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Abstract. From é,suité.ble probability-like fuaction on pairs of points in a set,

a commutative algebra is constructed. The product i in- this algebra can often
be realized as a growth model, or a game whose outcome is mdependent of-'
chonces A specml case yields a simple proo{ of the Lagrange mversmn formula., _

and mtngumg formu]as for characteristic cla.sses on pro_lect.lve spa.ces

1. Introduct ibn

We make several related constructlons each starting from a set X
together with a function p: X >( X — R with the property tha,t for any :c;
in X, there are only ﬁnltely many ¥ with p(:c y) nonzero. Here R can be any
commutative ring, _but for snmphcnty in this mtroduct:on we take R to be the
real numbers, and, moreover, we assume that p(z,y) are proba.blhtles

P(x y) >0 forallz a,_nd_ yin X ;
E.p(m,y)—i forallzin X .
= |

Regé,fd the points of X as sites, and p(z,y) as the pr’oba_,-bilitiy that a parijic_lé E
starting at = will move to y. For example, X could be the integer lattice Z"
in R”, with equa_l probability 1/2" to move to each of the nearest neighbors.
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For ea,ch ﬁmte subset; S of X and each z in S a,nd y not in 9, deﬁne o

.' _'p(:c .S' y) to be: proba,bllnty tha,t if a particle starts at and mioves from site

to- s1te a.ccordmg to the probablhty P, then y is the first snte outsnde .S' tha.t :
.the partlcle lamds on. Tha,t is, .

p(év 5' y) p(-'v y)+ Z:P(-'lc w)p(u, y)

uGS

"F Z P(ﬁ‘ ﬂl)P(‘ﬂ-l-,-ﬂz)p(uz,)

ul,uzeS _

o a serles wluch can a.lso be evaluated in ﬁmte terms by mvertmg a matrlx Our

- p(a, 8, y) are known as taboo. probabilities in the classical theory of Markov
' ..chakms ‘Chung [Ch §1.9] gives a systematic development o B
| - To mmphfy the discussion in this. mtroductlon, we assume that it is _
poss1ble to escape from any finite set, i.e., _ '
NG For any nonempty finite subset S of X there is some Z in § and some
ynot1n.5'w1thp(a:.5’y)>0 S .
In the text, the topics. dlscussed in thls mtroductlon w1ll be trea,ted in more
' 'detall and without this assumptlon ' ' "

A growth model. Fix a ﬁmte subset S of X and think of the sites of
S as inhabited and those outside S as uninhabited, and replace the particles
| by explorers We send out an explorer, who starts from a point z in S,

o tra,vellmg alwa_ys a.ccordmg to the proba,blhtles until reachmg an umnha.blted

site, where the explorer settles “This is repea.ted successnvely sendmg a new

' _-explorel from the pomt z, each travellmg until arriving at a site outside $ not

- occupled by a previous explorer If T is a set with k sites which is disjeint .
. from §, let q(T) be- the probablhty that T becomes 1n11ab1ted by the first k -
) _explorers If k=1,s0T = {y}, then q(T) p(:c s, y) For k > 1 |

¢(T) = Z: oT - {y}) p(fr SUT - {y} -

| yeT

| These.pllobahilities can be quite compllcs,ted 'e\}en for simple models. For

o '?example, if X = Z® is the standard lattice in IR“ and p(:c,y) is 1/2" if the

o distance between z a.nd y is 1, and 0 otherwise, it is not easy to give closed :
-_formulas for q(T) if n > 1. However, Lawler, Bra.mson, and Griffeath [LBG] |



have shown thd-t the llmltmg shape as the process is repea,ted over a,nd over,
st‘.a.rtmg with § = {z},is a round ball centered at z. |

The growth ‘model descrlbed above corresponds to repeatedly o
mult:plymg by a fixed element in the algebra to be descrlbed below. There

are several other posmb:hhes For- ‘example; the ra.ndom set can be repeatedly .
squared. Startmg from a fixed point, the number of sites doubles each time. -
Probablllstlcally, if Sy is the ra.ndom set at time n, enumera,te the points i in Sn "

as 8y,. 82n Start an exp]orer out at s1, and add the first unexplored site it R

hits, sa.y 31 Thien start an explorer out at sy and add the first pomt hit out31de

- Sn U {s}}. Contimiing in this way gives Sny1 of size 2"*!, One consequence ~ -
of the results proved below is that the glowth dlstrjbution is independent of =

. the method of enumeration. A second consequence is that the dlstrlbutlon of
Sy in the random squaring model is the same as the dlstubutlon of Sgﬂ in the'
model where smgle points are added each time. _ _

There is a na,tura,] generahza,tlon, when each SJte r comes eqmpped with -
a positive mteger d(:r) thought of as a tolerance (the preceding case being
when all d(z) = 1). Now if we are given a ﬁnlte set § with a pOPlllELthII'
n(z) of individuals at each site # in S, we can choose any site ¢ with more
1nd1v1dua,ls than the tolerance (n(z) > d(z)), and send out an explorer from
x, movmg accordmg to the proba.blhty p as before, but settling now as soon as
it reaches a site y with n(y) < d(y). This process can be. repeated until there-

are no 0V€Tp0p1ﬂ¢tted sites. In this settmg, the key fact is that the probablb ty o

of a given outcome is independent of the order of cho;ces

| " The growth model is caref ully described in section 3, which also develops
probd,blllty results for the srmplest case. of random wa,]l\ on Z. o

A game Suppose at each site in a.set X we are glven an lnﬁmte deck of_ -
cards, ‘each labelled with some site in X. Assume for simplicity that for any
_mﬁmte subset S of X there are infinitely many cards at sites in § labeﬂlng
- sites not in §. Suppose a finite number of chips are arranged on X, with'a

certain number at each site. A legal move is the choice of = in X with. more |

than one chip; one of the chips at z is moved to the site labelled by the top
* card of the deck at z, and this card is thrown away. More generally, if each site .
has a tolerance, one can restrict legal moves to those = for which the number

of chips is greater than the tolerance. A game is a sequence of lega,l moves, )
until no legal move is possrble The claim is that the game always terminates, _
and the number of moves and the final position are mdependent of choices. -




