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INTRODUCTION 

The problems I want to consider and the results I want to discuss are 
PRIMA FACI E of a very traditional proof theoretic sort: they concern the 
reduction of subsystems of second and higher order arithmetic to construc
tively unproblematic theories. The arguments for these results seem also to 
be of a traditional proof theoretic sort: they use formai and semi-
formal sequent calculi and exploit the fact thàt these calculi allow the 
elimination of cuts. There are, however, fascinating and significant 
twists ; namely, (i) the constructively unproblematic theories are ali fragments 
of elementary number theory, (ii) the subsystems are nevertheless sufficiently 
strong to serve as formai frames for large parts of mathematical analysis and 
algebra, and (iii) the arguments use systematically "derivations as computa-
tions" through a form of Herbrand's theorem. The latter slogan can be taken 
as the theme of the paper. [1] 

A. PROBLEMS & RESULTS. 

Every finitely branching, but infinite tree has an infinite branch. That is 
Koenig's lemma, a most useful tool for mathematical and meta-mathema-
tical investigations. The Heine-Borei covering theorem and Goedel's comple-
teness theorem, to mention just two examples, can be proved using Koenig's 
lemma over a very weak subsystem of second order arithmetic. Fixing on 
a second-order framework, the principle can be stated in a variety of ways -
of strikingly different strengths. 
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Al. FORMULATIONS OF KOENIG's LEMMA. There is, first of ali, the 
schematic formulation, where the tree is given by any second order formula. 
This formulation - as was pointed out by Howard - is equivalent to the full 
comprehension principle. Matters begin to get more delicate when we consider 
the abstract formulation KL : 

(Vf) [T (f)b(Vx) (3y) (lb(y) = x &/(y) = 0) - (3g)( Vx)f (g(x)) = 0] 

Here T (f) abbreviates that {x \f(x) = 0} forms a finitely branching tree 
i.e. 

(Vx,y)[f(x*y) = 0^f(x) = 0]&(Vx)(3z)(vy)[f(x*<y>) = 0 

- > 0 / < z V y = z)] 

In the presence of suitably strong set existence principles, e.g. the full 
arithmetical comprehension principle, KL is equivalent to a bounded 
version BKL, in which a bound for the size of the immediate descendants 
of a node is given by a function. 

(Vff g)[T (f, g)8,(Vx)(3y) (Ih (y) = x 8,f(y)=0)-^ (3b) (Vx)f(b (x)) = 0] 

Here T (f, g) abbreviates 

(Vx,y)[f(x*y = 0^f(x) = 0]8t(Vx,y)[f(x*<y>) = 0 

-* (y<g (x)Vy=g(x))] 

Indecd, the bounding function can be taken to be the Constant function with 
value 1. Thus we are looking at trees of 0-1-sequences. This special version 
of BKL is called WEAK KOENIG'S LEMMA WKL. What is the relative 
strength of these principles? To answer this question let (BT) be the second 
order version of primitive recursive afithmetic (PRA) together with the 
comprehension principle for quantifier-free formulas. Friedman observed in 
an unpublished paper (written in 1969) that over (BT + S j -AC) Koenig's 
lemma KL is equivalent to the full arithmetical comprehension principle 
l £ - CA . Thus we have two immediate results (the systems and principles 
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are formulated precisely in Bl): 

(1) (BT + 2? - AC + KL) is equivalent to ( ¾ - CA) t and thus conser
vative over elementary number theory (Z). 

(2) (BT + S J ~ ^ C + m - L 4 + KX) is equivalent to (III-CA) and thus 
NOT conservative over (Z). 

That WKL is weaker than KL is witnessed by the following result due to 
Kreisel; see [Kreisel e.a.]: 

(3) (K) : = (BT + 2? - ^ C + n J . - M + WKL) is conservative over (Z). 

