general form (an intermediate result was proved in [9]: 
he studied algebraic subvarieties of G^ such that torsion points are Zarisky dense). Also, 
Theorem 1 of [2] is completely uniform with respect to the field of definition and yields, 
as a very special case, the following: consider an algebraic subvariety X of G"v defined 
by equations ofdegree at most d, having algebraic coefftcients. Consider the set X defined 
as the union of translates of nontrivial subtori ofG™n contained in X.5 Then the number 
of torsion points in X — X is bounded, depending only on d and the ambient dimension n. 

As a special case, one can easily see that, given nonzero complex numbers 
ao,...ajb_i, the number of irreducible vanishing sums ciò + 2j»=i a*C» — 0» where d 
are roots of unity, is finite, depending only on k, but not on the ĉ -'s. 

In fact, consider the subvariety X E G^"1 defined by ao + 5^ a*#» — 0> and consider 
a translate £T of a nontrivial subtorus contained in X. £T will be given by parametric 
equations of the type XÌ = &u^, where & G C*, u := (« i , . . . , us), s > 1, and where the 
matrix of the Vi £ Zs has maximal rank s. Moreover we shall have, identically in the t^'s, 
°o + ]C ai£iùVi — 0. Plainly, if S denotes the subset of { 1 , . . . , k — 1} consisting of indices 
i such that Vi = 0, then S will be proper (since s > 1) and we have a0 + J2ies aiXi ~ ®-
So, if a point (Ci> • • • > Ofe-i) £ Xactually lies in X, then the equation a0 + J2ì=i a*C» — 0 
will not be irreducible, which clearly concludes the proof of the claim. 

We remark that a different proof of this corollary has been given by H.P.Schlickewei [11], 
who obtains moreover the explicit bound 23k] for the total number of irreducible vanishing 
sums (which he ca\\s,nondegenerate solutions). 

5rt turns out that X is Zariski closed in X. 
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