M. Ashraf

STRUCTURE OF CERTAIN PERIODIC RINGS AND NEAR RINGS

Abstract. In the present paper we establish a decomposition theorem for rings satisfying either of the properties
\[xy = x^m f(yx)x^n \] or
\[xy = x^m f(xy)x^n , \]
where \(m = m(x, y) \geq 0, n = n(x, y) \geq 0 \) are integers and \(f(X) \) is a polynomial in \(X^2Z[X] \) varying with the pair of elements \(x, y \), and further deduce the commutativity of such rings. Finally, related results are obtained for near rings.

1. Introduction

A recent result by Searcoid and MacHale [17] establishes commutativity of rings in which all products of two elements are potent. More recently, using this result Ligh and Luh [13] pointed out that such rings are direct sum of J-rings and zero rings. Further Bell and Ligh [8] obtained direct sum decomposition of rings satisfying the property
\[xy = (xy)^2 f(x, y), \]
where \(f(X, Y) \in Z(X, Y) \), the ring of polynomials in two non-commuting indeterminates. In the present paper we begin with the rings satisfying either of the following properties and establish a decomposition theorem, which in turn allows us to determine the commutativity of such rings.

(P1) For every pair of elements \(x, y \) in a ring \(R \), there exist integers \(m = m(x, y) \geq 0, n = n(x, y) \geq 0 \) and a polynomial \(f(X) \) in \(X^2Z[X] \) such that \(xy = x^m f(yx)x^n \).

(P2) For every pair of elements \(x, y \) in a ring \(R \), there exist integers \(m = m(x, y) \geq 0, n = n(x, y) \geq 0 \) and a polynomial \(f(X) \) in \(X^2Z[X] \) such that \(xy = x^m f(xy)x^n \).

2. A decomposition theorem for rings

Throughout this section, \(R \) will denote an associative ring (maybe without unity 1), and \(N \) the set of nilpotent elements of \(R \). A ring \(R \) is called zero-commutative if for all \(x, y \) in \(R \) \(xy = 0 \) implies that \(yx = 0 \). An element \(x \) in \(R \) with the property \(x = x^{n(x)} \) for some integer \(n(x) > 1 \) will be called potent. The set of potent elements will be denoted by \(P \). If \(P = R \), we shall call \(R \) a J-ring. By well known \("x = x^{n(x)} \) theorem" of Jacobson [11], J-rings are necessarily commutative. A sufficient condition for \(R \) to be periodic is Chacron's criterion: for each \(x \) in \(R \) there exists integer \(m = m(x) > 1 \) and a polynomial \(f(X) \) in \(Z[X] \) such that \(x^m = x^{m+1} f(x) \) ([9]). It is shown in [3] that if \(R \) is periodic, then every element \(x \) in \(R \) can be written in the form \(x = a + u \), where \(a \in P \) and \(u \in N \).
In a very surprising structural result (signified as Theorem B in sequel) Bell [4] remarked that if in a periodic ring \(R \) every element has a unique representation as above, then \(P \) and \(N \) both are ideals and \(R = P \oplus N \). In this section we shall obtain a decomposition theorem for rings satisfying either of the properties \((P_1) \) or \((P_2) \). In fact we shall prove the following:

Theorem 2.1. Let \(R \) be a ring satisfying either of the properties \((P_1) \) or \((P_2) \). Then \(R \) is a direct sum of a J-ring and a nil ring.

Proof. Notice that if \(y \) is replaced by \(x \) in either of the above properties \((P_1) \) or \((P_2) \), \(R \) satisfies Chacron's criterion for periodicity and hence the ring satisfying either of the properties \((P_1) \) or \((P_2) \) is necessarily periodic. We shall prove the result for the property \((P_1) \) and the proof for \((P_2) \) follows similarly.

