M. Imran Bhat, N. Hosseinzadeh and Ahmad M. Alghamdi SOME PROPERTIES OF ZERO-DIVISOR GRAPH OF ANNIHILATORS OF A COMMUTATIVE RING

Abstract

In this paper, for a commutative ring \mathcal{R} with non-zero zero-divisor set $Z^{*}(\mathcal{R})$, the zero-divisor graph of annihilators of \mathcal{R} is a simple graph, denoted by $\Gamma_{\mathscr{A}}(\mathcal{R})$ with vertex set $V\left(Z_{\mathcal{A}}(\mathcal{R})\right)=\left\{\bar{a}=\operatorname{ann}(a), a \in Z^{*}(\mathcal{R})\right\}$ and there is an edge $\bar{a} \rightarrow \bar{b}$ between two vertices if and only if $\operatorname{ann}(a) \subset \operatorname{ann}(b)$ and there does not exist \bar{c} with $\operatorname{ann}(a) \subset \operatorname{ann}(c) \subset \operatorname{ann}(b)$. The structure of zero-divisor graph of annihilators of \mathbb{Z}_{n} is described. We give a combinatorial formula to find various parameters of this graph. Further, we provide a partition of the vertex set of $\Gamma_{\mathcal{A}}\left(\mathbb{Z}_{n}\right)$. We further study the lattice graph $\Gamma_{L}(\mathbb{G})$ of a group \mathbb{G} defined as a graph whose vertex set is the set of proper subgroups of a group \mathbb{G} and the two vertices H_{1} and H_{2} in $\Gamma_{\mathcal{L}}(\mathbb{G})$ are adjacent if and only if $H_{1} \cap H_{2} \neq\{e\}$. We study isomorphism and several structural properties of the lattice graph of groups.

1. Introduction and Preliminaries

Throughout, \mathcal{R} will denote a commutative ring with identity denoted by 1 . The set $Z^{*}(\mathcal{R})=Z(\mathcal{R}) \backslash\{0\}$ will denote the set of non-zero zero-divisors of \mathcal{R}. The annihilator of an element a of a ring \mathcal{R} is the set $\operatorname{ann}(a)=\{r \in \mathcal{R} \mid a r=0\}$. By \mathbb{Z}_{n}, we denote the ring of integers modulo n. A ring is said to be local ring if it has a unique maximal ideal. The zero-divisor graph $\Gamma(\mathcal{R})$ of \mathcal{R}, is a simple undirected graph whose vertex set is $Z^{*}(\mathcal{R})$ and the two vertices $u, v \in Z^{*}(\mathcal{R})$ are adjacent if and only if $u v=v u=0$. We define vertex set of a zero-divisor graph of annihilators $\Gamma_{\mathcal{A}}(\mathcal{R})$ as $V\left(Z_{\mathcal{A}}(\mathcal{R})\right)=\left\{\bar{a}=\operatorname{ann}(a), a \in Z^{*}(\mathcal{R})\right\}$ and there is an edge $\bar{a} \rightarrow \bar{b}$ between the two vertices in $\Gamma_{\mathcal{A}}(\mathcal{R})$ if and only if $\operatorname{ann}(a) \subset \operatorname{ann}(b)$ and there does not exist \bar{c} with $\operatorname{ann}(a) \subset \operatorname{ann}(c) \subset \operatorname{ann}(b)$.

The concept of the zero-divisor graph of a commutative ring \mathcal{R} was first introduced by Beck [5], where he was mainly interested in colorings. In his work, he let all the elements of ring as vertices of the graph. This investigation of colorings of a commutative ring was then continued by Anderson and Naseer in [3]. A different approach of associating a graph to a commutative ring \mathcal{R} was given by Anderson and Livingston in [2], where the graph $\Gamma(\mathcal{R})$ has its vertices as elements of $Z^{*}(\mathcal{R})$ and two vertices $u, v \in Z^{*}(\mathcal{R})$ are adjacent if and only if $u v=0$. The authors believed that this definition better illustrates the zero-divisor structure of the ring. The zero-divisor graph translates the algebraic properties of a ring to graph theoretical tools, thus helps in exploring interesting results in both graph theory and abstract algebra. Associating a graph to a ring, a group, semigroup or a module has been studied extensively (see for example [2-5,7,14]).