N Thls 1s proved in sectlon 4.

leen a proba.brllty functlon p as before, the decks ca.n be ra.ndomly -
_arra,nged so that. p(:c y)is the probablhty that a card at site z Jabels site y. -

 The fact that the outcome of the game-is uniquely. determmed 1mp11es the

| ~ fact that the proba.blhtles (T) of the precedmg discussion are mdependent of |

o 'chomes

. This ga,me is a close relat;ve of a. vanety of chrp ﬁrmg games-on graphs o -.

s in [BLS] and [Moz] In these games, chips are moved around a graph
w1th some apparent freedom of chorce until there is-one chip per. vertex. The
number of moves taken and the finral’ posmon turns out to be mdependent of
the cholces ‘Eriksson [E] has mtroduced a.game which includes both a version
of our game and tha.,t of [BLS] As far as we know, there is not. currently a -
connectlon with the olymplad” game in [Moz] - '

An algebra Wlth X and p as at the begmmng, let A be the vector

| space with basis the ﬁmte subsets § of X. We will define a product on A, v

which ma,kes it into an associative and commutative R- a.lgebra,, gra,ded by the
ca.rdlna,lltles of the sets The product is umquely determmed by the rules

1) .S' T=5uT .. - 1fSa,ndTa,redJSJolnt,
(2) {-v} § = Ep(wSy)(SU{y}) ifees.

For arbltrary S a.nd T if § {"1 T {2:1, ,:r:n}, then usmg (2) mductlvely,

BN T= {£1}( '({wn}'(S'UT))---)-.

~In thls la,ngua,ge, the basm fact is that the result is mdependent of the cho;ce =
of ordeung of the pomts T1yeeoyTn. One can also genera.hze this to the case
~ when there are tolerances d(a:), a basis for the algebra. becomulg ﬂmte sets

_ with multiplicities not exoeedlng the tolerances.
We take this: algebra. A as'the basic obj Ject of study Its propertles are :

" | ca.refully descrlbed in section 2. In pa,rtlcula,r, we w1ll glve generators and
rela,tlons for' A as an R algebra -

| - Sinks. It is 1mportant to be a.ble to deal also w;th the srtuatlon when
' a.ssumptlon (*) fails. Call a nonempty ﬁmte_ set Z of X a sink if p(z,y) = 0.for
all 2 € X, y ¢ Z and if Z is minimal with this property. An explorer landing



%

in a sink can neverleave it, and once all the sites in a sink have reached their

tolerance leve]s, one can only keep track of the total number of individuals -
in the sink: movements within a full sink are 1gnored Final states of the =

‘growth model, or basic elements in the algebra A, are given by a marked set,
which. is a finite number of sites w1th a positive mteger m(z) no larger than
the spemﬂed tolerance d(:c) together with a finite number of sinks Z with
a positive integer e(Z) such that m(z) = d(z) for all z-in Z; this indicates
that each site i in Z has an excess e(Z) beyond its full tolerance of 1nhab1tants,

which are at some unspemﬁed snte of Z. As a less refined alternative whichis

also useful, one can simply ignore all sinks when they become full, regardmg '
them as. “black holes”, and setting the correspondmg claﬁ.ses equa,l to zero in
‘the algebra. : :

Lagrange in version. A very spec1a.1 mterestmg e\:a.mple is a “circular”
case, when X is the set {1,2,...,n} with probabilities

p(1,2)= po;s) 4—- =L =p(n1) =1,

and all other p(i,7) = 0. i q(l),q(?),.'. . are any real .numbers, _followin_g-':
Hirzebruch one defines () t6 be the unique power series with constant term
1 such that the coefficient of 2™ in ®(z)™* is q(n) for alln =1,2,.... By
calculatmg in the ring A constructed from this X and p, one gets a useful'

formula for the first n coefficients of ®(x)"+!. This is. worked out in section .

5, where the Lagrange inversion formula is deduced as a corollary.

Characteristic classes. ' With X and p as in the precedmg paragraph Lk

one ¢ can associate to each subset § of X the projective snbspa,ce Vs of the

prolectwe space: }P“ -1 wluch is the intersection of correspondmg hyperpla,nes

.ng{[zl:zgz...:zn]EJP’“"l:z,'_:Ofora]l-z'G S}._

_ Theae are the invariant subvarieties for the natural aetlon of the torus

= (C*)*/ C* on P!, In the language of toric varieties, each § corresponds g
to a face of the correspond ing convex polyto_pe lying-in the _hyperpla.ne with
~equation z; + . .4z = 0in R*. The ring. A constructed above makes
the invariant cyc]es into a ring, which maps onto the cohomology of P?~1,
- Numbers ¢(1),¢(2),... correspond to a characteristic class, namely that class
whose value on P* is g(k) for all k. The formula referred-to in the preceding



| _-:'__'___pa.ragrauph gwes a, llftmg of thls class from the cohomology rmg to this rmg' '

“of cycles, __where it has a_much. snmpler expression. For example, the Todd

. class’ corresponds to: the chonce q(k) =1, and this gives the coefficient of Vg
o as. the fractlon of the space spa.nned by the correspondmg face which is cut
out- by the cone over tha.t face. This is dlscussed in gection 6. Unfortuna,tely,
o however, we' know no wa.y to genera,hze any of this to general toric varieties,

50 it remams a,n mtr]gulng curloSJty
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. conversations wnth David Aldous, see [A]. We also thank Laurel Beckett, Bob
_'Keener, Ken Ross, the authors of [LBG] a,nd [E] who responded to an ea,rher
version of thrs note : :

- 2 | .C‘j“..sti‘ﬁétio-n- of the algebra o

In this sectlon we ma,ke an algebra. out of linear comblna,tlons of marked
. _sets “The. constructlon depends on four. elementa.ry lemma.s whose proofs
are postponed to §7. Let X be a set, R a commutatlve ring. w1th unit, and

P XxX — R a function such that, for all 2 € X, p(:e:,y) 0 for \all. o

| but ﬁmtely ma,ny y. A Slﬂ]\ is a nonempty finite subset Zof X such that
_ p(a:,y) =0 forall z € Z and Y ¢ Z, and such tha,t Z is ‘minimal with this

- property Since the mtersectlon of two sets with this property also has it, any
'_'..two smks must be- dlSJOlllt Ca,ll a finite subset good if it contains no sinks.