It is easy to see that ring satisfying \((P_1) \) is zero-commutative. Indeed, if \(xy = 0 \), then there exist \(m' = m(y,x) \geq 0 \), \(n' = n(y,x) \geq 0 \) and \(g(X) \in X^2\mathbb{Z}[X] \) such that \(yx = y^{m'}g(xy)y^{n'} = 0 \). Now replace \(y \) by \(x \) in \((P_1) \), to get

\[
(2.1) \quad x^2 = x^p h(x), \quad \text{for} \quad h(X) \in \mathbb{Z}[X] \quad \text{and} \quad p = p(x) > 2.
\]

If \(u \in N \) and \(x \in R \), then chose integers \(m_1 = m(u,x) \geq 0 \), \(n_1 = n(u,x) \geq 0 \) and polynomial \(f_1(X) \) in \(X^2\mathbb{Z}[X] \) such that

\[
(2.2) \quad ux = u^{m_1}f_1(xu)u^{n_1}.
\]

In view of \((2.1) \), it can be easily seen that \(u^2 = 0 \), and hence \(xu^2 = (xu) = 0 \). Now zero-commutativity in \(R \) yields that \(u(xu) = 0 \) i.e. \((xu)^2 = 0 \). This together with \((2.2) \) implies that \(ux = 0 \) and again zero-commutativity in \(R \) gives that \(xu = 0 \) for all \(x \) in \(R \) and \(u \) in \(N \). This yields that

\[
(2.3) \quad RN = NR = \{0\}.
\]

Since \(R \) is periodic every element \(x \) in \(R \) can be written in the form \(x = a + u \), where \(a \in P \) and \(u \in N \). In view of Theorem B, it is sufficient to show that the above representation is unique. Indeed, if \(a + u = b + v \) for some \(a, b \in P \) and \(u, v \in N \), then

\[
(2.4) \quad a - b = v - u.
\]

Since \(a, b \in P \) there exist integers \(p = p(a) > 1 \) and \(q = q(a) > 1 \) such that \(a^p = a \) and \(b^q = b \). Let \(k = (p - 1)q - (p - 2) = (q - 1)p - (q - 2) \). Then it is clear that \(a^k = a \) and \(b^k = b \). Note that \(e = a^{k-1} \) and \(f = b^{k-1} \) are idempotents with \(ea = a \) and \(fb = b \). Multiply \((2.4) \) by \(a \) and \(b \) from both the sides and use \((2.3) \), to get \(a^2 = ab = ba \) and \(b^2 = ab = ba \). This yields that \(a^2 = b^2 \) and hence \(e = f \). Again, multiply \((2.4) \) from left by \(e \) to get \(a = b \). This completes the proof of our theorem.
REMARK 2.1. In view of (2.3), we conclude that the nilpotent elements of R annihilate R on both sides, and hence central. Since J-rings are commutative, the above theorem at once yields the following result, which generalizes main result proved in [17] and [18, Theorem 2].

COROLLARY 2.1. Let R be a ring satisfying either of the properties (P_1) or (P_2). Then R is commutative.

3. Related results for near rings

For the purposes of this section, R will denote a left near ring with multiplicative centre Z.

It is natural to question whether the analogous hypotheses yield the direct sum decomposition in case of near rings. The following example due to Clay (cf. [14, Example H-29, page 342]) shows that it is not possible to obtain such decomposition in the case of near rings.

EXAMPLE 3.1. Let $R = \{0, a, b, c, u, v\}$ with addition and multiplication tables defined as follows:

Then $(R, +, \cdot)$ is a commutative near ring satisfying $xy = yx = (xy)^2$ for all x, y in R. However, the set $P = \{0, a\}$ is not an ideal of R.

Hence, following [8], we define a weaker notion of orthogonal sum. Specifically, a near ring R is an orthogonal sum of sub-near rings A and B – denoted $R = A + B$ – if $AB = BA = \{0\}$, and each element of R is uniquely representable in the form $a + b$ with $a \in A$ and $b \in B$.

