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A b s t r a c t . From a suitable probability-like function on pairs of points in a set, 

a commutative algebra is constructed. The product in this algebra can often 

be realized as a growth model, or a game whose outcome is independent of 

choices. A special case yields a simple proof of the Lagrange inversion formula, 

and intriguing formulas for characteristic classes on projective spaces. 

1. Introduction 

We make several related constructions, each starting from a set X 
together with a function p : X X X —> R with the property that, for any x 
in X , there are only finitely many y with p(x,y) nonzero. Here R can be any 
commutative ring, but for simplicity in this introduction we take R to be the 
real numbers, and, moreover, we assume that p(x,y) are probabilities: 

K^? v) ^ 0 for all x and y in X ; 

2 P{xi v) — 1 f° r all a: in X . 
yeX 

Regard the points of X as sites, and p(x,y) as the probability that a particle 
starting at x will move to y. For example, X could be the integer lattice Zn 

in IRn, with equal probability l / 2 n to move to each of the nearest neighbors. 

(*)Partially supported by NSF Grant DMS 86-00235. 

(**)Partially supported by NSF Grant DMS 90-07575. 
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For each finite subset S of X, and each x in S and y not in 5, define 
p(x,S,y) to be probability that, if a particle starts at x and moves from site 
to site according to the probability p, then y is the first site outside S that 
the particle lands on. That is, 

p(x, 5, y) = p(x, y)+Yl p(x' u)P(ui y) 

+ Yl P(xiui)p(ui>u2)p(u2,y)+ ... , 
t*i,t*2€5 

a series which can also be evaluated in finite terms by inverting a matrix. Our 
p(.x,5, y) are known as taboo probabilities in the classical theory of Markov 
chains. Chung [Ch, §1.9] gives a systematic development. 

To simplify the discussion in this introduction, we assume that it is 
possible to escape from any finite set, i.e., 

(*) For any nonempty finite subset S of X there is some x in 5 and some 
y not in 5 with p(x,S,y) > 0. 

In the text, the topics discussed in this introduction will be treated in more 
detail, and without this assumption. 

A growth model. Fix a finite subset S of X, and think of the sites of 
S as inhabited and those outside 5 as uninhabited, and replace the particles 
by explorers. We send out an explorer, who starts from a point x in 5, 
travelling always according to the probabilities, until reaching an uninhabited 
site, where the explorer settles. This is repeated, successively sending a new 
explorer from the point a*, each travelling until arriving at a site outside S not 
occupied by a previous explorer. If T is a set with k sites which is disjoint 
from 5, let q(T) be the probability that T becomes inhabited by the first k 
explorers. If k = 1, so T = {y}, then q(T) = p(x,S,y). For k > 1, 

q(T) =^q(T- {y}) • p(x, S U T - {</}; y). 
J/GT 

These probabilities can be quite complicated, even for simple models. For 
example, if X = Z" is the standard lattice in Ew, and p(x,y) is l /2 n if the 
distance between x and y is 1, and 0 otherwise, it is not easy to give closed 
formulas for q(T) if n > 1. However, Lawler, Bramson, and GrifFeath [LBG] 
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have shown that the limiting shape, as the process is repeated over and over, 
starting with S = {#}, is a round ball centered at x. 

The growth model described above corresponds to repeatedly 
multiplying by a fixed element in the algebra to be described below. There 
are several other possibilities. For example, the random set can be repeatedly 
squared. Starting from a fixed point, the number of sites doubles each time. 
Probabilistically, if Sn is the random set at time n, enumerate the points in Sn 

as . s i , . . . , s2n. Start an explorer out at s i , and add the first unexplored site it 
hits, say s^. Then start an explorer out at 52 and add the first point hit outside 
Sn U {Vi). Continuing in this way gives Sn+i of size 2 n + 1 . One consequence 
of the results proved below is that the growth distribution is independent of 
the method of enumeration. A second consequence is that the distribution of 
Sn in the random squaring model is the same as the distribution of 62" in the 
model where single points are added each time. 

There is a natural generalization, when each site x comes equipped with 
a positive integer rf(or), thought of as a tolerance (the preceding case being 
when all d(x) = 1). Now if we are given a finite set S with a population 
n(x) of individuals at each site x in S, we can choose any site x with more 
individuals than the tolerance (n(x) > C/(.T)), and send out an explorer from 
#, moving according to the probability p as before, but settling now as soon as 
it reaches a site y with n(y) < d(y). This process can be repeated until there 
are no overpopidated sites. In this setting, the key fact is that the probability 
of a, given outcome is independent of the order of choices. 

The growth model is carefully described in section 3, which also develops 
probability results for the simplest case of random walk on 7L. 

A game. Suppose at each site in a set X we are given an infinite deck of 
cards, each labelled with some site in X. Assume for simplicity that for any 
infinite subset S of X there are infinitely many cards at sites in S labelling 
sites not in S. Suppose a finite number of chips are arranged on X, with a 
certain number at each site. A legal move is the choice of x in X with more 
than one chip; one of the chips at x is moved to the site labelled by the top 
card of the deck at x, and this card is thrown away. More generally, if each site 
has a tolerance, one can restrict legal moves to those x for which the number 
of chips is greater than the tolerance. A game is a sequence of legal moves, 
until no legal move is possible. The claim is that the game always terminates, 
and the number of moves and the final position are independent of choices. 
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This is proved, in section 4. 

Given a probability function p as before, the decks can be randomly 
arranged so that p(x,y) is the probability that a card at site x labels site y. 
The fact that the outcome of the game is uniquely determined implies the 
fact that the probabilities q(T) of the preceding discussion are independent of 
choices. 

