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SOME PROPERTIES OF ZERO-DIVISOR GRAPH OF
ANNIHILATORS OF A COMMUTATIVE RING

Abstract. In this paper, for a commutative ring R with non-zero zero-divisor set Z∗(R ), the
zero-divisor graph of annihilators of R is a simple graph, denoted by ΓA (R ) with vertex set
V (ZA (R )) = {ā = ann(a), a ∈ Z∗(R )} and there is an edge ā → b̄ between two vertices if
and only if ann(a)⊂ ann(b) and there does not exist c̄ with ann(a)⊂ ann(c)⊂ ann(b). The
structure of zero-divisor graph of annihilators of Zn is described. We give a combinatorial
formula to find various parameters of this graph. Further, we provide a partition of the vertex
set of ΓA (Zn). We further study the lattice graph ΓL (G) of a group G defined as a graph
whose vertex set is the set of proper subgroups of a group G and the two vertices H1 and
H2 in ΓL (G) are adjacent if and only if H1 ∩H2 ̸= {e}. We study isomorphism and several
structural properties of the lattice graph of groups.

1. Introduction and Preliminaries

Throughout, R will denote a commutative ring with identity denoted by 1. The set
Z∗(R ) = Z(R )∖ {0} will denote the set of non-zero zero-divisors of R . The an-
nihilator of an element a of a ring R is the set ann(a) = {r ∈ R | ar = 0}. By Zn,
we denote the ring of integers modulo n. A ring is said to be local ring if it has a
unique maximal ideal. The zero-divisor graph Γ(R ) of R , is a simple undirected
graph whose vertex set is Z∗(R ) and the two vertices u,v ∈ Z∗(R ) are adjacent if and
only if uv = vu = 0. We define vertex set of a zero-divisor graph of annihilators ΓA(R )
as V (ZA(R )) = {ā = ann(a),a ∈ Z∗(R )} and there is an edge ā → b̄ between the
two vertices in ΓA(R ) if and only if ann(a) ⊂ ann(b) and there does not exist c̄ with
ann(a)⊂ ann(c)⊂ ann(b).

The concept of the zero-divisor graph of a commutative ring R was first in-
troduced by Beck [5], where he was mainly interested in colorings. In his work, he
let all the elements of ring as vertices of the graph. This investigation of colorings of
a commutative ring was then continued by Anderson and Naseer in [3]. A different
approach of associating a graph to a commutative ring R was given by Anderson and
Livingston in [2], where the graph Γ(R ) has its vertices as elements of Z∗(R ) and
two vertices u,v ∈ Z∗(R ) are adjacent if and only if uv = 0. The authors believed that
this definition better illustrates the zero-divisor structure of the ring. The zero-divisor
graph translates the algebraic properties of a ring to graph theoretical tools, thus helps
in exploring interesting results in both graph theory and abstract algebra. Associating
a graph to a ring, a group, semigroup or a module has been studied extensively (see for
example [2–5, 7, 14]).

There are many papers which interlink graph theory with annihilators and lattice
theory (see [1,6,9–12,15]). These papers discuss the properties of graphs derived from
partially ordered sets and lattices. Recall that a lattice is an algebra (L ,∨,∧) satisfying
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the following conditions: for all a,b,c ∈ L ,
1. a∧a = a, a∨a = a,
2. a∧b = b∧a, a∨b = b∨a,
3. (a∧b)∧ c = a∧ (b∧ c), (a∨b)∨ c = a∨ (b∨ c), and
4. a∨ (a∧b) = a∧ (a∨b) = a.
There is an equivalent definition for a lattice. Let S be a non-empty ordered set, that
is, we are given a relation a ≤ b on S which is reflexive and such that a ≤ b and b ≤ a
together imply a = b. Then, a subset T of S is a chain if either a ≤ b or b ≤ a for every
pair of elements a,b in T and let L be lattice, for any a,b ∈ L , we set a ≤ b if and
only if a∧b = a. Then (L , ≤) is an ordered set in which every pair of elements has a
greatest lower bound (g.l.b.) and a least upper bound (l.u.b.).