There are many papers which interlink graph theory with annihilators and lattice theory (see $[1,6,9-12,15]$). These papers discuss the properties of graphs derived from partially ordered sets and lattices. Recall that a lattice is an algebra $(\mathcal{L}, \vee, \wedge)$ satisfying
the following conditions: for all $a, b, c \in \mathcal{L}$,

1. $a \wedge a=a, a \vee a=a$,
2. $a \wedge b=b \wedge a, a \vee b=b \vee a$,
3. $(a \wedge b) \wedge c=a \wedge(b \wedge c),(a \vee b) \vee c=a \vee(b \vee c)$, and
4. $a \vee(a \wedge b)=a \wedge(a \vee b)=a$.

There is an equivalent definition for a lattice. Let S be a non-empty ordered set, that is, we are given a relation $a \leq b$ on S which is reflexive and such that $a \leq b$ and $b \leq a$ together imply $a=b$. Then, a subset T of S is a chain if either $a \leq b$ or $b \leq a$ for every pair of elements a, b in T and let \mathcal{L} be lattice, for any $a, b \in \mathcal{L}$, we set $a \leq b$ if and only if $a \wedge b=a$. Then (\mathcal{L}, \leq) is an ordered set in which every pair of elements has a greatest lower bound (g.l.b.) and a least upper bound (l.u.b.).

A graph G with vertex set $V(G) \neq \phi$ and edge set $E(G)$ of unordered pairs of distinct vertices is called a simple graph. The cardinality of $V(G)$ is called the order of G and the cardinality of $E(G)$ is called its size. A graph G is connected if and only if there exists a path between every pair of vertices u and v. A graph on n vertices such that any pair of distinct vertices is joined by an edge is called a complete graph, denoted by K_{n}. A graph is said to be a bipartite graph if its vertex set can be partitioned into two disjoint sets V_{1} and V_{2} with $V(G)=V_{1} \cup V_{2}$ such that $u v$ is an edge of G if $u \in V_{1}$ and $v \in V_{2}$. The number of edges incident on a vertex is called its degree and a vertex of degree 1 is called a pendent vertex. In a connected graph G, the distance between two vertices u and v is the length of the shortest path between u and v. The diameter of a graph G is defined as $\operatorname{diam}(G)=\sup \{(d(u, v) \mid u, v \in V(G))\}$, where $d(u, v)$ denotes the distance between vertices u and v of G. The length of a smallest cycle in a graph G is called as girth and is denoted by $\operatorname{gr}(G)$. The eccentricity of a vertex v of a connected graph G is the distance between v and a vertex u farthest from v. The minimum eccentricity among the vertices of G is called the radius of G, denoted by $\operatorname{rad}(G)$. Two graphs G and G^{\prime} are said to be isomorphic to each other if there is a one-one correspondence between their vertices and between their edges such that the incidence relationship is preserved. For basic definitions in graph theory and lattice theory, we refer to [8,13].
2. Structure of $\Gamma_{\mathscr{A}}\left(\mathbb{Z}_{p_{1} p_{2} \ldots p_{r}}\right)$

THEOREM 1. Let $n=p_{1} p_{2} \ldots p_{r}$ be the product of r distinct primes of n. Then
(i) $\left|V\left(Z_{\mathcal{A}}\left(\mathbb{Z}_{p_{1} p_{2} \ldots p_{r}}\right)\right)\right|=2^{r}-2$.
(ii) $\left|E\left(Z_{\mathcal{A}}\left(\mathbb{Z}_{p_{1} p_{2} \ldots p_{r}}\right)\right)\right|=\binom{r}{1}\binom{r-1}{1}+\binom{r}{2}\binom{r-2}{1} \cdots+\binom{r}{r-2}\binom{2}{1}=\sum_{k=1}^{r-2}(r-k)\binom{r}{k}$.
(iii) For any $v_{1} \in V_{1}, d_{V_{1}}\left(v_{1}\right)=r-1$; for any $v_{r-1} \in V_{r-1}, d_{V_{r-1}}\left(v_{r-1}\right)=r-1$; for any $v_{k} \in V_{k} d_{V_{k}}\left(v_{k}\right)=r$, where $k=2,3, \ldots, r-2$, where $d_{V_{i}}\left(v_{i}\right)$ denotes the degree of a vertex v_{i} in some $V_{i} \subset V$