In the present section we shall investigate structure of near rings satisfying either of the following properties:

$(P_1)^*$ For every pair of elements x, y in R there exist integers $m = m(x, y) \geq 0$, $n = n(x, y) \geq 0$, $p = p(x, y) > 1$ such that $xy = x^m(yx)^p x^n$.

$(P_2)^*$ For every pair of elements x, y in R there exist integers $m = m(x, y) \geq 0$, $n = n(x, y) \geq 0$, $p = p(x, y) > 1$ such that $xy = x^m(xy)^p x^n$.

Before stating our main theorem of this section, we present the following known results which are essentially proved in [2], [7] and [8] respectively.
Lemma 3.1. Let R be a zero-commutative near ring. Then the set N of nilpotent elements is an ideal if and only if N is a subgroup of the additive group $(R,+)$.

Lemma 3.2. Let R be a periodic near ring with multiplicative identity. If $N \subseteq Z$, then $(R, +)$ is abelian.

Lemma 3.3. Let R be a near ring in which idempotents are multiplicatively central. If e and f are any idempotents, then there exists an idempotent g in R such that $ge = e$ and $gf = f$.

Theorem 3.1. Let R be a near ring satisfying $(P_1)^*$. Moreover, if idempotent elements of R are multiplicatively central, then P is a sub-near ring with $(P, +)$ abelian and N is a sub-near ring with trivial multiplication and $R = N + P$.

Proof. Notice that a near ring satisfying $(P_1)^*$ is necessarily zero-symmetric – i.e. R has the property $0x = 0$ for all $x \in R$, and hence zero-commutative. Let $u \in N$ and $x \in R$. Then there exist integers $m_1 = m(x, u) \geq 0$, $n_1 = n(x, u) \geq 0$, $p_1 = p(x, u) > 1$, such that

$$xu = x^{m_1} (ux)^{p_1} x^{n_1}.$$

Further choose integers $m' = m(x) \geq 0$, $n' = n(x) \geq 0$, $p' = p(x) > 1$, such that

$$x^2 = x^{m'+n'+2p'},$$

for all x in R and $m' + n' + 2p' \geq 4$.

The above equation yields that $u^2 = 0$ for any $u \in N$. Thus, we find that $u(ux) = u^2x = 0$ and the zero-commutativity in R implies that $(ux)u = 0$ – i.e. $(ux)^2 = 0$. Hence, in view of (3.1), we get $xu = 0$ and again zero-commutativity in R yields that

$$xu = x^{m_1} (ux)^{p_1} x^{n_1} = 0,$$

This shows that the nilpotent elements of R annihilate R on both sides and hence in particular $N^2 = \{0\}$ and $N \subseteq Z$. Now, if $u, v \in N$, then $(u - v)^2 = 0$. This yields that N is a subgroup of the additive group $(R, +)$ and application of Lemma 3.1. shows that N forms an ideal. In view of (3.2), we also have $x(x - x^{m'+n'+2p'} - 1) = 0$. But since R is zero-commutative, the last equation implies that $(x - x^{m'+n'+2p'} - 1)x = 0$, and hence $(x - x^{m'+n'+2p'} - 1)x^{m'+n'+2p'} - 1 = 0$. Now, a simple computation yields that $(x - x^{m'+n'+2p'} - 1)^2 = 0$ and $x - x^{m'+n'+2p'} - 1 \in N$. We can write $x = x - x^{m'+n'+2p'} - 1 + x^{m'+n'+2p'} - 1$ and also observe that