A graph G with vertex set V (G) ̸= φ and edge set E(G) of unordered pairs of
distinct vertices is called a simple graph. The cardinality of V (G) is called the order
of G and the cardinality of E(G) is called its size. A graph G is connected if and only
if there exists a path between every pair of vertices u and v. A graph on n vertices
such that any pair of distinct vertices is joined by an edge is called a complete graph,
denoted by Kn. A graph is said to be a bipartite graph if its vertex set can be parti-
tioned into two disjoint sets V1 and V2 with V (G) = V1 ∪V2 such that uv is an edge of
G if u ∈ V1 and v ∈ V2. The number of edges incident on a vertex is called its degree
and a vertex of degree 1 is called a pendent vertex. In a connected graph G, the dis-
tance between two vertices u and v is the length of the shortest path between u and v.
The diameter of a graph G is defined as diam(G) = sup{(d(u,v)|u,v ∈V (G))}, where
d(u,v) denotes the distance between vertices u and v of G. The length of a smallest
cycle in a graph G is called as girth and is denoted by gr(G). The eccentricity of a
vertex v of a connected graph G is the distance between v and a vertex u farthest from
v. The minimum eccentricity among the vertices of G is called the radius of G, denoted
by rad(G). Two graphs G and G′ are said to be isomorphic to each other if there is a
one-one correspondence between their vertices and between their edges such that the
incidence relationship is preserved. For basic definitions in graph theory and lattice
theory, we refer to [8, 13].

2. Structure of ΓA(Zp1 p2...pr)

THEOREM 1. Let n = p1 p2...pr be the product of r distinct primes of n. Then
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(iii) For any v1 ∈V1, dV1(v1) = r−1; for any vr−1 ∈Vr−1, dVr−1(vr−1) = r−1; for any
vk ∈Vk dVk(vk) = r, where k = 2,3, . . . ,r−2, where dVi(vi) denotes the degree of
a vertex vi in some Vi ⊂V

Proof. Let the vertex set V of ΓA(Zp1 p2...pr) be divided into disjoint subsets
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V1,V2, ...,Vr−1, where

V1 = {pi,1 ≤ i ≤ r}
V2 = {pi p j,1 < i, j ≤ r}

· · ·
Vr−1 = {pi p j pk . . . ps,1 < i, j,k, . . . ,s ≤ r}

(i) By partitioning a vertex set of ΓA(Zp1 p2...pr), it is not difficult to see that��V (ΓA(Zp1 p2...pr))
�� =
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· · ·+

� r
r−1

�
= 2r −2

(ii) By definition of zero-divisor graph of annihilators of a ring, we see that
ann(pi) ⊊ ann(pi p j), implies that pi is adjacent to pi p j and therefore each vertex
in V1 is adjacent to r − 1 vertices in V2. Using the same argument, we see that
ann(pi p j) ⊊ ann(pi p j pk), 1 < i ̸= j ̸= k ≤ r, implies that there is an edge from pi p j
to pi p j pk and each vertex in V2 is adjacent to r − 2 vertices in V3. On proceeding,
we see that, ann(pi p j . . . pk) ⊊ ann(pi p j . . . ps), 1 < i, j,k ≤ r and 1 < i, j, . . . ,s ≤ r
and therefore each vertex in Vr−2 is adjacent to 2 vertices in Vr−1. This, completes the
second part.

(iii) To find the degree of a vertex in Vi, 1 ≤ i ≤ r−1, we see that each vertex in V1 is
adjacent r−1 vertices. So that, for any v1 ∈V1 dV1(v1) = r−1. The degree of a vertex
in V2 equals to the sum of the number of incoming edges from V1 and the number of
outgoing edges to V3, which sums up 2+ r−2 = r, that is, for any v2 ∈V2, dV2(v2) = r.
Proceeding in this way, we see that dVk(vk) = r for any vk ∈ Vk, 2 ≤ k ≤ r−2 and for
any vr−1 ∈Vr−1, dVr−1(vr−1) = r−1.

We notice that the graph so obtained is the chain of bipartite graphs, clearly
contains no odd cycle. So, gr(ΓA(Zp1 p2...pr)) = 4.
Also, diam(ΓA(Zp1 p2...pr)) = r−1.