Proof. Let the vertex set V of $\Gamma_{\mathcal{A}}\left(\mathbb{Z}_{p_{1} p_{2} \ldots p_{r}}\right)$ be divided into disjoint subsets
$V_{1}, V_{2}, \ldots, V_{r-1}$, where

$$
\begin{aligned}
V_{1} & =\left\{\overline{p_{i}}, 1 \leq i \leq r\right\} \\
V_{2} & =\left\{\overline{p_{i} p_{j}}, 1<i, j \leq r\right\} \\
& \ldots \\
V_{r-1} & =\left\{\overline{p_{i} p_{j} p_{k} \ldots p_{s}}, 1<i, j, k, \ldots, s \leq r\right\}
\end{aligned}
$$

(i) By partitioning a vertex set of $\Gamma_{\mathcal{A}}\left(\mathbb{Z}_{p_{1} p_{2} \ldots p_{r}}\right)$, it is not difficult to see that $\left|V\left(\Gamma_{\mathcal{A}}\left(\mathbb{Z}_{p_{1} p_{2} \ldots p_{r}}\right)\right)\right|=\binom{r}{1}+\binom{r}{2}+\binom{r}{3} \cdots+\binom{r}{r-1}=2^{r}-2$
(ii) By definition of zero-divisor graph of annihilators of a ring, we see that $\operatorname{ann}\left(p_{i}\right) \subsetneq \operatorname{ann}\left(p_{i} p_{j}\right)$, implies that \bar{p}_{i} is adjacent to $\overline{p_{i} p_{j}}$ and therefore each vertex in V_{1} is adjacent to $r-1$ vertices in V_{2}. Using the same argument, we see that $\operatorname{ann}\left(p_{i} p_{j}\right) \subsetneq \operatorname{ann}\left(p_{i} p_{j} p_{k}\right), 1<i \neq j \neq k \leq r$, implies that there is an edge from $\overline{p_{i} p_{j}}$ to $\overline{p_{i} p_{j} p_{k}}$ and each vertex in V_{2} is adjacent to $r-2$ vertices in V_{3}. On proceeding, we see that, $\operatorname{ann}\left(p_{i} p_{j} \ldots p_{k}\right) \subsetneq \operatorname{ann}\left(p_{i} p_{j} \ldots p_{s}\right), 1<i, j, k \leq r$ and $1<i, j, \ldots, s \leq r$ and therefore each vertex in V_{r-2} is adjacent to 2 vertices in V_{r-1}. This, completes the second part.
(iii) To find the degree of a vertex in $V_{i}, 1 \leq i \leq r-1$, we see that each vertex in V_{1} is adjacent $r-1$ vertices. So that, for any $v_{1} \in V_{1} d_{V_{1}}\left(v_{1}\right)=r-1$. The degree of a vertex in V_{2} equals to the sum of the number of incoming edges from V_{1} and the number of outgoing edges to V_{3}, which sums up $2+r-2=r$, that is, for any $v_{2} \in V_{2}, d_{V_{2}}\left(v_{2}\right)=r$. Proceeding in this way, we see that $d_{V_{k}}\left(v_{k}\right)=r$ for any $v_{k} \in V_{k}, 2 \leq k \leq r-2$ and for any $v_{r-1} \in V_{r-1}, d_{V_{r-1}}\left(v_{r-1}\right)=r-1$.

We notice that the graph so obtained is the chain of bipartite graphs, clearly contains no odd cycle. So, $\operatorname{gr}\left(\Gamma_{\mathcal{A}}\left(\mathbb{Z}_{p_{1} p_{2} \ldots p_{r}}\right)\right)=4$. Also, $\operatorname{diam}\left(\Gamma_{\mathcal{A}}\left(\mathbb{Z}_{p_{1} p_{2} \ldots p_{r}}\right)\right)=r-1$.

EXAMPLE 1. Let \mathbb{Z}_{n} be the ring of integers modulo n. Then for four distinct prime integers p, q, r and s
(i) $\left|\Gamma_{\mathcal{A}}\left(\mathbb{Z}_{p q r s}\right)\right|=14$.
(ii) $\left|E\left(\Gamma_{\mathfrak{A}}\left(\mathbb{Z}_{\text {pqrs }}\right)\right)\right|=24$.
(iii) for any $v_{1} \in V_{1}, \quad d_{V_{1}}\left(v_{1}\right)=\binom{3}{1}$, for any $v_{2} \in V_{2}, \quad d_{V_{2}}\left(v_{2}\right)=2 .\binom{2}{1}$, $\operatorname{diam}\left(\Gamma_{\mathcal{A}}\left(\mathbb{Z}_{p q r s}\right)\right) \leq 3, \operatorname{rad}\left(\Gamma_{\mathcal{A}}\left(\mathbb{Z}_{p q r s}\right)\right) \leq 2$ and $\operatorname{gr}\left(\Gamma_{\mathcal{A}}\left(\mathbb{Z}_{p q r s}\right)\right)=4$