What is possibly the interest of such theories? One reason for strong in
terest is simple: the bulk of classical analysis can be developed in these or 
other, related conservative extensions of (Z) . That is the outcome of work 
by Takeuti, Feferman, and Friedman. [2] Their investigations lie in a rather 
long tradition of persisten efforts to pursue mathematical analysis by "restric-
ted" means. The work of constructivists like Kronecker, Brouwer, and Bishop 
is clearly part of that tradition. Predicatively inclined mathematicians coh-
tributed also significantly; indeed, Weyl's Das Kontinuum is an early landmark 
in this kind of research. Detailed investigation with sharp logicai - mathema
tical focus, finally, were prodded by the foundational concerns of the Hilbert 
school. Hilbert, in the early twenties, showed in lectures how to develop 
classical analysis straightforwardly in a theory that is equivalent to full second 
order arithmetic. When the consistency problem even for (Z) turned out to 
be much more recalcitrant than had been expected, it was very naturai to be 
concerned with subsystems of second order arithmetic in two complementary 
ways: to prove their consistency by constructive means AND to establish 
their significance by developing substantial parts of mathematical analysis in 
them. That the latter can be done already in conservative extensions of (Z) 
is, prima facie, surprising and satisfying. 

A2. WEAK SUBSYSTEMS. It is now utterly trivial to observe that such a 
development can be carried out partially in ad-hoc subsystems that are proof 
theoretically equivalent to proper fragments of (Z) . The interesting question 
is this: 

Can such a development be given for cohesive parts of mathematical 
practice in fixed subsystems that are conservative over informative fragments? 
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Friedman's theory (WKL0) is a weak theory and actually adequate for a 
good deal of ordinary mathematical practice in analysis and algebra. The latter 
claim has been substantiated by detailed work of Friedman and Simpson. 
[3] For example, (WKL0) proves that every continuous, real-valued function 
on the unit interval is uniformly continuous, has a supremum and actually 
attains it; the Heine-Borei theorem and the Cauchy-Peano existence theorem 
for ordinary differential equations can be established in this theory. To men-
tion one example from algebra, (WKLQ) proves the existence of prime 
ideals in countable commutative rings. Friedman showed that the theory is 
conservative over primitive recursive arithmetic (PRA) for E$ -sentences. 
(The system (F) considered here is equivalent to (WKL0) , but more 
amenable to proof theoretic investigation.) 

(4) (F) : = (BT + 2? - AC + 2? -1A + WKL) is conservative over (PRA) 
for II? - sentences. 

This theorem was strengthened by Harrington as follows : 

(5) (F) is conservative over (2-J — L4)+for II} - sentences. 

Notice that (4) follows immediately, as (2° - L 4 ) + is conservative over 
(PRA) for 11° - sentences; that is a result of Parsons's [4] - I was very much 
interested in Friedman's result and a related one of Minc's, for reasons I will 
speli out in a minute; so I gave an alternative, elementary proof theoretic 
argument for their resuits. (Friedman's proof had been model theoretic; 
Minc's argument was not quite correct and concerned with a somewhat more 
restricted theory [5]). Clearly, looking at the resuits (3) - (5) one may wonder 
whether they captured isolated phenomena or whether they were aspects 
of quite general connections. The quite diverse model theoretic arguments 
did not give any indication; my proof theoretic argument, however, can be 
extended to establish a general theorem that implies the earlier resuits as 
special cases. In its formulation 31 n denotes the class of prenex formulas 
in the language of analysis whose prefix is of length at most n and starts 
with an existential quantifier. 

MAIN THEOREM. (Fn) : = (BT + 2? - AC + 31 n - IA + WKL) is con
servative over (2JJ - M ) + for n{ -sentences, n > 0 . The same holds 
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for the finite type extension (F") . . 

It is the proof of this theorem I want to present in outline, i.e. I will 
focus on second order arithmetic; but let me emphasize that I consider 
the extension to finite types of great significance. After ali, finite type theo-
ries allow a more direct formalization of mathematical practice: there is no 
need to work with codes of higher type objects. But before sketching argu-
ments I give two reasons for interest in these weak theories. 

A3. FOUNDATIONAL & COMPUTATIONAL INTEREST. The foundational 
interest of Friedman's conservation result - assuming it is established by ele-
mentary means - is clear: it yields a direct finitist justification of that part 
of mathematics that can be systematically developed in (F) . The second 
point of interest has been emphasized by Kreisel in such contexts since the 
fifties-, it is brought out best by a particular answer to the question 

What more than its trutb do we know, if we bave proved a theorem in 
a weak formai theory? 