EXAMPLE 1. Let Zn be the ring of integers modulo n. Then for four distinct
prime integers p, q, r and s

(i) |ΓA(Zpqrs)| = 14.

(ii) |E(ΓA(Zpqrs))|= 24.

(iii) for any v1 ∈ V1, dV1(v1) =
�3
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�
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diam(ΓA(Zpqrs))≤ 3, rad(ΓA(Zpqrs))≤ 2 and gr(ΓA(Zpqrs)) = 4

Proof. Let the vertex set V of ΓA(Zpqrs) be partitioned into disjoint sets given by
V1 = {p̄, q̄, r̄, s̄}, V2 = {pq, pr, ps,qr,qs,rs}, V3 = {pqr, pqs, prs,qrs}.
We see, the set V1 contain four distinct primes, the set V2 contain elements by choosing
two primes at a time and the set V3 contain elements by choosing three primes at a time.
Therefore, it is clear, |V |=

�4
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= 14.

Now, after determining the annihilator of each element of V1, we see that annihi-
lator of each prime in V1 is contained in the annihilator of the elements of V2 containing
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that prime and therefore there are three outgoing edges from each prime of V1 into the
set V2. Similarly, by the same argument, the annihilator of each element of V2 is con-
tained in the annihilator of the elements of V3 containing the corresponding element
and therefore are adjacent to each other. Moreover, there is no outgoing edge from the
elements of V3 to the elements of V1. For if, the elements of V3 are adjacent to the ele-
ments of V2, but then, the annihilator of an element of V1 is contained in annihilator of
an element of V2, which contradicts our definition of zero-divisor graph of annihilators.
This is because ann(x) ⊊ ann(z), but then ann(y) ⊊ ann(z) for x ∈ V1, y ∈ V2, z ∈ V3,
implies x is not adjacent to z. Moreover, we can see that ann(p)⊊ ann(pq)⊊ ann(pqr),
which implies p is not adjacent to pqr. Thus, |E(ΓA(Zpqrs))|= 3.
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(iii) Note that for any v1 ∈ V1, dV1(v1) =
�4−1
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�
= 3, since it is adjacent to vertices in

V2 containing v1. In the above case, p is adjacent to pq, pr, ps. Also, for any v2 ∈ V2,
dV2(v2) =

�2
1

�
+
�4−2

1

�
. Further, for any v3 ∈V3, dV3(v3) = 3, since the vertices in V2 are

adjacent to the elements in V3 and there is no any other outgoing edge from V3. Thus it
follows that the diameter is 3 and the radius is 2.

THEOREM 2. Let R ∼= R1 ×R2 be a finite commutative local ring with unity.
Then ΓA(R ) is connected.

(i) If both R1 and R2 are local rings

(ii) If R1 (or R2) is a field

(iii) If and only if both R1 and R2 are fields.

Proof. (i) Let R ∼= R1×R2 = {(r1,r2) | r1 ∈ R1,r2 ∈ R2} be a finite commutative local
ring with unity. The vertex set of ΓA(R ) is the set of annihilators given by:
{ann(0,1),ann(1,0),ann(ai,0),ann(0,b j),ann(ai,1), ann(1,b j),ann(ai,b j)}. Now,

ann(0,1) = {(x,0) ∀ 0 ̸= x ∈ R1}
ann(1,0) = {(0,y) ∀ y ∈ R2}

ann(ai,0) = {(xi,y) : aixi = 0,xi ∈ Z∗(R1),y ∈ R2,},
ann(ai,1) = {(xi,0) : aixi = 0,xi ∈ Z∗(R1)},
ann(0,b j) = {(x,y j) : b jy j = 0,x ∈ R1,y j ∈ Z∗(R2)},
ann(1,b j) = {(0,y j) : b jy j = 0,y j ∈ Z∗(R2)},

ann(ai,b j) = {(xi,0),(0,y j),(xi,y j) : aixi = 0 = b jy j,xi ∈ Z∗(R1),y j ∈ Z∗(R2)}.

We note that, ann(ai,1) ⊂ ann(0,1) and ann(ai,0) ⊂ ann(0,1). Thus, ΓA(R ) is
connected.