Proof. Let the vertex set V of $\Gamma_{\mathcal{A}}\left(\mathbb{Z}_{p q r s}\right)$ be partitioned into disjoint sets given by $V_{1}=\{\bar{p}, \bar{q}, \bar{r}, \bar{s}\}, V_{2}=\{\overline{p q}, \overline{p r}, \overline{p s}, \overline{q r}, \overline{q s}, \overline{r s}\}, V_{3}=\{\overline{p q r}, \overline{p q s}, \overline{p r s}, \overline{q r s}\}$.
We see, the set V_{1} contain four distinct primes, the set V_{2} contain elements by choosing two primes at a time and the set V_{3} contain elements by choosing three primes at a time. Therefore, it is clear, $|V|=\binom{4}{1}+\binom{4}{2}+\binom{4}{3}=14$.

Now, after determining the annihilator of each element of V_{1}, we see that annihilator of each prime in V_{1} is contained in the annihilator of the elements of V_{2} containing
that prime and therefore there are three outgoing edges from each prime of V_{1} into the set V_{2}. Similarly, by the same argument, the annihilator of each element of V_{2} is contained in the annihilator of the elements of V_{3} containing the corresponding element and therefore are adjacent to each other. Moreover, there is no outgoing edge from the elements of V_{3} to the elements of V_{1}. For if, the elements of V_{3} are adjacent to the elements of V_{2}, but then, the annihilator of an element of V_{1} is contained in annihilator of an element of V_{2}, which contradicts our definition of zero-divisor graph of annihilators. This is because $\operatorname{ann}(x) \subsetneq \operatorname{ann}(z)$, but then $\operatorname{ann}(y) \subsetneq \operatorname{ann}(z)$ for $x \in V_{1}, y \in V_{2}, z \in V_{3}$, implies x is not adjacent to z. Moreover, we can see that $\operatorname{ann}(p) \subsetneq \operatorname{ann}(p q) \subsetneq \operatorname{ann}(p q r)$, which implies p is not adjacent to pqr. Thus, $\left|E\left(\Gamma_{\mathfrak{A}}\left(\mathbb{Z}_{p q r s}\right)\right)\right|=3 .\binom{4}{1}+2 .\binom{4}{2}+0 .\binom{4}{3}$. (iii) Note that for any $v_{1} \in V_{1}, d_{V_{1}}\left(v_{1}\right)=\binom{4-1}{1}=3$, since it is adjacent to vertices in V_{2} containing v_{1}. In the above case, p is adjacent to $p q, p r, p s$. Also, for any $v_{2} \in V_{2}$, $d_{V_{2}}\left(v_{2}\right)=\binom{2}{1}+\binom{4-2}{1}$. Further, for any $v_{3} \in V_{3}, d_{V_{3}}\left(v_{3}\right)=3$, since the vertices in V_{2} are adjacent to the elements in V_{3} and there is no any other outgoing edge from V_{3}. Thus it follows that the diameter is 3 and the radius is 2 .

THEOREM 2. Let $\mathcal{R} \cong \mathcal{R}_{1} \times \mathcal{R}_{2}$ be a finite commutative local ring with unity. Then $\Gamma_{\mathfrak{A}}(\mathcal{R})$ is connected.
(i) If both \mathcal{R}_{1} and \mathcal{R}_{2} are local rings
(ii) If \mathcal{R}_{1} (or \mathcal{R}_{2}) is a field
(iii) If and only if both \mathcal{R}_{1} and \mathcal{R}_{2} are fields.

Proof. (i) Let $\mathcal{R} \cong \mathcal{R}_{1} \times \mathcal{R}_{2}=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in \mathcal{R}_{1}, r_{2} \in \mathcal{R}_{2}\right\}$ be a finite commutative local ring with unity. The vertex set of $\Gamma_{\mathfrak{A}}(\mathcal{R})$ is the set of annihilators given by:
$\left\{\operatorname{ann}(0,1), \operatorname{ann}(1,0), \operatorname{ann}\left(a_{i}, 0\right), \operatorname{ann}\left(0, b_{j}\right), \operatorname{ann}\left(a_{i}, 1\right), \operatorname{ann}\left(1, b_{j}\right), \operatorname{ann}\left(a_{i}, b_{j}\right)\right\}$. Now,