The answer is given for II? theorems; namely, if ( Vx) (3y) Rxy is 
provable in T , then there is a recursive function f , such that (Vx) R.xf(x) 
is also provable in T . As a matter of fact, if T is weak, then / may be in 
a computationally significant class of recursive functions. Taking Friedman's 
(F) as T , ali the provably recursive functions are actually primitive recursive. 
Obviously, further refinements are called for, if one wants to extract systema
tically the algorithmic content of derivations of II§ - theorems. One such 
refinement was established by me [Sieg, 1985] for theories in which the Kal-
mar-elementary functions take the place of the primitive recursive ones. (A 
closely related result is found in [Simpson and Smith]). 

THEOREM. (ET + 2? - AC + WKL) is conservative over (REA) for n?-
sentences. 

The real challenge consists in extending the mathematical as well as the 
metamathematical work to theories whose provably recursive functions 
are contained in a small class of subelementary, "feasible" functions. [6] 
I am convinced that proof theory can be fruitfully applied here; i.e. a proof 
theory that pays attention to details of the coding of syntactic objects and 
to the complexity of syntactic operations. 
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B. LANGUAGES & CALCULI. 

I am going to describe now the formalisms to be used and sketch the ideas 
underlying my proof of Friedman's conservation result: the main theorem is 
established by suitably extending this sketch. Let me emphasize once more 
that I am restricting myself to second order theories throughout. 

Bl. SECOND ORDER ARITHMETIC; FINITARY SEQUENT CALCULI. 
The language L(PRA) of primitive recursive airthmetic is contained in 
the language of every theory I am going to consider. It is expanded to the 
language L (Z) of number theory by adjoining number quantifiers. Para-
meters for one-place number theoretic functions may be added; the resulting 
languages are denoted by L(PRA) + and L(Z)+. The language L+ of 
analysis is L(Z)+ extended by function quantifiers. - Formulas are built 
up from atomic and negated atomic formulas using &, V as logicai 
connectives and, if appropriate, the quantifiers, V, 3. Negation for complex 
formulas is defined; that can be done, as only classical theories are considered. 
Conditionals and biconditionals are also defined in the usuai way. 

Theories formulated in these languages will always contain particular base 
theories. In the case of the language L(PRA) it is simply primitive recursive 
arithmetic; namely, the axiom -r(0' = 0) , the defining equations for ali 
primitive recursive functions, and the induction principle for (quantifier-
free) formulas. The latter is given, equivalently, either as the axiom schema 

F0 & (Vx <a) (Fx -+Fx')^> Fa 

or as the rule 

F0 Fa -* Fa' 

Fa. 

When considering the language L(Z) we denote the base theory by 
(QF — IA); it contains the axioms of (PRA), except that the induction 
principle IA (for quantifier-free formulas) is given in the usuai form 

F0k(Vx)(Fx -+Fx')-»Fa. 
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(QF — IA) is, as can be seen quite readily, conservative over (PRA). (2* — 
IA) is the theory containing the induction principle for 2° - formulas; 
(2° —IA) is then evidently full elementary number theory (Z). In the case 
of L + , the base theory is called (BT)-, it contains the axiom of (QF-1A), 
possibly with function parameters in the defining equations of primitive re-

cursive function(al)s and the formulas used in IA. It also contains the schema 
for the explicit definition of functions ED : 

(2f)(Vx)f(x) = ta[x]. 

This clearly allows to establish each instance of the comprehension principle 
for quantifier-free formulas; the other function-existence principles to be 
considered are WKL and the axiom of choice AC in the form 

(Vx) (3y) Fxy -+ (3g) (Vx) Fxg(x) , 

where F may contain number - and function - parameters. With this, the 
languages and principles for ali the theories are described. 

The logicai calculi underlying these theories are always sequent calculi in 
Tait's form. Their fundamental properties are well-known: invertibility 
of logicai rules for &, V , normalizability, and the subformula property 
of normal derivations. (For a very nice presentation, see [ Schwichtenberg, 
1977].) 

B2. SKETCH OF PROOF THEORETIC ARGUMENT (for Friedmanss 
conservation result). The fundamental properties of sequent calculi are 
exploited to prove the conservation result of Friedman's: (F) is conservative 
over (PRA) for TI§-sentences. I want to sketch this argument to motivate 
the further considerations. As (BT) is trivially conservative for II 2-sen
tences over (PRA) , we just have to show that every n$ -sentence provable 
in (BT + 2? - IA + S? - AC + WKL) is already provable in (BT) . 
So consider, first of aH, (BT) extended by 2 j — AC , or equivalently 
QF - AC , and WKL . That this is indeed a conservative extension of (BT) 
for nS " sentences follows immediately from two lemmata. 