. This game is a close relative of a variety of chip-firing games on graphs, 
as in [BLS] and [Moz]. In these games, chips are moved around a graph 
with some apparent freedom of choice until there is one chip per vertex. The 
number of moves taken and the final position turns out to be independent of 
the choices. Eriksson [E] has introduced a game which includes both a version 
of our game and that of [BLS]. As far as we know, there is not currently a 
connection with the "olympiad" game in [Moz]. 

An algebra. With X and p as at the beginning, let A be the vector -
space with basis the finite subsets S of X. We will define a product on A, 
which makes it into an associative and commutative i2-algebra, graded by the 
cardinalities of the sets. The product is uniquely determined by the rules 

(1) S-T = SUT if S and T are disjoint ; 

(2) {*} • 5 = £ p(x, 5 , y)(S U {y}) if x e S . 

For arbitrary S and T, if S n T = {x\,... , x n } , then, using (2) inductively, 

S-T = {x1}.(...-({x„}-(SuT))...). 

In this language, the basic fact is that the result is independent of the choice 
of ordering of the points x\,... ,a?n. One can also generalize this to the case 
when there are tolerances </(.T), a basis for the algebra becoming finite sets 
with multiplicities not exceeding the tolerances. 

We take this algebra A as the basic object of study. Its properties are 
carefully described in section 2. In particular, we will give generators and 
relations for A as an i2-algebra. 

Sinks. It is important to be able to deal also with the situation when 
assumption (*) fails. Call a nonempty finite set Z o f X a sink if p(x, y) = 0 for 
all x E A", y £ Z and if Z is minimal with this property. An explorer landing 
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in a sink can never leave it, and once all the sites in a sink have reached their 
tolerance levels, one can only keep track of the total number of individuals 
in the sink: movements within a full sink are ignored. Final states of the 
growth model, or basic elements in the algebra A, are given by a marked set, 
which is a finite number of sites x with a positive integer m(x) no larger than 
the specified tolerance d(x), together with a finite number of sinks Z with 
a positive integer e(Z) such that m(x) = d(x) for all x in Z\ this indicates 
that each site in Z has an excess e(Z) beyond its full tolerance of inhabitants, 
which are at some unspecified site of Z. As a less refined alternative which is 
also useful, one can simply ignore all sinks when they become full, regarding 
them as "black holes", and setting the corresponding classes equal to zero in 
the algebra. 

Lagrange inversion. A very special interesting example is a "circular" 
case, when X is the set { 1 , 2 , . . . , n} with probabilities 

p( l ,2) - p(2,3) = . . . = p(n - l ,n ) = p ( n , l ) = 1 , 

and all other p(i,j) = 0. If </(l),(/(2),... are any real numbers, following 
Hirzebruoh one defines $ ( .T ) to be the unique power series with constant term 
1 such that the coefficient of xn in $ ( . r ) n + 1 is q{n) for all n = 1,2,. . . . By 
calculating in the ring A constructed from this A" and /;, one gets a useful 
formula for the first n coefficients of $ ( x ) n + 1 . This is worked out in section 
5, where the Lagrange inversion formula is deduced as a corollary. 

Characteristic classes. With X and p as in the preceding paragraph, 
one can associate to each subset S of X the projective subspace Vg of the 
projective space Pfl~l which is the intersection of corresponding hyperplanes: 

Vs = {[zi : z2 : . . . : zn] G P n _ 1 : Z{ = 0 for all i <E S} . 

These are the invariant subvarieties for the natural action of the torus 
T = (C*)n/C* on P n _ 1 . In the language of toric varieties, each S corresponds 
to a face of the corresponding convex polytope lying in the hyperplane with 
equation x\ + . . . -f xn — 0 in Mn. The ring A constructed above makes 
the invariant cycles into a ring, which maps onto the cohomology of Fn~1. 
Numbers q(l),q(2),... correspond to a characteristic class, namely that class 
whose value on JP* is q(k) for all k. The formula referred to in the preceding 
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paragraph gives a lifting of this class from the cohomology ring to this ring 
of cycles, where it has a much simpler expression. For example, the Todd 
class corresponds to the choice q(k) = 1, and this gives the coefficient of V$ 
as the fraction of the space spanned by the corresponding face which is cut 
out by the cone over that face. This is discussed in section 6. Unfortunately, 
however, we know no way to generalize any of this to general toric varieties, 
so it remains an intriguing curiosity. 

Acknowledgments . The formula for the Todd class of projective 
spaces was discovered several years ago by the second author in collaboration 
with Joe Harris and Bob MacPherson. At that time Ira Gessel pointed out 
how our combinatorial formula could be deduced from the Lagrange inversion 
formula. Alan Landman suggested generalizations to other characteristic 
classes. The attempt to make the invariant cycles on a toric variety into a ring 
led to the ring A for this "circular" case. The procedure for including sinks 
benefited from a discussion with S. Garoufalidis. The game above evolved in 
conversations with David Aldous, see [A]. We also thank Laurel Beckett, Bob 
Keener, Ken Ross, the authors of [LBG] and [E], who responded to an earlier 
version of this note. 

2. Construction of the algebra 

In this section we make an algebra out of linear combinations of marked 
sets. The construction depends on four elementary lemmas, whose proofs 
are postponed to §7. Let X be a set, R a commutative ring with unit, and 
p : X x X —• R a function such that , for all a; G I , p(x,y) = 0 for all 
but finitely many y. A sink is a nonempty finite subset Z of X such that 
p(x,y) = 0 for all x £ Z and y (£ Z, and such that Z is minimal with this 
property. Since the intersection of two sets with this property also has it, any 
two sinks must be disjoint. Call a finite subset good if it contains no sinks. 