For a ﬁmte subset § of X, let Pg be the matrix (p(u ). vES: and Ig

o the tdentlty matrix (6(u, 'v))ﬂ ses; these are n by n matrices, n = 15|, with

rows and columns indexed by % and v in § (an ordermg of §is 1rreleva.nt)
Our basm assumptions are:

(.2;-1) . For a.ny_soed S the matrix Ig — Pg is invertible;



e _ (22) SR For a,ny smk Z and z€ Z we have E p(z, y) —1

o - yez.
~Condition (2 1) means that for éach good S. there is a matr_j'x -
Bg = (bg('u )y ,,Eg such that for any % and-w in: S .
1 ifu= w.'

[0 othermse o

st(u v) (6(v w) p(v w)) =

| veS - .
Deﬁne p(z, 8, y) for each goocl set S and z € S y &’ S by the formula o
(23) - HeSy)= st(m) p(uy) |

' _ CwES _

We will see 111 the next scéti_on that, when R = R and pis a probability
function, conditions (2.1) and (2.2) are implied by condition (*) of the -
~ introduction, and formula (2 3) agrees with the 1nt111t1ve definition. descubed_
there. .

LEMMA 2.1. Fix a g_oed_set S and an element.y &‘ 5. The-ele'ments_ __ -

p(z,S,y), forz € S,‘_are_the unique solutions of the equatiOns'

(24 P(::;,S,y) p(z,y) + Zp(w w)p(w,S, y)
. ues .

The right qlde of (2. 4) can be used to extend the deﬁml;lon of p(:z S, y) |
to the case where z is not in §.

| Suppose we also have a “tolerance” function d : X —> N*. Let Z be
the set of all sm]\s in X. Define a marked set to be pair (m,e) of functmns'

m:X —Nande: Z — N each of whlch is zero on all but ﬁnltely many_-

' elements and s&tlsfylng
(2.5) - | m(a,) < d(a:) for all z € X,
(2. 6) | e(Z) =0if th‘ere is a.ny'z € Z with m(z) < d(z)

Call a sink Z qu for the ma,lked set (m,e) if m( )= d(z) for all 2 € Z .
We think of e(Z) as measurmg the number of extra markers in Z. Define the

degree of (m,e) to be
> mx)+ 2 o(2).

zeX ZeZ




Note tha,t when there are no smks, and the tolera.nce functron is 1den1;1ca.lly_
1 a ma,rked set is srmply a finite: subset of X, and the degree is its cerdmalrty

Ea.ch z.in X may be. ldentlﬁed wrth the marked set (6y,0), where .

'X ———-> Zis the Kronecker functlon whose va.lue on z is 1 and on other .

'_y is 0. The empty set @ is represented by the pair. (0, 0). For z in X, let
' Z N ta.ke a smk Ztolif Z conta,ms T a,nd to 0 otherwrse

N Let A = A(X P, d] be the free-module with basis the marked- sets We
will make A into a commutative a,ssocra.tlve R- a.lgebra,, gra,ded by degree, with
'_umt 1p correspondmg to the empty set. To do this we must in particular define
the product x -(m,e) in A for each marked set (m, e) and each z in X. Each

marked set (m, e) determines a decomposmon of X mto four disjoint subsets

A, B,C, a.nd D, with a]l but the first finite:
A s the set of all 0 such that m(z:) < d(:c)
B is the union of all sinks that are full for (m e);

C  is the set of  such that m(z) = d(z), and z belongs to a smk Z(’c)

‘which is not full for (m,e); . -

D is the set of & such that m(z) = d(x), and z is not in any 'sin]\

_ * The definition of z - {(m, e) depends on which of these sets contains z; in
.each case, il corresponds to what happens if a marker is dropped at :c and it
moves a.ccordmg to the probability until it gets to a place which has room for
it, ot it gets to a sink which is already full, in which case it adds one to the -
number of extra ma,r]\ers on the sink:

 @eme=(mibe it ceds
) @ (moe) = (miet xa) ek
(€) 2 (my€) = Tiepapna (e 2(x) - (=)0 A,2)(m + 85,¢) if 2 €C;

| | (d) z - (m,e) = E Dp('z: D,y)(y (m,e)) ifz 6 D, where for Y ¢ D' |
oy (m e) is cleﬁnecl by( ), (b), or (c). |

Mu]trphca,tlon by determines an R- linear ma.p x A — A. The key
fact is the. commuta.tmty of these opera,tors |

LEMMA 2.2. For any ma,rked sel (m,e) _and- any x,y in X,

| y(:c .(nr,e)) =e.(y.(vﬁ,e))_in A.
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It is easy to see that any marked set can be reahzed by successwely‘

operating on the empty set § by appropriate elements of X. It follows that the ~
product on A is uleuely determined. by the above deﬁmtwn In order 10 see -

* that this. product is well def'med we use 4 rounda,bout but sunpler procedure
'_Let R[X ] be the polynomial ring on the va.rn&bles r € X. By Lemma, 2.2,
“there is a homomorphism from R[X] to the rmg of endomorphlsms on the

R-module A, which takes z to the above operator z-. Our program is to ﬁnd '

~ an ideal Tin the kernel of this ma.ppmg, and then to show that the ma,ppmg |
from. R[X]fI to A that takes a polynomial to its effect on the empty set §

‘determines an 1somorphlsm of R[X ]/1 onto A. The. a,lgebra structure on A is
then evident. For thls we need another lemma,

LEMMA 2.3. If (m, e) is a ma,rked set, a,nd x IS an element ofX with
m(z) = d(z), then |

. - (m,e)';—: Z p.(m,y)(y <(m,e)) in A.