(ii) Let R2 be a field, say F. That is, R ∼= R1 ×F. The possible annihilators of the ele-
ments in R1 ×F are ann(0,1),ann(1,0),ann(ai,0),ann(ai,1), where ai is the nonzero
zero-divisor in R1 and 1 ∈ F.
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Now,

ann(0,1) = {(x,0), for all 0 ̸= x ∈ R1},
ann(1,0) = {(0,y) for all 0 ̸= y ∈ R2},

ann(ai,0) = {(xi,y) : aixi = 0,xi ∈ Z∗(R1)}
ann(ai,1) = {(xi,0) : aixi = 0,xi ∈ Z∗(R1)}

It is now easy to see that ann(ai,1) ⊂ ann(0,1) and ann(ai,0) ⊂ ann(1,0). Thus,
ΓA(R ) is connected.

(iii) Let R ∼= F1 ×F2. Then the annihilator set of each element of F1 ×{0} is same,
that is, ann(ai,0) = {(0,b j) : b j ∈ F2}, where ai ∈ F1. Similarly, ann(0,b j) = {(ai,0) :
ai ∈ F1}. Clearly, ann(ai,0)⊊ ann(0,b j) and vice versa ann(0,b j)⊊ ann(ai,0). Thus,
ΓA(R ) is connected.

3. Lattice graph of subgroups of a group

We know that the set of subgroups of a group G forms a lattice L = (H,∧,∨), where
for any two subgroups H1 and H2, H1 ∨H2 = H1 ∪H2 and H1 ∩H2 = H1 ∧H2. The
lattice graph ΓL(G) of a group is defined as a graph whose vertex set is the set of proper
subgroups of G and the two vertices H1 and H2 in ΓL(G) are adjacent if and only if
H1 ∩H2 ̸= {e}. Let (L ,∨,∧) be a lattice with least element 0. Then a ∈ L is called an
atom if there is no element b ∈ L such that 0 < b < a. We gather atoms of L in the set
A(L). Let (L ,∨,∧) be a lattice with the maximal element 1. Then d ∈ DA(L) is called
a dual atom, if 0 < d < 1.

THEOREM 3. Let L = (H,∨,∧) be the lattice of subgroups of the group Zpn ,
then diam(ΓL(Zpn)) = 1 and |A(L)|= 1.

Proof. We know that the proper subgroups of a group Zpn are generated by the divisors
of pn and are ⟨p⟩,⟨p2⟩,⟨p3⟩, . . . ,⟨pn−1⟩. Clearly, ⟨pi⟩∧ ⟨p j⟩ is a non-trivial subgroup
for all i ̸= j. Thus, ΓL(Zpn) is a complete graph Kn−1. Therefore, diam(ΓL(Zpn)) = 1.
Since, ΓL(Zpn) ∼= Kn−1, then any two vertices H1 and H2 different from H = ⟨pn−1⟩
are adjacent in ΓL(Zpn). So, H ≤ H1 ∧H2, implies H ≤ Hi for all Hi ∈ L , implies that
H is a solitary atom, that is, |A(L)|= 1.

EXAMPLE 2. Consider a group Zp4 . The set of proper subgroups are:
H1 = ⟨p⟩= {0, p,2p, . . . ,(p−1)p, p2, . . . ,(p3 −1)p},
H2 = ⟨p2⟩= {0, p2,2p2, . . . ,(p2 −1)p2} and
H3 = ⟨p3⟩= {0, p3,2p3, . . . ,(p−1)p3}.
Clearly, Hi ∧Hj ̸= {0}. Thus, ΓL(Zp4)∼= K3.

THEOREM 4. Let G be a group such that G ∼= Zp1 p2...pn , where every pi (1 ≤
i ≤ n) is a prime integer and p1 < p2 < · · ·< pn. Then, ΓL(Zp1 p2...pn) is isomorphic to
K2n−2.
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Proof. The proper subgroups of G ∼= Zp1 p2...pn are generated by divisors of
p1 p2 p3 . . . pn and are 2n − 2 in number. Therefore, it is clear that the element p1 p2
belongs to all the proper subgroups of G. Thus, there is an edge between every pair of
subgroups of G, that is G∼= K2n−2.