$$(x^{m'+n'+2p'} - 1)(m'+n'+2p'-1) = x^{(m'+n'+2p'-1)(m'+n'+2p'-1)}$$

$$= x^{(m'+n'+2p'-2)(m'+n'+2p') + 1}$$

$$= (x^{m'+n'+2p'})(m'+n'+2p'-2x)$$

$$= (x^{m'+n'+2p'} - 2x).$$
Since $x^{m'+n'+2p'-2}$ is idempotent, the above yields that $x^{(m'+n'+2p'-1)m'+n'+2p'-1} = x^{m'+n'+2p'-1}$ with $m' + n' + 2p' \geq 4$ and $x^{m'+n'+2p'-1} \in P$. Thus $R = N + P$. Now, we shall show that P is a sub-near ring with $(P, +)$ abelian. Let $a, b \in P$. Then there exist integers $q = q(a) > 1$ and $r = r(b) > 1$ such that $a^q = a$ and $b^r = b$. If $s = (q-1)r - (q-2) = (r-1)q - (r-2) > 1$, then it is straightforward to see that $a^s = a$ and $b^s = b$. Also, since $e = a^{s-1}$ and $f = b^{s-1}$ are central idempotents with $ea = a$ and $fb = b$, it follows that

$$ab = eafb = (ef)(ab) = (ef)^m(abe)^p(ef)^n$$

for some integers $m = m(ef, ab) \geq 0$, $n = n(ef, ab) \geq 0$, $p = p(ef, ab) > 1$. This implies that $ab = ef(ab) = (EF)^{p} - i.e. ab \in P$. Since, R/N has $x^{t} = x$ property, we have integer $j > 1$ such that

$$(3.4) \quad (a - b)^{j} = a - b + u; \quad \text{where } a, b \in P \text{ and } u \in N.$$

Moreover, e and f are central idempotents in R and hence in view of Lemma 3.3 we can choose an idempotent g in R such that $ge = e$ and $gf = f$. This yields that $ga = a$ and $gb = b$. Now, multiply (3.4) by g, to get $(a - b)^{j} = a - b$ i.e. $a - b \in P$. Since, gR is a periodic near ring with multiplicative identity element in which nilpotent elements are multiplicatively central. Hence, by Lemma 3.2, $(gR, +)$ is abelian. Therefore $ga + gb = gb + ga - i.e. a + b = b + a$, and hence $(P, +)$ is abelian. Now, it remains only to show that each element of R has atmost one representation in the form $a + u; a \in P$ and $u \in N$. Accordingly, suppose that $a + u = b + v$, where $a, b \in P$ and $u, v \in N$. Then, we find that $-b + a = v - u \in P \cap N = \{0\}, -i.e. a = b$ and $u = v$. This completes the proof of our theorem.

Remark 3.1. The following example (cf. [14, Example E-14, page 340]) justifies the centrality of idempotents in the hypotheses of the above theorem.

Example 3.2. Let $R = \{0, a, b, c\}$ with addition and multiplication tables defined as follows:

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\cdot</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>0</td>
<td>c</td>
<td>0</td>
</tr>
</tbody>
</table>

It can be easily verified that $(R, +, \cdot)$ is a near ring satisfying the condition $xy = x(yz)^{2}x$ for any x, y in R. However, the set $P = \{0, a, c\}$ is not a sub-near ring of R.

REMARK 3.2. If \(R \) is a near ring satisfying the condition \((P_2)^*\), then it can be easily seen that \(R \) need not be zero-commutative. However, a zero-symmetric near ring satisfying \((P_2)^*\) is necessarily zero-commutative. Hence, by using similar arguments as used to prove Theorem 3.1, with necessary variations, we can prove the following:

Theorem 3.2. Let \(R \) be a zero-symmetric near ring satisfying \((P_2)^*\). Moreover, if idempotent elements of \(R \) are multiplicatively central, then \(P \) is a sub-near ring with \((P, +)\) abelian, \(N \) is a sub-near ring with trivial multiplication and \(R = N + P \).

Acknowledgment. The author is indebted to the referee for his valuable suggestions.

REFERENCES

Mohammad ASHRAF
Departement of Mathematics, Aligarh Muslim University
Aligarh - 202 002, INDIA