YEX

" Note that the product of any {m, e} by z is a...line'a;r combination of terms

(m!,€') with m'(z) = mm(d(:z:),m(:r:) + 1). It follows from Lemma 2.3 that, o

for any z in X, and any (m,e), -

(2.7) - (2 “"”‘” ' Zp(:r y)-'r‘“”’y) (m, e)—O

yeX

Snmla.rly, if Zis a smk the produet of a,ny (m,e) by the product

Hze z 2%() is a linear combination of marked sets for each of which Z is |

full. It follows that for all sinks Z and all z and yin Z,

08 ((-"«'— Hz“"”) (m e)—o

z€Z

t

Now we define I to be the 1deal in R[X ] genera,ted by all elements of
the form :

(i) (m—- Y plz, y))'.d(x) - forallzin X;
vEX o -



(") (-'c - y) H z‘“z) . for all si-nks'--Z and all x,y € Z.

N By.(Z 7) a,nd (2 8), the 1deal I acts tnvna,lly on A, 50 we have a
_.homomorphlsm of R-modu]es | . | | -

[X]ff—-»A P——-—-bP@

If Z is a smk and ea nonnegatlve mteger, and M is any monomla,l 1n"
| _the va.ua,bles z.in Y w}uch contains each z € Z to the power at least d(z), we
- write M - Z€ in R X)/Tin place of the element M - 2¢, where 2 is any element
~in Z; by (ii), this is mdependent of chmce of 2. The assertlons about A are
' pa,rt of the fo]lowmg theorem. ' '

THEOREM. (a) The rmg R[X]/I is a free Rmodule w:th basis the
images of monomlals of the form ' .

H x-m(x) H Ze(Z)

xEY ' ZGZ

‘wllere (m e) varies over all marked sets

© (b) The Ilomomorplusm R[X] [T — A, P—s P.0,isan Jsomorphlsm |
It takes the displayed monomial to the ma,rl\ed set (m,e). '

" For the proof, the last statement in (b) is easy from the definition, and

it fo]]ows from this that the monomials are R-independent in R[X]/1. To
- complete the proof’ it must be verified: that these monom;a.ls generate R[X /1.
* For this we need a recipe to decrease exponents m monomla.ls, to get them .
o _be]ow the tolerance levels ' :

LEMMA 9 A Suppoce n: AX — N vamshes outs;de a, ﬁmte set. If S is
'_a, good set, a,nd n('v) > d(v) for allv € S, and z is any element ofS then

H ,vn(v) E }J(.T S ,w H ,Un(tr) n(:r) 1

veX wgsS v -

sin L | |

Given a monomial I ™) let § be the set of elements vin X s:'u'ch

' veX
that v is not in a sm]\ and n{v) > d(v). Lemma 2.4 shows how to decrease



‘_ 105..._

_ exponents of any whlch is not in a smk to tolerance levels w1thout mcrea,smg. L

exponents of any element not in a smk To complete the proof of the theorem, _
it suffices to see how to decrease exponents in- a monomla,l M= H ez M)
when Z is a sink. (notmg that there i is no mixing of terms in a. smk with those
outside). If n(z) > d(z) for all z € Z, then M is equlva,lent modulo I to

Tliez 2902} ZE“(”) 42), If not, to decrease the exponent of z if n(z) > d(z), .

apply Lemma 2, 4 w1th S the set of z in Z such that n(z) > d(z) Using the
fact that p(z, S, w) =0 if w is not in Z (cf. Lemma 7. 2), the sum in Lemma
" 2.4 needs only be taken over those w in Z - ZN S, and the terms in this sum -
" have lower exponents of . This completes the plOOf of the Theolem from .
.Lemmas 2.1-2.4. | | |

Let A be the free R- module on the fanctions m : X — N such that
m(z) < d( x) for.all z and which vanisk outside some finite subset, and such
that, for any sink Z there is some z € Z with m(z) < d(z). The product
we have constructed determines a product on A, by identifying m with the

- marked set (m,0), and throwing away any marked sets in the results for which R

some sink is full. To see this, let J C A be the set of R-linear. c_ombm_atlons of
marked sets (m,e) for which_Some- sink is full, It jollows from the definition
that J forms a homogeneous ideal in A, so A/J is a commuta,tive, associative,
graded R-algebra. It follows. from this construction and the Theorem that

- A/J is free on the marked sets of the form (m,0), with m as above so it is.

-cauomca,llv 1somorp1uc to A and gives A the requlred algebra. structure

C‘OROLLARY With this product, Ais a commutat:ve, assoaatrve,'

~ graded R algebra. It is canonically lsomorphfc to R[X]/I, where I is the_"
tdeal generated by the elements

) (- Tyexp@ned®  foralzin X
(i) ez 20(2) - for all sinks Z .

Note that. when the tolerance function d is identically 1, A is free on the finite
good sets, and the relation (i) becomes smlply

2?3 ple,y)ey = 0.

yeX




co .--3 The Markov model

Consu]er the case where R IR?. a.nd P is a, probablhty

0<p(a: y)<1a,nd Ep(m,y)—lfora.ll:cmX.
yGX - :

- __-For a sequence of elements ul,ug, .y Ur of X, set

. p() = p(ui;qz)'p'(uz, s) - plir_t, r) «

'. In this -'setting ther'e-a.re Se\fera.] ‘ways to "Sa.y' that a set'is good':

PROPOSITION 3 1. For a. finite subset S of X, the fbﬂewihg' are
eqmvalent ' - -

(i) For every fi finite nonempty subset Tof S, the mafnx IT Pris mvert:ble,
(u) S contains no sink; -

(iii) for allzin § there isay not in S such that either p(z,y) >0 or there
isa sequence uy; - ) Uy in S such that p(z,u1,...,%r,y) > 0; '

. (;v) the sum Ef_ Zm, ,ureS p(ul, u,) converges.

Proof (z) = (aa) If there is no escape from a subset T of S then the

' _vector (1,...,1) isin the kernel of I — PT

(1) => (m) If Ti is: the set of all z in S for whlch there i 1s no y as in

| -.:'(zzz) then there is no escape from T.