QF - AC - ELIMINATICI. Let A contain only tf-formulas; if D is a 
normal derivation of A [-1QF — AC] , then there is a normal derivation E 
of A H Q F - M ] . 
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Here A [ ... ] is the sequent consisting of A and instances (and instan-
tiations) of the schema . . . . QF — M is the purely universal version of 
ED jnamely, 

(Vx) \y • (ta \y]) (*) = ta [x]. 

#-formulas are purely existential. The second lemma concerns the elimination 
of WKL. 

WKL—Elimination. Let A contain only 3 - formulas ; if D is a normal 
derivation of AI" 1 WKL] , then there is a normal derivation £ of A 

At the heart of matters and also the reason for the condition that A 
must contain only 3 - formulas is the restricted possibility of #-inversion, 
a form of Herbrand's theorem. 

3- Inversion. Let A contain only 3- formulas and let Fa be quanti-
fierfree; if D is a normal derivation of A , (3x) Fx , then there is a finite 
sequence of terms tlf ..., tn and a normal derivation E of A, Ftlt..., 
Ftn-

The proof of the 3 - inversion lemma proceeds inductively òn the length 
of normal derivations. So do the arguments for the elimination lemmata, 
though they contain cruciai steps in which a negation of the principle at 
hand is being analyzed. More precisely, let us consider first ~» QF — AC ; i.e. 
a normal derivation of 

A [-i QF -AC], (Vx)(ay) Fxy & (Vg) (3x) -*Fxg(x) , 

where the indicated instance of -» QF — AC has been introduced in the 
last step of the derivation. By & — and V - inversion there are (shorter) 
derivations of 

A H QF-AC] , (3y) Fcy and A [-i QF - AC] , (3x) ^Fxu(x) , 
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where e and u are number - and function-parameters. By induction 
hypothesis there are derivations DI and D2 of 

à[-iQF-\A]9(3y)Fcy and A h Q F - M ] ) W - . F ^ M . 

Exploiting DI via ^-inversion as a computation, one can define with 
QF — \A a particular chpice-function h , such that 

à[^QF-ÌA],Fch(c) 

has a normal derivation. Analogously, one obtains from DI a term t 
and a normal derivation of 

àl-iQF-M],^Ftu(i) . 

Making appropriate substitutions there are normal derivations of 

A[^QF~'KA]fFth(i) and A H Q F - M ] , ->Ftb(i) 

and thus of A [—i QF — "KA] . — In a similar setting one exploits "the pro-
vability" of - . WKL , i.e. of 

T (h) & (Vx) (3y) (Ih (y) = * & b(y) = 0) & (Vg) (3x)-nb (g(x)) = 0 

to obtain a contradiction between the first two conjuncts (that guarantee the 
existence of arbitrarily long branches in the binary three h) and the third 
conjunct (that expresses the well-foundedness of h ) . Here, incidentally, 
one makes use of a majorization technique of [Howard, 1974] . 

But how can we deal with the 2J - induction scheme? For that one 
appeals to a fact established essentially by Parsons. I want to formulate it 
asfollows: 

LEMMA. Let A consist of axioms of (BT) and let F bea n^-sentence; 
if -i A [-> 2 ? — IA ], F has a normal derivation D , then there is a normal 
derivation E of —i A*, F, where A* contains A and possibly addi-
tioiial £T-axioms. 
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With these elimination lemmata it is quite easy to establish the conservation 
result by induction on (the lenght of) normal derivations in (F) . The criticai 
questions are these: can one extend the above considerations to the (Fn) 
with n > 1? and, can one enlarge the class of conserved sentences from 
Il2"to n}- sentences? The second question has a simple answer: "Yes, by 
means of Herbrand's theorem!" The first question has also a simple answer: 
"No!" The obstacle is due to the restricted #-Inversion together with the 
impossibility of reducing the stronger induction principles to the quantifier-
free one. Posing the problem in this way suggests a classical solution: ELIMI
NATE THE INDUCTION PRINCIPLE BY THE u-RULE and PROVE 
SUITABLE VERSIONS OF 3 -INVERSION AND THE ELIMINATION 
LEMMATA FOR THE INFINITARY SEMI-FORMAL SYSTEM. This strategy 
leads indeed to the desired goal. (Notice that ali references to well-orderings 
are references to segments of the standard well-ordering of type e0.) 