For a finite subset S of A", let P$ be the matrix (p(u,v))u v e s , and 1$ 
the identity matrix (S(u, v))uv^Si these are n by n matrices, n = | 5 | , with 
rows and columns indexed by u and v in S (an ordering of S is irrelevant). 
Our basic assumptions are: 

(2.1) For any good S the matrix 1$ — Ps is invertible; 
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(2.2) For any sink Z and z G Z, we have ^ P(x^y) — !• 

Condition (2.1) means that for each good S. there is a matrix 
B$ = (bs(u,v))u V£$ such that, for any u and w in 5 , 

E l / x / r / \ / N\ ( 1 if U = W 

„ v y v v ; v " \ 0 otherwise 

Define p(x,S,y), for each good set S and z 6 5, y ^ 5 , by the formula 

(2.3) p(x,S,y) = Y^bs(x,u)-P(u,y)-
ueS 

We will see in the next section that, when R = M and p is a probability 
function, conditions (2.1) and (2.2) are implied by condition (*) of the 
introduction, and formula (2.3) agrees with the intuitive definition described 
there. 

LEMMA 2 .1 . Fix a good set S and an element y ^ S. The elements 
p(x,S, y), for x E S, are the unique solutions of the equations 

(2.4) p(x,S,y) = p(x,y)+ ^ p(x,u)p(u,S, y) . 
ueS 

The right side of (2.4) can be used to extend the definition of p(x,S, y) 
to the case where x is not in S. 

Suppose we also have a "tolerance" function d : X —> N + . Let Z be 
the set of all sinks in X. Define a marked set to be pair (m,e) of functions 
m : X —• N and e : Z —• N each of which is zero on all but finitely many 
elements, and satisfying: 

(2.5) m(x) < d(x) for all x G X; 

(2.6) e(Z) = 0 if there is any z G Z with m(z) < d(z). 

Call a sink Z full for the marked set (m,e) if m(z) = d(z) for all z £ Z. 
We think of e(Z) as measuring the number of extra markers in Z. Define the 
degree of (m, e) to be 

£ m(*).+ £ e(.Z). 
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Note that, when there are no sinks, and the tolerance function is identically 
1, a marked set is simply a finite subset of X, and the degree is its cardinality. 

Each x in X may be identified with the marked set (6X,Q), where 
Sx : X —• 7L is the Kronecker function whose value on a; is 1 and on other 
y is 0. The empty set 0 is represented by the pair (0,0). For x in X , let 
Xx '• Z —• N take a sink Z to 1 if Z contains x and to 0 otherwise. 

Let A = A(X,p,d) be the free-module with basis the marked sets. We 
will make A into a commutative associative i2-algebra, graded by degree, with 
unit 1A corresponding to the empty set. To do this we must in particular define 
the product x • (?ri,e) in A for each marked set (m,e) and each x in X. Each 
marked set (?7?,e) determines a decomposition of X into four disjoint subsets 
A,B,C, and D, with all but the first finite: 

A is the set of all x such that m(x) < d(x)] 

B is the union of all sinks that are full for (.m,e); 

C is the set of x such that m(x) = d(x), and x belongs to a sink Z(x) 
which is not full for (m,e); 

D is the set of x such that m(x) = d(x), and x is not in any sink. 

The definition of x • (m,e) depends on which of these sets contains x] in 
each case, it corresponds to what happens if a marker is dropped at x, and it 
moves according to the probability until it gets to a place which has room for 
it, or it gets to a sink which is already full, in which case it adds one to the 
number of extra markers on the sink: 

(a) x • (m, e) — (m + 8X, e) if i E i ; 

(b) x • (m, e) = (m, e -f \x) if . x € B; 

(c) x • (m, e) = Y,zeZ(x)nA P(x> z(x) ' z(x) n Ai z)(m + sz,e) if x e C; 

(d) x • (???.,e) = T,y£DP(x'Diy)(y ' ( m ? e ) ) i f x £ A where, for y £ D, 
y • (m,e) is defined by (a), (b), or (c). 

Multiplication by x determines an 72-linear map x- : A —> A. The key 
fact is the commutativity of these operators: 

LEMMA 2.2. For any marked set (m,e) and any x,y in X , 

y-(x -(m,e)) = x -(y-(m,e)) in A. 
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It is easy to see that any marked set can be realized by successively 
operating on the empty set 0 by appropriate elements of X. It follows that the 
product on A is uniquely determined by the above definition. In order to see 
that this product is well defined, we use a roundabout but simpler procedure. 
Let R[X] be the polynomial ring on the variables x £ X. By Lemma 2.2, 
there is a homomorphism from R[X] to the ring of endomorphisms on the 
R-module A, which takes x to the above operator x-. Our program is to find 
an ideal 7" in the kernel of this mapping, and then to show that the mapping 
from R[X]/I to A that takes a polynomial to its effect on the empty set 0 
determines an isomorphism of R[X]/I onto A. The algebra structure on A is 
then evident. For this we need another lemma: 

LEMMA 2.3. If(m,e) is a, marked set, and x is an element of X with 
m{x) = d(x), then 

x • (ra, e) = ^2 P(xiV)(y • (m» e)) i n A • 
vex 

Note that the product of any (ra, e) by x is a linear combination of terms 
(m\e') with m'(x) = mm(d(x),m(x) -f- 1). It follows from Lemma 2.3 that, 
for any x in X, and any (m,e), 

(2.7) (V<*)+1 - £ P(X, y)xd(x)y) • (m, c) = o. 
yex 

Similarly, if Z is a sink, the product of any (rn,e) by the product 
Y[Z€Z z 1S a l i n e a r combination of marked sets for each of which Z is 
full. It follows that for all sinks Z and all x and y in Z, 

(2.8) ( ( * - y ) n ^ ( * ) ) , ( m ' c ) = 0-
zez 

Now we define / to be the ideal in R[X] generated by all elements of 
the form 

(i) \ x ~ S P(xrV)y ]x (x^ for all x in X] 
V yeX ) 
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(ii) (x — y) Yl z^z^ for aU sinks Z and all x,y G Z. 
zeZ 

By (2.7) and (2.8), the ideal i" acts trivially on A, so we have a 
homomorphism of R-modules 

• A p r ] / / — • A , P—+p.0. 