(m) = (w) From (m) thére is a pos1t|ve mteger T and a p <1 such

R _that for all z E .S'

cp(a: r) Z . p(z,ﬂj,..;,_ur)-g.p..

ﬂ.], ,‘lerS

'.__Th_en oz, mr) < p‘"‘ and (z’b) fblloWs

(w) => (z) The ma,tnx (bT('u v))uveT is inverse to It — Pp, where

[CRVR v)*Z Z P, unv) .8

7=0 uIs !ul’eT



- 'there are no sinks, is that dlscussed in the mtroductlon

07

s,

(3:2) p(mSy) Z} Z P, u,. ,u,,y)

. - r—oﬂl, ,urGS

"Suppose we are also gnven a tolerance functlon d: X — N"’ If
: X — Nis any functmn whichi is zero outmde a ﬁrute set we can wnte, m'
_ the rmg A constructed in §2 ' '

33) H v“f*’>—2q(nz e) (m e)

veX

| the sum over all’ marked sets (m,e). The coefﬁcnent q(m e) is the proba,blhty
that the marked set (m,e) results when explorers are repea.tedly sent from
those sites @ with n(z) > d(z), travelling according to the proba.blllty D,

It follows fom (3. that f.;rm good set S, with @ in § and ynot in

stopping at a site with population less than its tolerance, or at. a site in a
~ full sink. The fact that the product is well defined — which comes from the

commuta,tlwty of Lemma 2.2 - 1mp]1es tha,t the coefficients: are independent
of the order of ch01ce of explorers. The case when the monomial i is a,k , a.nd

_ The 31mplest examples of the product lead to mterestmg proba,blhstlc '
- problems. Consider X = Z, with p(z,z+1) = 1/2 = p(z,z - 1). The Markov

chain is simply random wa.lk on Z. Construct a- ‘random set by repea.tedly o
: multlplymg the point zero. Usmg proba,blhty language Begin by lighting up -

the one pmnt set {0}. Then choose one of the neighbors of 0 and lxght it up.
‘After n steps there will be an interval of steps, mcludmg 0, lit up. At step
"~ n+1,arandom wa.lker starting at 0 wa,nders untll exltmg the 81tes ht up at

~_step n, this new sxte is lit up.

A natural question is: how does this random set grow? If the random
set at time n is the lnterva,l [ —a, b, the classical. gambler’s ruin problem, see.

‘e.g. [Fe], says that the chance that the next site lit up is negative is &Jg—}_— -

Thus the random walker tends to exit from the shor ter side, and so tends to

equalize the number of positive and negative sites. The next result shows that
n
the numbe_r of negative sites is 3 plus approxlmately normal fluctuation at

scale \/n. .




Paoposmon 3 2 Let Nn be- the number of negative srtes at time n

.' for the random set on Z geﬂerated by SImpIe symmetnc random walk. Tben,
- as n tends to mﬁmty, ' _

pl2 .-.2. <ty - —/ e ¥ /2d2f '

Proof The growth of nega.tlve sntes has a.n a.lterna.tive ‘description as

h an urn model Begm with an urn conta.mmg one black and one white ball.
.At stage k. k > 1, draw a ball out' at random and replace it, together with a
ball of the opposnte color. Let Ny be the number of black balls in the urn at
' stage k. This Ny process has the same distribution as the number of lit-up
'nega,twe srtes for k = 0 1,2,.... The N}, process has been studied as Bernard -

Freedma,n 5 urn by Da.vnd Freedma.n [Fr] who proves the pl‘OpOSlthl‘l m this
settmg " . S _ _

In recent work Bramson, anfeath a,nd Lawler [LBG] have shown that

| the growth model based on nearest nelghbor random walk in Z"‘ has a hmltmg

sha,pe and that- this shape is round They show in fa.ct that, given any € > 0,

: then, ‘with probability 1, there is an Ng such that for n > Np the set S, w1th'
“n points is contained in the ball of radius (1 +-¢).-"Y/n/Bm and contains all
- lattice points of the ball of radlus (1—¢)- %/n/Bm, where By, is the volume |
- of the ball of radius 1 in IR”‘ ThlS is the first example where a spherloal .
- shape has been determined. ‘For compa,rlson in Richardson’s growth model a
B random set is grown by con51der1ng all points at distance one from the current_
- set and- a,ddmg one of them with probablllty proportlona,l to the number of
"nelghbors in the current set. It was -shown that. Richardson’s model has a

limiting shape and computer simulations suggest that it is round, but it has ,

“been shown that in. very’ hlgh dlmensmns the shape is not a ball. See Durrett
3 [D] for this.. -

_ 4 The game '

R Suppose at ea,ch site in a set X" we are given an infinite deck of cards,

~ each labelled with some site in X. Let Z be a subset of X with the property
- that, for a.ny finite subset S of X not contamed in Z there are mﬁmtely ma.ny
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_ca.rds at sltes in S la,belhng sites not in 5. Suppose d: X — Nt is a functlon

Suppose a ﬁmte number of chips are- arranged on X, with n(a:) chlps at snse--'__--'__
z. A legal move is ‘the choice of z in X - Z with n(z) > d(z); one of the chips = .
at  is moved to the site la.belled by the top card of t;he deck at z, and thls” B
card is thrown away. A game is a sequence of legal 1 moves, until no legal move_

]S posmble

PROPO%ITION 4.1. Any game terminates in a finite number of moves

The final posrt:on ie., the number of chips on ea_ch srte, the number of moves,

and the number of t;mes each site is chosen in a game are. mdependent of
choices. o '

" Proof. A stra.t‘.egy for a terminating game is to-choose a chlp on a.ny_

& not in Z with n(z) > d(z), and follow it until it lands on a site y with

n(y) < d(y) or it lands in Z. Since this decreases the number of sntes outside

Z with excess ChlpS the procedure must terminate. Let (z) = (%1,...,2n) be

a terminating sequence of legal moves. To prove the rest, we {ollow Eriksson _

[E], <f. [A]. It suffices to show that any other sequence of legal moves is

a permuta.tlon of a subsequence of this one. If not, there is a sequence of

legal moves. (%15 .. ,¥,v) such that (y) = (Y1y+++,¥x) is @ permuta.tlon of a

subsequence of (z), but the sequence with v on the end is not. The number'_

of times v occurs in the sequence (z)is therefore the same as the number of
times v occurs in (y); and all other sites occur at least as many times in ()
‘as in (y). It follows that the number of chips on v after (z) i is at least as large

as the number of chips after (y). Since this number after z is no larger tha.n_ o it
d(v), the sa,me is true after (v), so v cannot be a lega,l move after (y) .