B3. SEMI-FORMAL SYSTEM; EMBEDDING. The infinitary system (BT^ ) , 
into which the (Fn ) can be embedded, has not only infinitary derivations, 
but also infinitary terms. The latter are necessary to obtain an appropriate 
form of the 3 -inversion lemma* [7] Thus the language of (BT^ ) is that 
of (BT) extended by terms < *. > , where the subscript /'" is al way s assu-
med to range over N. 

Definition. (number- and function-terms with depth) 

l.(i) Ali individuai constants and parameters are N-terms of depth 1; (ii) 
ali function constants and parameters are F-terms of depth 1. 

2. (application) 
If t, tx, ..., tn are terms of the appropriate kinds and of depth \t\, \t\\ì 

..., \tn\, then t (t x, „., tn ) is an iV-term of depth max(| t \, | tx \,..., 
i t , D + i . 

3. (X-abstraction) 
If t is an iV-term of depth I t i , then X . (t) is an F-term of depth 
U l + l . 
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4. (sequencing) 
If t. , i E N , form a sequence of iV- terms and the t. are òf depth 11.1, 
then < t. > is a (unary) F-term of depth sup (| t.\ + 1). 

The calculus for (BTJ is obtained from the finitary one by adding the 
co-rule in the form 

I \ A(«) forali nSNk 

r,A(£) . 

The axioms are those of [Schwichtenberg, 1977], admitting function para-
meters. In addition we have X-conversion, i.e. QF — M , and <>-conver-
sion in the form 

<t.>(n) = t . 

The ordinai theoretic measures of complexity — Ig (E), cr (E), td (F), td (E)-
are defined as usuai. - The (F ) can be embedded into (BT^) in such a 
way that the cutrank of the infinitary derivation is less than or equal to 
h -f 1 , i.e. it is determined solely by the complexity of the formulas in the 
iridùctiónschema. 

EMBEDDING LEMMA. Let T be any set of formulas, let A contain 
only BT-axioms (but no instances of QF — IA), and let F be an arbitrary 
formula; if D is a finitary normal derivation of 

r , - , A [ - , £ ? F - , 4 C , -nWKL, -, # w - L 4 ] , F , 

then there is an infinitary derivation E in (BT^ ) of 

r [ - , Q F - A C , WKL],F. 

Furthermore we have: Ig (E) < co2 , cr (E) < n + 2 , and td (E) < co . 

The cut-elimination theorem for (BT^ ) can be established as usuai. 
But here I am only interested in transforming special derivations into quasi-
normal ones. (A derivaton is called quasi-normal if its cut-rank is at most 
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1 ; i.e. it is either normal or its cut formulas are atomic.) 

QUASI-NORMALIZATION. Let n > 0 and let D be a BT^ -derivation 
of T with Ig (D) < a < co2 , td (D) <k <to , and cr (D) < » + 2 ; then 
there is a quasi-normal derivation £ of T sueh that Ig (E) < 2jJ < co^ 
and taf(£)<2* < c o . [8] 

That concludes the elementary considerations preparing the ground for the 
cruciai elimination lemmata. They will allow us to remove instances of the 
axiom of choice and Koenig's lemma from infinitary derivations - WITHOUT 
increasing the length and term-depth of the derivations essentially. 

C. INVERTING & ELIMINATING. 

As before, the fundamental fact is a form of Herbrand's theorem - adapted 
to the infinitary context. I will formulate that first and then the elimination 
lemmata. 

CI. LEMMATA. The 3 -inversion lemma is a straightforward generalization 
of that for the finitary calculus. Clearly, one has to provide suitable bounds 
for the lenght and termdepth of derivations. 

3 -INVERSION LEMMA. Let A contain only 3 -formulas and let Fbaf 
be quantifier-free; if D is a quasi-normal derivation of A , ( 3x) Fxaf 
with Ig (D) < a. and td (D) < /3 then there is an Af-term t and a quasi-
normal derivation E of A, Ftaf , such that Ig (E) < k (a + 1) and 
td (E) < 0 + k (OL + 1) . (k is a fixed naturai number determined from the 
proof.) 