If Z is a sink and e a nonnegative integer, and M is any monomial in 
the variables x in X which contains each z G Z to the power at least d(z), we 
write M • Ze in i?[Ar]/7 in place of the element M • ze, where 2 is any element 
in Z; by (ii), this is independent of choice of z. The assertions about A are 
part of the following theorem. 

T H E O R E M , (a) The ring R[X]/I is a free R-module with basis the 
images of monomials of the form 

n x™™ n z*w 
xex zez 

where (m,e) varies over all marked sets. 

(b) The homomorphism R[X]/I —• A , P —> P - 0, is an isomorphism. 
It takes the displayed monomial to the marked set (m,e) . 

For the proof, the last statement in (b) is easy from the definition, and 
it follows from this that the monomials are ^-independent in R[X]/I. To 
complete the proof it must be verified that these monomials generate R[X]/I. 
For this we need a recipe to decrease exponents in monomials, to get them 
below the tolerance levels. 

LEMMA 2.4. Suppose n : X —• N vanishes outside a finite set. If S is 
a good set, and n(v) > d(v) for all v G S, and x is any element of S, then 

veX iv£S vz/dx 

is in I. 

Given a monomial Yl vn^v\ let S be the set of elements v in X such 
veX 

that v is not in a sink and n(v) > d(v). Lemma 2.4 shows how to decrease 
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exponents of any x which is not in a sink to tolerance levels, without increasing 
exponents of any element not in a sink. To complete the proof of the theorem, 
it suffices to see how to decrease exponents in a monomial M = Ylz^z zn^ 
when Z is a sink (noting that there is no mixing of terms in a sink with those 
outside). If n(z) > d(z) for all z G Z, then M is equivalent modulo / to 
UzeZ zd{z) ' ZEn(*)-rf(*). If not, to decrease the exponent of x if n(x) > d(x), 
apply Lemma 2.4, with S the set of z in Z such that n(z) > d(z). Using the 
fact that p(.T, S, w) = 0 if w is not in Z (cf. Lemma 7.2), the sum in Lemma 
2.4 needs only be taken over those w in Z - Z n 5 , and the terms in this sum 
have lower exponents of x. This completes the proof of the Theorem from 
Lemmas 2.1-2.4. 

Let A be the free i2-module on the functions m : X —> N such that 
m(x) < d(x) for all x and which vanish outside some finite subset, and such 
that , for any sink Z there is some z G Z with m(z) < d{z). The product 
we have constructed determines a product on A, by identifying in with the 
marked set (m, 0), and throwing away any marked sets in the results for which 
some sink is full. To see this, let J C A be the set of 72-linear combinations of 
marked sets (m,e) for which some sink is full. It follows from the definition 
that J forms a homogeneous ideal in A, so A/J is a commutative, associative, 
graded J2-algebra. It follows from this construction and the Theorem that 
A/ J is free on the marked sets of the form (ra,0), with m as above, so it is 
canonically isomorphic to A, and gives A the required algebra structure. 

COROLLARY. With this product, A is a commutative, associative, 
graded R-algehra. It is canonically isomorphic to R[X]/I, where I is the 
ideal generated by the elements 

0) (x ~ T,yexP(.xiy)y)xd{x) for all x in X ; 

(ii) Ylzez zd{z) for a11 s inks z -

Note that when the tolerance function d is identically 1, A is free on the finite 
good sets, and the relation (i) becomes simply 

x2- Y^p(x^y)xy = 0. 
yeX 
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3. The Markov model 

Consider the case where R = R and p is a probability: 

0 < p(x,y) < 1 and J j p($,y) = 1 for all x in X . 
yeX 

For a sequence of elements Ui, U2,..., ur of X, set 

p{\Li, . . . , Ur ) = p(lli, U<2)p{u2, U3) • . . . • p ( ^ r - l , Wr) • 

In this setting there are several ways to say that a set is good: 

PROPOSITION 3.1. For a finite subset S of X, the following are 
equivalent: 

(i) For every finite nonempty subset T ofS, the matrix Ip — Px 1S invertible; 

(ii) S contains no sink; 

(iii) for all x in S there is a y not in S such that either p(x,y) > 0 or there 

is a sequence ui,...,ur in S such that p(x,u\,.. .,ur,y) > 0 ; 

(iv) the sum Y£±i ^^ UrESp(uu ... ,ur) converges. 

Proof, (i) => (ii): If there is no escape from a subset T of 5, then the 
vector ( 1 , . . . , 1) is in the kernel of Ijp - Pp. 

(ii) => (iii): If T is the set of all x in S for which there is no y as in 
(iii), then there is no escape from T. 

(Hi) =^ (iv): From (iii) there is a positive integer r and a p < 1 such 
that for all x G 5 , 

<p(x,r)= ] P p(x,u1,...,ur)< p. 
ui,...,ur£S 

Then (p(x,mr) < pm, and (iv) follows. 