5. The_circle and Lagrange inversion
One of the simplest exemples is X ={1,2,..., n}, witb
(5.1) p(1,2)=p(2,3)=... = p(n - 1 ,n) = p(n, 1) = 1

and all other p( i,j) = 0. We rega.rd the set X as arranged c1rcula.r1y, ie.,
identify X w1th Z/nZ so that n + 1 = 1. The coefﬁc:ent ring R can be any

commutative rmg contammg the ratlonal numbers @. The only set which i is
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E not good is X ltself The tolerance fllllCt].OIl is taken to be 1dent1ca.lly 1 Note
-"..tha.t in this case the corolla.ry in §2 is pa.rtlcula,rly obvnous it-says simply that
~ the algebra ' '

(5 2) A R[:cl, ,a:n]/(m -z, 3’:+1a 1 < 0 < n, and Ty :cﬁ) 3

-'ha,s bas1s of a.ll monomla,ls g = H:e $Ti for all ‘proper subsets S of X
- :1nc1ud1ng the empty set: Ty = 1. This sumple fact, whlch is ea,sy to prove

'dlrectly, is all that w1ll be used in this section. . _
We cons1der proper subsets S of X also as a.rra.nged in a c1rc1e so that

. 1 follows n. The components of § are defined to be the maxjma,l snbsets of

. _consecutlve mtegers Gsven any sequence of elements q( 1), q(2) . in R, set

63 q()..H-'**|T|.+1. o
the product over ali components T of §. The type of S is the sequence
(a1, as3,...) where a; is the number of components -of § of cardinality ¢. So

_(5..4). | a9 H(tf)l)

For example, w1th wnth n = 19 and .5' as shown by black dots |

. the.typ"e‘ is (1.20,2), ;n; o(8) = "".(21) ( Q(32))2 (‘?(54))2. )



ETTRE

First we have an elementary count:

| " LEMMA 5.1. The nuuiber--bfproper su_bsets df'X- 6f.typé (41,az,.:.,a7) o

n. n-—k _n (n - k)'
n-k\aa;... a""_.-n—-k(n k—a)'m a_,;!"_
where k = ay + 2a3 + ... + ra; is the cardmahty of the subsets, a,nd'_
a= a1 + az +...4as is the number of components

Proof We first count the number N of subsets § of type (a1 - ar) )

that do not contain n. For such § write down a sequence of n — k integers,
by listing in order, for each of the mtegers from {1,. ceym} Wthh are not in
~ §, the number of integers immediately preceding it whlch are in §. This list
consists-of ay 1's, az 2%s,...,a, v's, and n — k — a 0’s. Conversely, any such
sequence of integers comes from a unique such subset. The number of such
sequences is | '

| (n—k)! -

Nzall»_.. Heo(n-k -'a)"

To count all subsets, consider for each S which does not contain {n} the n

sets obtained by rotatmg S around. the circle clockwise. Each set .of type -

(a1,a2,...,a;) occurs n — k times in this wa.y, so the total number of sets is
n. _ :

: N, as a,sserted »
n—k

From this we can express the sum of all q(S) over subsets of gnven_" o

: ca,rdma,llty, as a coefﬁ(:lent on a power. serles let
(5.5) | Y(c) = Zq(n— 1)
: : : Cooe=l -

‘where we set q(O) = 1 For a power serles P(a:) in-z; let {z k)(P(:c)) denoit';e
the coefficient of z¥ in P(z). SR

LEM-MA_ 5.2. FOI‘ k< n, EISI:k q(S) = - ?_ k(.xn)(Y(.’ﬂ)n—k).-
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Proof The leftmde 1s, byLemma,Sl ) o _

| .where the lnner sum is over al] (ay,.: ,af) wn;h d; + a Fo 4 ay = a and
et 2a_g.+ o+ m, = k. The right side is '

—_—k< >(1+"(” L, o M |
(e

- a=0
" and the equallty is ev1dent by the bmomla,l theorem ] |

FoJJowmg H]rzebruch [II] let fI)(a:) be the umque power series.in R[[z:]]
| w:th constant term 1 such that | _

_(5.6:)- o .-_.(g»ﬂ.)(q;(-z.)ﬂ-f.l_).‘:rq(n)-. for n = 12

o The ring A can be used to gwe a snmp]e prool. of the follewmg

' _'combmatona.l 1dent1ty

PROPOSITION 5.1. For l., <, (:c’“)(@(a:)“) = E|S| kq(S)

Proof We cla.lrn that in the rmg A we ha.ve the ldentlty

n

(5.7) | H@(—x;)ﬁzq(sm} |

=1

The proposition follows from (5.7) by applying the canonical homomorphism -
of graded R-algebras {from A to R[z]/ (:z:“) which maps. each zitoz (noting
_that the relations in (5. 2) map to zero). -