The proof proceeds by induction on the length of D and does not hide 
any surprises; when analyzing the co-rule one exploits the possibility of 
forming infinite terms. For the proof of the "substantive" elimination 
lemmata a more specialized lemma is needed, for the very technical reason 
of keeping the bound on the termdepth "in bounds". 
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COROLLARY (of the proof). Let A contain only tf-formulas and let 
Fbaf be quantifier-free; if D is a quasi-normal derivation of A , ( 3x) 
Fxaf with (jj<lg(D) < a, td (D) < 0 , and 3 -inferences to T , (3x) Gx 
only from T , Gs with td (s) < / < co ; then there is an N-term t and 
a quasi-normal derivation £ of A, Ftaf with lg(E)<k (ot + 1) , taf (t) < 
< & (a-+ 1) , and td (E) < max (0, & (a + 1)). (k is a fixed naturai number 
at least as great as / and is determined from the proof.) 

The cruciai ideas for eliminating the axiom of choice and weak Koenig's 
lemma from infinitary derivations are similar to those needed in the finitary 
case; one just has to keep track of the ordinai complexity of derivations and 
terms (and extend, in particular, the majorization techniques to the present 
context). 

QF - AC - ELIMINATION. Let A contain only tf-formulas-,if D is 
a quasi-normal derivation of A [~i QF — AC] with Ig (D) < a , td (D) < ¢, 
and #-inferences to T, (3x) Gx only from T, Gs with td (s) < / < co ; 
then there is a quasi-normal derivation E of A with Ig (E) < co * <x 
and td (E) < max (0 , co «a2). (E stili satisfies the side-condition on 3-in
ferences). 

The formulation of the JV/CL-elimination lemma is completely analogous 
to that for the elimination of the quantifier-free axiom of choice. 

WKL-ELIMINATION. Let A contain only 3 -formulas; if D is a quasi-
normal derivation of A [-n WKL ] with Ig (D)<ot, td (D) < 0 , and 3-in-
ferences to F , ( 3x) Gx only from T , Gs with td ( s ) < / <co ; then 
there is a quasi-normal derivation E of A with Ig (E) < co •' a and 
td (E) < max (0, co * oc2 ) . (E stili satisfies the side-conditon on 3"-inferences.) 

C2. ARGUMENT for the main theorem. Ali the ingredients for establishing 
the main theorem have been presented now; they just have to be brought 
together. Recali that we want to show for any 11} -sencence G , provability 
in (Fn) implies provability in (2M-L4)+. Assume, without loss of 
generality, that G is an arithmetic formula containing possibly function 
parameters and such that 

(F„)»-G. 
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Then, clearly, (Fn) I- G*1 , where GH is the Herbrand normal form 
of G , and there is a normal derivation of the sequent 

-iA[^QF-AC,-nWKL,-i3[n -1A],GH , 

where A contains only BT-axioms, but no instances of QF — IA , as 
those are subsumed under 31 — IA . Quasi-normalization of the derivation 
obtained from the embedding lemma yields a quasi-normal derivation of length 
less than co^ and termdepth less than co of the sequent 

[->QF~-AC,-iWKL],GH . 

The last two elimination lemmata, used in a single inductive argument, pro
vide us with a quasi-normal derivation of 

GH 

whose length and termdepth are both bounded by co£ . Now we assume 
that GH is of the form (3x)Fxaf and use the 3 -inversion lemma to 
finally get a term t and a quasi-normal derivation of 

Ftaf 

whose length and termdepth is stili bounded by co^ . This is the final step 
in transforming the finitary derivation of G into an infinitary derivation of 
an instance of G's Herbrand normal form. The considerations involved in 
this transformation can be formalized in (2° — M ) + . The reflection 
principle for quantifier-free formulas with termdepth less than cow and 
derivations of length and termdepth less than co" allows us to conclude 
that 

(X°n-IA)+ hGH. 

Herbrand's theorem [9] guarantees the ultimate conclusion; namely, 

< 2 ; - M ) + | - G . 