(iv) => (i): The matrix (bx(u,v))u vEx is inverse to Ip — Py, where 

oo 

(3.1) bT(u,v) = '*r ^2 p(t«,t*i,...,t*r,t;). • 
r=0ui,...,ureT 
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It follows from (3.1) that for any good set 5 , with x in S and y not in 

s, 
oo 

(3.2) p{x,S,y) = ^2 ] T p(x,ui,...,ur,y). 
r=0ui,...,ur£S 

Suppose we are also given a tolerance function d : X —• N + . If 
n : A' —* N is any function which is zero outside a finite set, we can write, in 
the ring A constructed in §2, 

(3.3) n^ ) = E«( m ' e ) ' ( r o ' e ) ' 
vex 

the sum over all marked sets (m,e). The coefficient q(m,e) is the probability 
that the marked set (ra,e) results when explorers are repeatedly sent from 
those sites x with n(x) > d(x), travelling according to the probability p, 
stopping at a site with population less than its tolerance, or at a site in a 
full sink. The fact that the product is well defined - which comes from the 
commutativity of Lemma 2.2 - implies that the coefficients are independent 
of the order of choice of explorers. The case when the monomial is a; , and 
there are no sinks, is that discussed in the introduction. 

The simplest examples of the product lead to interesting probabilistic 
problems. Consider X = Z, with p(x,x + 1) = 1/2 = p(x,x — 1). The Markov 
chain is simply random walk on Z. Construct a random set by repeatedly 
multiplying the point zero. Using probability language: Begin by lighting up 
the one point set {0}. Then choose one of the neighbors of 0 and light it up. 
After n steps, there will be an interval of n steps, including 0, lit up. At step 
n + 1, a random walker starting at 0 wanders until exiting the sites lit up at 
step n; this new site is lit up. 

A natural question is: how does this random set grow? If the random 
set at time n is the interval [—a, 6], the classical gambler's ruin problem, see 
e.g. [Fe], says that the chance that the next site lit up is negative is aX\2 • 
Thus the random walker tends to exit from the shorter side, and so tends to 
equalize the number of positive and negative sites. The next result shows that 

n 
the number of negative sites is — plus approximately normal fluctuation at 

scale y/n. 
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PROPOSITION 3.2. Let Nn be the number of negative sites at time n 
for the random set on 7L generated by simple symmetric random walk. Then, 
as n tends to infinity, 

{ y/n/12 J y/27r Jo 

Proof. The growth of negative sites has an alternative description as 
an urn model: Begin with an urn containing one black and one white ball. 
At stage k,k > 1, draw a ball out at random and replace it, together with a 
ball of the opposite color. Let N^ be the number of black balls in the urn at 
stage k. This JVj. process has the same distribution as the number of lit-up 
negative sites, for k = 0,1,2, The JVj. process has been studied as Bernard 
Freedman's urn by David Freedman [Fr], who proves the proposition in this" 
setting. • 

In recent work, Bramson, Griffeath, and Lawler [LBG] have shown that 
the growth model based on nearest neighbor random walk in Zm has a limiting 
shape and that this shape is round. They show in fact that, given any s > 0, 
then, with probability 1, there is an No such that for n > NQ the set Sn with 
n points is contained in the ball of radius (1 + e) • 'y/n/Bm and contains all 
lattice points of the ball of radius (1 — e) • 'y/njBm, where Bm is the volume 
of the ball of radius 1 in E m . This is the first example where a spherical 
shape has been determined. For comparison, in Richardson's growth model a 
random set is grown by considering all points at distance one from the current 
set and adding one of them with probability proportional to the number of 
neighbors in. the current set. It was shown that Richardson's model has a 
limiting shape, and computer simulations suggest that it is round, but it has 
been shown that in very high dimensions the shape is not a ball. See Durrett 
[D] for this. 

4 . The game 

Suppose at each site in a set X we are given an infinite deck of cards, 
each labelled with some site in X. Let Z be a subset of X with the property 
that, for any finite subset S of X not contained in Z there are infinitely many 
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cards at sites in S labelling sites not in S. Suppose d : A' —••+ N+ is a function. 
Suppose a finite number of chips are arranged on X, with n(x) chips at site 
x. A legal move is the choice of x in X - Z with n(x) > d(x); one of the chips 
at x is moved to the site labelled by the top card of the deck at x, and this 
card is thrown away. A game is a sequence of legal moves, until no legal move 
is possible. 

PROPOSITION 4 .1 . Any game terminates in a finite number of moves. 
The final position, i.e., the number of chips on each site, the number of moves, 
and the number of times each site is chosen in a game are independent of 
choices. 

Proof. A strategy for a terminating game is to choose a chip on any 
x not in Z with n(x) > d(x), and follow it until it lands on a site y with 
n(y) < d(y) or it lands in Z. Since this decreases the number of sites outside 
Z with excess chips, the procedure must terminate. Let (x) = (x\,... ,xn ) b e 
a terminating sequence of legal moves. To prove the rest, we follow Eriksson 
[E], cf. [A]. It suffices to show that any other sequence of legal moves is 
a permutation of a subsequence of this one. If not, there is a sequence of 
legal moves (y\,... ,y^,v) such that (y) = (?/i , . . . ,3/^) is a permutation of a 
subsequence of (x), but the sequence with v on the end is not. The number 
of times v occurs in the sequence (x) is therefore the same as the number of 
times v occurs in (y), and all other sites occur at least as many times in (x) 
as in (y). It follows that the number of chips on v after (x) is at least as large 
as the number of chips after (y). Since this number after x is no larger than 
d(v), the same is true after (y), so v cannot be a legal move after (y). • 