To verify (5. 7), let 7(:5) be the coefficient of zg on the left side. Note
that in A any product of z; and other monomials is either zero or of- the form.
zy with U a set containing ¢. It follows that »(.§) is unchanged if one omits



any terms <I'(:r ) w1th i ¢ s from the product leew1se, r(S y= Hr(T) Where-'_
T varies over the components of 5. So 1t suffices to look at connected 5, andf'_f“'_-
by symmetry we may take S to.be {1,.. k} By the same rea,sonmg, for this
8, r(S) will be mdependent of n for n > k,.since we need only look at the--_'-'
product of @(m,) for 1 < i<k, and all. monomlals zy with. U contammg any _
integer larger than k are 1gnored In partlcula.r we may take n =k + 1. But
now specializing a.ll z; to = as above, we see that the sum of r(S), over the =

n subsets with n = 1 elements, is the cOeﬂlcrent of ™1 in @(:c)“, which is -

g(n.—1) by deﬁmtlon Since these (S are all equal r(S) = q(n — l)}n, and "

since ¢(5) is deﬁned to be q(|S|)/(|S| + 1), we see that r(8) = = ¢(5). o

There are some consequences of the proposmon whlch are not obv1ous R

" from the definition of &. For exa.mple if R = R, and all ¢(k) are non-

negatwe, then all coefficients (z%)(®(x)™) are nonnegatwe for k < n. Another

consequence is tha,t if R = Q and all q(k) are integers, then when n is prnme
-~ each coefficient {2¥)(®(z)") is integral at the prime n and is divisible by n for
0 <k <n=1. This fOllOWS from the f&ct that when n is prime, no rota.tlon -
‘of a proper subset of the circle is equal to itself. .

Combmmg the proposmon with Lemma, 5.2, we have

COROLLARY. WithY and & the power series deﬁned by (5:5) and (5 6), -.

n- (m“)(Y(z)""‘),:(n;— k) --(:c")(sc:c)**) .f_ |

" The preceding corollary is a version of the Lagra.nge inversion formula.'- o

- for power series in one variable. There are several equnva.lent forms of La.grange’ o
mversmn, one of whlch sta.tes that for any power series F : ' :

(58) n(e )(F(Y(-'c))—(m" 1)(f‘"(:'x‘) ‘I’(-'L’) )

For F (z) = .1:” this follows from the corollary by setting k =n —'. : The |
general case follows since both sides of (5. 8) are linear in F SR o
| If we ta.ke F =% we have on the rlght '

—(a" >(‘I’(-'B)“+')_ = ———g¢(n )

n+1 n—l—l




o

1

_.By the deﬁmtlon of Y(a:), q(n) = (il‘n“)(Y(:c)) so (5 8) Spec1a,hzes to
o -'_-the equatlon (a: )(Q(Y(x)) = (JJ“H)(Y(G?)),IG tO | “
”(5 9) - o 2 @(Y(m)) _y ( )

- 'Equatlon (5 9) is usua.lly used | 1;[1 place of (5 5) and (5 6) to glve the relatnon :
between o and Y cf. [Co] ,

6. Characterlstlc classes on pro_lectlve spaces’ )

Let RO Qbe as in the precedmg sectlon and let q(l),q(?) .be a
sequence in R correspondmg to a power series @(m) as in. (5 6). The truncatlon

. of ®(x)" in R[z]/(z") is the correspondmg characteristic class of pro_]ectwe

space P, so the coefﬁment of z¥ in $(z)" is the term of codimension k, in "
H 2""(]If""'1 R) = R, in this characteristic class, which we denote by cﬂq’(IP"'l)
By definition, q(m) = cEE_,’?(IPm] is the correspondmg genus. . Prepesmon 5.1
gives p]easa.ntly sumple formulas for these charactenst:c classes on pl‘OJGCthG
space: . - | -

©y e = Tls)

~ the sum of all q(S ), over a,ll subsets S of X = = {1,...,n} of c&rdihzﬂity k, with

L q(.S') as defined in (5.3) or (5.4).

Fm exa,mple for any Y in R, with -

q(m)“l—y+y - +( 1)

_(lezebruch’ “T genue”) then (I’(:z:) z 4+ (y + l)m/(e@“)"’ — 1) The
Chern: cla.ss Todd class, and L-class correspond to the choices y = —1, y =0,
and y = 1 reqpectwely, with ®(z) being 1+ z,2/(1 — e~%), and 2/ ta.nh(:n)
'respectwely For the Chern class, this just glves g(S) = 1 for a]l 9, with total
() Whl(‘h is of course the coefficient of 2f in (1:4 z)". For the Todd class, -
q(S) = (F(|T) +1))7, the product.over components T' of § as in §5.. For.
the L-class, the formula, is the same, but taken only over those components T
“with |T| even. For example, w;th R = Q, it follows for each of these classes
that, if n = P is prime, and 0< k< p—1,then ordp(cf.’ (FP—13) > 0. It also



| follows for the genera,l Ty- genus, with R R that these cla,sses ch’(}P“ 1) a,re"-: N
p031t1ve for all n exactly when ¢ < 1. B

| Let H be the hvperplane 1 + + :cn = 0 in R“ Cons;der the s:mplex- - k
in H spa,nned by the ton vectors : : o

C(1,-1,0,.1,0),(0,1,-1,0...,0),...., (0. ';.-'—-1) (~1,0,.. )

-_Identlfy X with the a,bove vectors, s0 subsets Ki correspond to fa.ces of the. P

simplex. With the metric on H mduced by the usnal metrlc on R®, it is not
“hard to verify that the above number o S) = (I{|T| + 1))~ is the fra.ctjon of
the space in the linear span of § which is cut out by the cone over S, o
' By the general theory of toric varieties (cf. [0)), the convex polytope -
corresponds to the toric variety P*~1, with faces corresponding to Silb'va.fi'eties

~ invariant by the torus, which can be identified with the intersection of the .'

corresponding hyperplanes ‘This is the formula for the Todd class mentioned
in the introduction. Recently Morelli [Mor] has given another proof of this-
"formula, but he has also shown that one cannot find a metric on an- arbltra,ry
toric va.rlety so that the Todd class is calculated by such fractions. For P!
the ring A_ constructed from the “circle” X makes a ring out of the invariant
cycles, and it is the fact that calculation of $(z)™ can be lifted to this ring,

so that every invariant variety has a definite contribution to the total class, -

that gives the simple formulas. Is this possible for other toric varieties?