THEOREM 5. The lattice graph of a group G= Zp ×Zp is disconnected.

Proof. We know that G = Zp ×Zp contains p + 1 subgroups of order p given by:
H1 = {00,01,02, . . . ,0(p−1)}, note that here aia j = (ai,a j).
H2 = {00,10,20, . . . ,(p−1)0},
H3 = {00,11,22, . . . ,(p−1)(p−1)}, . . .
Hp+1 = {00,1(p−1),2(p−2), . . . ,(p−1)(p−1)}.
Clearly, the intersection of no two subgroups is non-trivial. Thus, ΓL(Zp ×Zp) is
disconnected.

Let L and L ′ be two lattices, a lattice isomorphism is one to one mapping f :
L −→ L⋆ such that f (a∨b) = f (a)∨ f (b) and f (a∧b) = f (a)∧ f (b).

THEOREM 6. Let G and G⋆ be two isomorphic groups. Then ΓL(G) and
ΓL(G⋆) are isomorphic, where L and L⋆ are lattice of subgroups of G and G⋆.

Proof. Let f :G−→G⋆ be an isomorphism. Then for a subgroup H⋆ ≤G⋆, there exists
a unique subgroup H ∈G such that f (H) =H⋆. Let V (ΓL(G)) = {H1,H2, . . . ,Hm} and
V (ΓL(G⋆)) = {H ′

1,H
′
2, . . . ,H

′
n}. Define a mapping φ : L −→ L ′ by φ(H) = f (H). It

is easy to see that φ is a bijection. To show that φ is a graph isomorphism, we show
for any Hi and Hj in ΓL(G) are adjacent if and only if φ(Hi) and φ(Hj) are adjacent in
ΓL(G⋆). Let Hi and Hj be two adjacent vertices in ΓL(G), that is,

H1 ∧H2 ̸= {e}
⇔ f (H1 ∧H2) ̸= {e⋆}
⇔ f (H1)∧ f (H2) ̸= {e⋆}
⇔ φ(H1)∧φ(H2) ̸= {e⋆}
⇔ φ(H1) is adjacent to φ(H2).

We observe that there exists a family of non-isomorphic groups whose lattice
graphs are also non-isomorphic. Say, for example, Dihedral group Dn = {xiy j|i =
0,1, j = 0,1, · · · ,n − 1,x2 = e = yn,xy = yx−1}, in particular octic group D8 =
{R0,R90,R180,R270,H,H ′,D,D′} and Q8 = {±1,±i,± j,±k}.

Note that there exist non-isomorphic groups, but their lattice graph is identical.
For illustration, consider Klien’s 4-group and Z4.

THEOREM 7. Let ΓL(G) be the lattice graph with no cycle of length 3, associ-
ated to a group G = G⋆×Z2 and if H ≤ G such that H ∈ A(L), then H is a pendent
vertex in ΓL(G).
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Proof. Consider a group G=G⋆×Z2. We note that the subgroup H = {(0,0),(0,1)}
is a minimal element, that is, H ∈A(L) of G. We claim that deg(H)= 1. If deg(H)≥ 2,
then H is adjacent to atleast two subgroups, say Hj and Hk. So, that H ∧Hj ̸= {e} and
H ∧Hk ̸= {e}. But then, H ∧Hj = H = H ∧Hk, implies that H ≤ Hj and H ≤ Hk,
implies that H ≤ Hj ∧Hk, implies that Hj and Hk are adjacent, which is a contradiction
to the hypothesis that ΓL(G) has no cycle of length 3. Thus, deg(H) = 1.

COROLLARY 1. If H ∈ A(L) and deg(H) = 1, then H ≤ Hk, where Hk ∈
DA(L).

Proof. Let Hj ∈ DA(L), then H ∧Hj ̸= {e}, implies H ∧Hj = H, implies H ≤ Hj. But
Hk is the maximal element, implies H ≤ Hj ≤ Hk, implies H ≤ Hk, implies H ∧Hk ̸=
{e}, that is H and Hk are adjacent, a contradiction. Thus, H ≤ Hk.
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