5. The circle and Lagrange inversion 

One of the simplest examples is X = { 1 , 2 , . . . , n}, with 

(5.1) p ( l , 2) = p(2,3) = . . . = p(n - 1, n) = p(n, 1) = 1 , 

and all other p(i,j) = 0. We regard the set X as arranged circularly, i.e., 
identify X with Z/nZ, so that n + 1 = 1. The coefficient ring R can be any 
commutative ring containing the rational numbers (Q). The only set which is 
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not good is X itself. The tolerance function is taken to be identically 1. Note 
that in this case the corollary in §2 is particularly obvious: it says simply that 
the algebra 

(5.2) A = R[x\,... ,xn]/(x? — # j£ i + 1 ,1 < t < n, and x\ • . . . • xn) 

has basis of all monomials x$ = I l i e S x * ^or a ^ P r o P e r subsets S of X, 
including the empty set: XQ = 1. This simple fact, which is easy to prove 
directly, is all that will be used in this section. 

We consider proper subsets S of X also as arranged in a circle, so that 
1 follows n. The components of S are defined to be the maximal subsets of 
consecutive integers. Given any sequence of elements <7(1),<7(2),... in R, set 

the product over all components T of S. The type of S is the sequence 
(ai,a2? • • •) where at is the number of components of S of cardinality t. So 

**>-n($)*. 
For example, with, with n — 19 and S as shown by black dots: 

11 10 

the type is (1,2,0,2), and q(S) = 9-f ( ^ V ( ^ ) 
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First we have an elementary count: 

LEMMA 5 .1 . The number of proper subsets of X of type (a\, 02,,. .,ar) 

is 
n ( n — k \ n (n — k)\ 

n — k \a\02 ... arJ n — k (n - k — a)\o,\\ • . . . • ar! 

where k = a\ + 1&2 + . . . + raT is the cardinality of the subsets, and 
a = a\ + 0,2 + . . . •+ a^ is the number of components. 

Proof. We first count the number N of subsets S of type (f l i , . . . ,fl r) 
that do not contain n. For such S write down a sequence of n — k integers, 
by listing in order, for each of the integers from {!,.. . , n} which are not in 
5 , the number of integers immediately preceding it which are in 5 . This list 
consists of a\ l ' s , 02 2 's , . . . , a r r's, and n — k — a O's. Conversely, any such 
sequence of integers comes from a unique such subset. The number of such 
sequences is 

N _ (" - * ) ! . 
ail -... • ar\ • (n — k — a)\ 

To count all subsets, consider for each S which does not contain {n} the n 
sets obtained by rotating S around the circle clockwise. Each set of type 
(a i ,«2?. . • , a r ) occurs n — k times in this way, so the total number of sets is 

-N, as asserted. • 
n — k 

From this we can express the sum of all q(S) over subsets of given 
cardinality, as a coefficient on a power series: let 

00 n 

(5.5) Y(x) = £ q(n - \f- , 
ft 

n=l 

where we set ^(0) = 1. For a power series P(x) in x, let (xk)(P(x)) denote 
the coefficient of x in P(x). 

LEMMA 5.2. For k < n^iSi=kq(S) = -^-r{xn)(Y(x)n-k). 
it f\ 

file:///a/02
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Proof. The left side is, by Lemma 5.1, 

„ "-*/re_fc\ / a \ / g ( l ) V fq(2)\a> fq(r)Yr 

£(";k)E(„,„;.,)(Wm a=0 \ ' ^ / \ / \ / \ 

where the inner sum is over all {a\,..., ar) with ai -f «2 + • • • + <*r = a a n d 
ai +' 2ci2 + . . . + rar = k. The right side is 

n ( ^ > ( i + £Q)x + ^ ) i B 2 + i i i ) » - * 
n-fcx / v 2 3 

n—fc 
n ^ ( n - k \ , ksfqi1) , 9(2) 2 

• ^ E : <«') 
a=0 N ' x x+ ~x* + .. 

and the equality is evident by the binomial theorem. • 

Following Hirzebruch [H], let $(x) be the unique power series in i2[[ar]] 
with constant term 1 such that 

(5.6) faB}(*(*)n:fl)'= 'q(n) for n = 1,2, . . . . 

The ring A can be used to give a simple proof of the following 
combinatorial identity: 

PROPOSITION 5.1. Fork < n,(xk)($(x)n) = ^2\s\=k^)-

Proof. We claim that, in the ring A, we have the identity 

n 

(5.7) n*fo)=E«(5)*s. 
i= l S 

The proposition follows from (5.7) by applying the canonical homomorphism 
of graded /^-algebras from A to R[x]/(xn) which maps each Xj to x (noting 
that the relations in (5.2) map to zero). 

To verify (5.7), let r(S) be the coefficient of x$ on the left side. Note 
that in A any product of X{ and other monomials is either zero or of the form 
XJJ with U a set containing i. It follows that r(S) is unchanged if one omits 
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any terms $(x{) with i' £ S from the product. Likewise, r(S) = Iir(T), where 
T varies over the components of S. So it suffices to look at connected S, and 
by symmetry we may take S to be { 1 , . . . , k}. By the same reasoning, for this 
S, r(S) will be independent of n for n > fc, since we need only look at the 
product of $(x{) for 1 < i < k, and all monomials x\j with U containing any 
integer larger than k are ignored. In particular, we may take n = k + 1- But 
now specializing all X{ to x as above, we see that the sum of r (5 ) , over the 
n subsets with n — 1 elements, is the coefficient of x n _ 1 in $ ( x ) n , which is 
q(n — 1) by definition. Since these r(S) are all equal, r(S) = q(n — l ) / n , and 
since q(S) is defined to be ^r(|S'|)/(|S'| -f 1), we see that r(S) = q(S). • 

There are some consequences of the proposition which are not obvious 
from the definition of $ . For example, if R = 1, and all q(k) are non-
negative, then all coefficients (xk)($(x)n) are nonnegative for k < n. Another 
consequence is that, if R = Q and all q(k) are integers, then when n is prime, 
each coefficient (x*)($(x)n) is integral at the prime n and is divisible by n for 
0 < k < n — 1. This follows from the fact that, when n is prime, no rotation 
of a proper subset of the circle is equal to itself. 