If G is purely arithmetic, it is provable in the fragment of arithmetic 
( 2 ° - M ) . 
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C3. CONSEQUENCES. Complementing theme and method by topical results, 
we can obtain a characterization of the provably recursive functionals of the 
(Fn) and, consequently, of the (S j — L4)+ . [10] Note, that here as 
above n is always assumed to be greater than 0 . Some well-known facts 
concerning classes of recursive function(al)s follow immediately. — Let me 
first mention the characterizations of two theories with Koenig's Lemma, 
full second order number theory and the theory of arithmetic properties: 
the provably recursive functionals of the former are Spector's bar — recursive 
functionals, those of the latter the <e 0 -recursive functionals. [11] In the 
argument for the main theorem I made implicit use of the fact that the 
(unnested) <co^-recursive functionals can be introduced in (Sjj- — M ) + ; 
namely, when claiming that certain considerations can be formalized in 
(2jj — L4)+ . [12] In turn, the argument yields: if (F ) proves ( Vx) 
( 3y) Rxy , where R is primitive recursive (in function parameters), then 
there is a <cow-recursive function(al) / , such that the statement 
(Vx) Rxf(x) is provable in (S'Jj — M ) + . Consequently we have: 

THEOREM. The provably recursive functionals of (Fn) and (Z|| - IA) + 
are exactly the < w ^ -recursive functionals. 

A straightforward refinement of Schwichtenberg's argument for the in-
troducibility of the nested — <e0 -recursive functionals in (Z)-¥ allows us 
to introduce the nested - < co" -recursive functionals in (2W + 1 - M ) + 
together with the quantifier-free axiom of choice. Thus the earlier conser-
vation theorem implies: 

THEOREM. Ali nested — <cow-recursive functionals can be introduced in 

The theorems have as a corollary a special (and especially interesting) 
case of a theorem in [Tait/1965]. 

COROLLARY. Nested — <cow -recursion is reducible to unnested — <cow , , -
n tu-1 

recursion. 
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NOTES 

1. This is the stylistically improved, but substantively unchanged text I had 
prepared for my talk at the workshop "Logic and Computer Science: New 
Trends and Applications" on October 14, 1986. However, the research for 
this paper was carried out to a large extent in the spring and summer of 1984. 
The results concerning second order systems were presented to the European 
Summer Meeting of the ASL in Paris, July 1985; see the abstract for that 
meeting in the Journal of Symbolic Logic, voi. 52,1987, pp. 342-343. 

2. See [Takeuti], [Feferman, 1977 and 1985], and [Friedmanj. 

3. To get some impressions of the work on "Reverse Mathematics" consult 
the book Harvey Friedman's Research on the Foundations of Mathematics, 
edited by Harrington, Morley, Scedrov, and Simpson, North-Holland, Am
sterdam, 1985. 

4. The result (for pure number theory) was announced by Parsons in Reduc-
tion of inductions to quantifier-free induction, Notices AMS 13 (1966), p. 
740; a proof is in On a number-theoretic choice schema and its relation to 
induction. The latter paper was published in: Intuitionism and Prpof Theory, 
edited by Kino, Myhill, and Vessley, North-Holland, Amsterdam, 1977, pp. 
459-473. 

5. See the discussion in my paper Fragments ofarithmetic on p. 65. 

6. Recent work of Buss, Takeuti, and Gote establishes most interesting rela-
tionships between fragments of arithmetic and complexity classes. 

7. Such a strategy was also pursued in Feferman and Sieg, Proof-theoretic 
equivalences between classical and constructive theories, Lecture Notes in 
Mathematics 897, Springer Verlag, Berlin, 1981, pp. 78-142. 

9. As formulated for example in Shoenfield, Mathematical Logic, Addison-
Wesley, Reading, 1967. 



91 

10. The characterization of the provably recursive functions for fragments 
of arithmetic was given by Parsons in Ordinai recursion in partial systems 
of number theory, Notices AMS 13 (1966), pp. 857-858; it follows from 
results below, when taking into account that ( S j — IA) + is conservative 
over (2® -IA). 

11. [Kreisel, 1951/52] gives the provably recursive functionals of (Z) + . 
In his introduction to the Stanford Report Kreisel wrote: "Spector's sche-
mata provide the most perspicuous description to date of the provably re
cursive functions and functionals of classical analysis." Spector's paper 
Provably recursive functions of analysis: a consistency proof of analysis 
by an extension of principles formulated in current intuitionistic mathe-
matics was published in volume 5 of Proceedings of Symposia in Pure Ma-
thematics, 1962, pp. 1-27. 

12. This fact can be established using techniques of [Kreisel, 1951/2] and 
[Parsons, 1973]. 
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