7. -P-roofs of t\he-lemnias

| In this section we return to the lemmas from §2. The proofs are all .
_elementary mampulahons ~ they could hardly be otherw1se with s 80 few axioms S

— 50 we will omit some details.

We first prove Lemma 2.1. Since Is — Pg is mvertible, the equa,tlons o

(2.3) are equlvalent to the equatlons '
P(-’vay) Z(é(fc u) - P(w u))P(u S, y),
- u€S - :
which is the sls.'me as that in Lemma 2.1:. 'y

‘For other lemmas we need two further identities:



LEMMA -7 1. IfS and T are d;ayomt with .S'U T good z € 8, and
¢SUT then | |

Can e SUT)- e ,y)+zp(zst)p(tSUTy)

teT -

o Proof To see that (7 1) holds for all 2 in S, multiply by the 1nvert1b1e_

| _matnx Ig— Pg = (J(U v) p(u v)), regardmg ea.ch side of (7. 1) as a vector
- ,whose zth component is shown On the left snde We get a vector whose u”‘

-"'component is R

| Z(atu v) — i, 0))p(o, Sur,y)

o ES S

Gy

| (uSUTy) Zp(u,'v)vaUTy)

vES . )

_' On l;he rlght Slde we get snmllarly
P, 5,9) ij(u v)p(v, S, y)+ Z:p(u S, t)p(t, Su:m:)-

(73) - eeS T
-EZP(w)p(v,sz)pft SUT,y).
' vEStET :

.Applymg Lemma. 2 1 twice to (7. 3) usmg the good set S, (7 3) becomes
! (7.4) o (u 0+ Z p(u (1, S UT, y) |

' B - €T
. Lemma, 2.1, apphed thls time to the set S U T ylelds _

ply SUT,y) = p(u,y) + Zp(u v)p(v,sur y)
_ veS o

o+ Zp(u,_t)p(t, SUuT, y)'.

€T
_ Substltutmg thlS in the right snde of (7 2) we get (7 4), as requxred S |

The followmg identity is similarly a consequence of Lemma, 2 1, using
the assumption (2.2); we. omit the proof. |



LEMMA 72 If.S‘ Jsgood lea.smk anda:ESﬂZ then
(a) p(z, S, y) = p(::: SNZy) forally¢s; .

(b)p(wSy)“Olfyﬁz, .
(c)p(mS,y)—OlnyZandZﬂS Z {y}

We turn now to the commuta,tmty Lemma. 2.2, The deﬁmtions of__. o
z.- (m,e) and y - (m,e) depend on which of the four sets A,B,C,D each L
ofa: and y belong to, and then, in considering the products v (z- (m;e)) and -
z - (y-(m,e)), there are several subcases. Fach is proved however, by a short
ca,]cula,tlon using only Lemmas 2.1, 7.1, and 7. 2. Smce there is no difficulty
beyond keeping track of all pOSSlbllltlBS that can arise, we omit the tedlous' C
‘details. Instead, we consider the simpler case (whlch is all that was used in = -
| ~ the rest of the paper) when the tolerance function d is 1dent1ca,lly l,and we
consider the equality in the module A, which is free on the good sets S, asat -
the end of §2. The ideas are the same as in the genera.l case, without $0 many
cases to consider. ' SR

In A, z-8is SU{z} tfxé S and 2+ § = 3, Sp(z .S'y)SU{y] 1f.'-
z € 8, in both cases discarding any set which conta,ms a sink. The equality -
z-(y+S)=y-(z-8)is obvious if = y or if z and y are not in S. Suppose
next that z €5 and y ¢S5. We have S : :

-5 =p(=, S',y)SU{y}+ Z p(:!: S' w)S u {w}
: wESUly} -

soy-(z-9)is equal to

[?(:c_,s,y)( B p(y,SU.{y},w)) S p(a:Sw)]SU {y,'w}.

| wgSu{y} N ' s wﬁSU{y} |
Since y- S = .S' U {y} z- (yS) is equal to > (:c S U {y},w).S' U {y,w} |
wgSufy}

Then Lemrna 7.1, with T = {y} implies that these are equal.

The rcmammg case is where z and y are in §, but = ;é y. We compute )
the-coefficient of a good set SUT, with T = {w,z}, w a.nd z a pair of dlstmct .
elements not in S' Since .

x5 = p(:r,S w)S U {w} + p(z, S, z).S'U {z} + E p(v,S,u)S U {u}
. ug SUT



" the coefficient of SUT in y-(2-S)is
e, 5,0y, 5 {w),2) + p(x,_s,z)p(y,-..s u{z}w).
By Lemma. 7 1 thls coefﬁcnent is equa.l to

p(-'v 5, w)(P(?/sS z) +P(y,5 w)P(w Su {w},z))
' | +p(:r S, Z)(P(y,S w) +P(y,-5' Z)P(z SU{z}»W)), |

a.nd thlS is symmetnc m z a.nd y l

- The proof of Lemma 23 a,lso uses Lemma, 2.1, but it is simpler since
'there are only four cases to consider; again we omit deta,lls notmg that it is
0bv10us in the spec1a.1 case of A considered in the preceding pa.ra.gra.ph

o Fma,lly, we prove Lemma 2.4 in the genera.l settmg For this it suffices -

' to show tha,t .
| H w0}z E p(z, S,w)w) € I
weX wﬁS

'_.-for every z € S. Since S is good, Ig — PS (6(u z) — P(t,7))u,zes I8
' mvertlble, a.nd multlplymg by this matrix, we get a term for each u € S:

| H d(v)[ Zp'u, :c)x-—Zp(uSww-l— Zp(u :r)p(a:.S'w)w] .

veX : reS 5
= v ugs

| By Lemma 2.1, p(u, 5, w) P w) + ¥, esP(4:2)p(z, 5, 0), 50 the term in
squa,re brackets sumplnﬁes to . o T ' o

[ Zp(u z)z - Zj p(u w)w] = ul— Zp(u,y)y

€8 | ' w¢S yEX

Now for u € §, [ v**)(u - Tye ,;( p(u,y)y) is in I by definition. m
€ 1L _ | |
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