Combining the proposition with Lemma 5.2, we have: 

COROLLARY. With Y and $ the power series defined by (5.5) and (5.6), 

n • (xn)(Y(x)n~k) = (n-k). (xk)($(x)n) . 

The preceding corollary is a version of the Lagrange inversion formula 
for power series in one variable. There are several equivalent forms of Lagrange 
inversion, one of which states that for any power series F , 

(5.8) n • (xn)(F(Y(x)) = (x^iF1 (x) • $(x)n). 

For F(x) = xp this follows from the corollary by setting k = n — p. The 

general case follows since both sides of (5.8) are linear in F: 

If we take F = $ we have on the right, 

(x"-1)^*) • $(x)n) = -^—(x"-1) (-^$(x)n+1) 
it t -L \ UJL J 

-^—{xn)($(x)n+l) = —T<?(rc) • 
n+1 n+1 
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By the definition of Y(x), -tf(rc) = (xn+1)(Y(x)), so (5.8) specializes to 

the equation (xn)($(Y(x)) = (xn+1)(Y(x)), i.e., to 

(5.9) x • * ( y ( x ) ) = Y(x). 

Equation (5.9) is usually used in place of (5.5) and (5.6) to give the relation 
between $ and F , cf. [Co]. 

6. Characteristic classes on projective spaces 

Let R D (Q) be as in the preceding section, and let </(l),</(2),... be a 
sequence in R. corresponding to a power series $(x) as in (5.6). The truncation 
of $(x)n in R[x]/(xn) is the corresponding characteristic class of projective 
space ' P n _ 1 , so the coefficient of x in $(x)n is the term of codimension k, in 
#2fc(pn-i?_fl) _ R^ -m this characteristic class, which we denote by ^ ( I P 7 1 - 1 ) . 
By definition, q(m) = c£%(Wm) is the corresponding genus. Proposition 5.1 
gives pleasantly simple formulas for these characteristic classes on projective 
space: 

(6.1) 4(]P»-1) = ^ « / ( 5 ) , 

the sum of all q(S), over all subsets S of X = { 1 , . . . , n} of cardinality fc, with 
q(S) as defined in (5.3) or (5.4). 

For example, for any y in i2, with 

g(ro) = l - y + y 2 - . . . + ( _ i ) « y » , 

(Hirzebruch's "T r genus") , then Q(x) = a: + (y + l)x/(e^l)x - 1). The 
Chern class, Todd class, and X-class correspond to the choices y = —1, y — 0, 
and y — 1 respectively, with $(#) being 1 -f x,x/(l — e~x), and # / t anh(# ) 
respectively. For the Chern class, this just gives q(S) = 1 for all S, with total 
(J) , which is of course the coefficient of xk in (1 + x)n. For the Todd class, 
q(S) = ( n ( | T | + l ) ) - 1 , the product over components T of S as in §5. For 
the Z-class, the formula is the same, but taken only over those components T 
with |T| even. For example, with R = Q, it follows for each of these classes 
that, if n. = p is prime, and 0 < k < p - 1, then o rd p ( c^ (F p ~ 1 ) ) > 0. It also 
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follows for the general T^-genus, with R = M, that these classes c£®(Fn 1) are 
positive for all n exactly when y < 1. 

Let H be the hyperplane x\ + . . . -f xn = 0 in Rn. Consider the simplex 
in H spanned by the to n vectors 

( 1 , - 1 , 0 , . . . , 0 ) , ( 0 , 1 , - 1 , 0 . . . , 0 ) , . . . , ( 0 , . . . , 1 , -1) , ( - 1 , 0 , . . . , 0 , 1 ) . 

Identify X with the above vectors, so subsets S correspond to faces of the 
simplex. With the metric on H induced by the usual metric on Mn, it is not 
hard to verify that the above number q(S) = (IT(|T| -f l ) ) - 1 is the fraction of 
the space in the linear span of S which is cut out by the cone over S. 

By the general theory of toric varieties (cf. [0]), the convex polytope 
corresponds to the toric variety IP""1, with faces corresponding to subvarieties 
invariant by the torus, which can be identified with the intersection of the 
corresponding hyperplanes. This is the formula for the Todd class mentioned 
in the introduction. Recently Morelli [Mor] has given another proof of this 
formula, but he has also shown that one cannot find a metric on an arbitrary 
toric variety so that the Todd class is calculated by such fractions. For JPn-1 

the ring A constructed from the "circle" X makes a ring out of the invariant 
cycles, and it is the fact that calculation of $(x)n can be lifted to this ring, 
so that every invariant variety has a definite contribution to the total class, 
that gives the simple formulas. Is this possible for other toric varieties? 

7. Proofs of the lemmas 

In this section we return to the lemmas from §2. The proofs are all 
elementary manipulations - they could hardly be otherwise with so few axioms 
- so we will omit some details. 

We first prove Lemma 2.1. Since Is — Ps is invertible, the equations 
(2.3) are equivalent to the equations 

p(xi v) = X ^ ( ^ ) ~" ^ , T ' M))P(U» £> y) •> 

ueS 

which is the same as that in Lemma 2.1. • 

For other lemmas we need two further identities: 
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LEMMA 7.1. If S and T are disjoint, with S U T good, x 6 S, and 
y^SUT, then 

(7.1) p ( * , 5 u r , y ) = p ( a f , 5 , r t + ^ p ( i , 5 , t ) p ( « , 5 u r , y ) . 
teT 

Proof. To see that (7.1) holds for all x in 5, multiply by the invertible 
matrix 1$ — Ps = (^(u^v) — p(u,v)), regarding each side of (7.1) as a vector 
whose xth component is shown. On the left side we get a vector whose uth 

component is 

£(* ( t i , v) - p(u,v))p(v, S U T, y) 
ves 

(7.2) ^ 
= p(u,S U T,y) - 22PK V)P(V, SUT,y). 

ves 
On the right side we get similarly 

p(u, S,y)-^2 P(u' V)P(V>
 S> V) + Yl P(u'S' ')K*> SuT^) 

ves teT 

Applying Lemma 2.1 twice to (7.3), using the good set 5, (7.3) becomes 

(7.4) p(u,y)+J2p(u,t)p(t,SUT,y). 
teT 

Lemma 2.1, applied this time to the set S U T, yields 

p(u, SUT,y) = p(u, y) + ] T p(u, v)p(v, SuT,y) 
ves 

+ X>K*M*,sur,2,). 
teT 

Substituting this in the right side of (7.2)^ we get (7.4), as required. • 

The following identity is similarly a consequence of Lemma 2.1, using 
the assumption (2.2); we omit the proof. 
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LEMMA 7.2. If S is good, Z is a sink, and x e S f) Z, then 

(a) p(x, S, y) = p(x,S n Z, y) for all y £ S; 

(b) p(x,S,y) = OifytZ; 
(c) p(x,S,y) = 0 ifyeZ and ZnS = Z - {y}. 

We turn now to the commutativity Lemma 2.2. The definitions of 
x - (m,e) and y • (m,e) depend on which of the four sets A,B,C,D each 
of x and y belong to, and then, in considering the products y • (x • (m,e)) and 
x ' (y ' (m,e)) , there are several subcases. Each is proved, however, by a short 
calculation using only Lemmas 2.1, 7.1, and 7.2. Since there is no difficulty 
beyond keeping track of all possibilities that can arise, we omit the tedious 
details. Instead, we consider the simpler case (which is all that was used in 
the rest of the paper) when the tolerance function d is identically 1, and we 
consider the equality in the module A, which is free on the good sets S, as at 
the end of §2. The ideas are the same as in the general case, without so many 
cases to consider. 

In A, x • S is 5 U {x} if x £ 5 , and x • S = J2y^sP(x->^^y)^ u (s/) ^ 
x G 5 , in both cases discarding any set which contains a sink. The equality 
x • (y - S) = y • (x • S) is obvious if x = y or if x and y are not in S. Suppose 
next that x G S and y £ S. We have 

x-S = p(x,S,y)S\J{y}+ J ^ p(x,S,w)S U {w} , 
w<£Su{y] 

so y • (x • S) is equal to 

SU{y,w}. 

Since y • S = SU {y},x -(y • S) is equal to ]T] p(x,SU {y},w)S U {y,w}. 
w<tsu{y} 

Then Lemma 7.1, with T = {?/}, implies that these are equal. 
The remaining case is where x and y are in 5, but x ^ y. We compute 

the coefficient of a good set S U T, with T = {w, z], w and z a pair of distinct . 
elements not in S. Since 

x.-S = p(x,S.,w)SU{w}+p(x;S,z)S\j{z}+ ^2 p(v,S,u)SU {u}, 
u£Sl)T 

p(x,S,y)( ] T p(y,SU{y},w)J + ] T p(x,S,w) 
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the coefficient of S U T in y • (x • S) is 

p(x, S, w)p(y, SU{w},z) + p(x, S, z)p(y, S U {z}, w). 

By Lemma 7.1, this coefficient is equal to 

p(x, 5, w)(p(y, 5, z) + p(y, S,«;)/?(«;, 5 U {w}, z)) 

+ p(ar, 5, z)(p(y,S, w) + p(j/, 5, z)p(*, 5 U {*}, w)) , 

and this is symmetric in x and y. • 

The proof of Lemma 2.3 also uses Lemma 2.1, but it is simpler since 
there are only four cases to consider; again we omit details, noting that it is 
obvious in the special case of A considered in the preceding paragraph. 

Finally, we prove Lemma 2.4 in the general setting. For this it suffices 
to show that 

[ J vd(v\x - ] T p(x,S,w)w) e I 
vex w$s 

for every x G S. Since S is good, 1$ — P$ = (8(u,x) — p(u,x))u X£$ ls 

invertible, and multiplying by this matrix, we get a term for each u G 5: 

v£X 
u - 2jp(tt,a?)a:— }] p(u,S,w)w + /] p(u,x)p(x,S)iv)w 

xeS w$S w<£S 
x£S 

By Lemma 2.1, p(u,S,w) = p(u,w) + ^2x^gp(u,x)p(x,S,w), so the term in 
square brackets simplifies to 

u ~Y^P(U,X)X-^2P(U,W)W =u-^2p(u,y)y 
xes w$s J yex 

Now for u £ 5, Yl v (v\u — ^2vaXP(u'>y)y) ls m ^ kv definition. 
vex 
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