$$
\begin{aligned}
\operatorname{ann}(0,1) & =\left\{(x, 0) \forall 0 \neq x \in \mathcal{R}_{1}\right\} \\
\operatorname{ann}(1,0) & =\left\{(0, y) \forall y \in \mathcal{R}_{2}\right\} \\
\operatorname{ann}\left(a_{i}, 0\right) & =\left\{\left(x_{i}, y\right): a_{i} x_{i}=0, x_{i} \in \mathcal{Z}^{*}\left(\mathcal{R}_{1}\right), y \in \mathcal{R}_{2},\right\}, \\
\operatorname{ann}\left(a_{i}, 1\right) & =\left\{\left(x_{i}, 0\right): a_{i} x_{i}=0, x_{i} \in Z^{*}\left(\mathcal{R}_{1}\right)\right\}, \\
\operatorname{ann}\left(0, b_{j}\right) & =\left\{\left(x, y_{j}\right): b_{j} y_{j}=0, x \in \mathcal{R}_{1}, y_{j} \in Z^{*}\left(\mathcal{R}_{2}\right)\right\}, \\
\operatorname{ann}\left(1, b_{j}\right) & =\left\{\left(0, y_{j}\right): b_{j} y_{j}=0, y_{j} \in Z^{*}\left(\mathcal{R}_{2}\right)\right\}, \\
\operatorname{ann}\left(a_{i}, b_{j}\right) & =\left\{\left(x_{i}, 0\right),\left(0, y_{j}\right),\left(x_{i}, y_{j}\right): a_{i} x_{i}=0=b_{j} y_{j}, x_{i} \in \mathcal{Z}^{*}\left(\mathcal{R}_{1}\right), y_{j} \in \mathcal{Z}^{*}\left(\mathcal{R}_{2}\right)\right\} .
\end{aligned}
$$

We note that, $\operatorname{ann}\left(a_{i}, 1\right) \subset \operatorname{ann}(0,1)$ and $\operatorname{ann}\left(a_{i}, 0\right) \subset \operatorname{ann}(0,1)$. Thus, $\Gamma_{\mathcal{A}}(\mathcal{R})$ is connected.
(ii) Let \mathcal{R}_{2} be a field, say \mathbb{F}. That is, $\mathcal{R} \cong \mathcal{R} \times \mathbb{F}$. The possible annihilators of the elements in $\mathcal{R}_{1} \times \mathbb{F}$ are $\operatorname{ann}(0,1), \operatorname{ann}(1,0), \operatorname{ann}\left(a_{i}, 0\right), \operatorname{ann}\left(a_{i}, 1\right)$, where a_{i} is the nonzero zero-divisor in \mathcal{R}_{1} and $1 \in \mathbb{F}$.

Now,

$$
\begin{aligned}
\operatorname{ann}(0,1) & =\left\{(x, 0), \text { for all } 0 \neq x \in \mathcal{R}_{1}\right\}, \\
\operatorname{ann}(1,0) & =\left\{(0, y) \text { for all } 0 \neq y \in \mathcal{R}_{2}\right\}, \\
\operatorname{ann}\left(a_{i}, 0\right) & =\left\{\left(x_{i}, y\right): a_{i} x_{i}=0, x_{i} \in \mathcal{Z}^{*}\left(\mathcal{R}_{1}\right)\right\} \\
\operatorname{ann}\left(a_{i}, 1\right) & =\left\{\left(x_{i}, 0\right): a_{i} x_{i}=0, x_{i} \in \mathcal{Z}^{*}\left(\mathcal{R}_{1}\right)\right\}
\end{aligned}
$$

It is now easy to see that $\operatorname{ann}\left(a_{i}, 1\right) \subset \operatorname{ann}(0,1)$ and $\operatorname{ann}\left(a_{i}, 0\right) \subset \operatorname{ann}(1,0)$. Thus, $\Gamma_{\mathcal{A}}(\mathcal{R})$ is connected.
(iii) Let $\mathcal{R} \cong \mathbb{F}_{1} \times \mathbb{F}_{2}$. Then the annihilator set of each element of $\mathbb{F}_{1} \times\{0\}$ is same, that is, ann $\left(a_{i}, 0\right)=\left\{\left(0, b_{j}\right): b_{j} \in \mathbb{F}_{2}\right\}$, where $a_{i} \in \mathbb{F}_{1}$. Similarly, ann $\left(0, b_{j}\right)=\left\{\left(a_{i}, 0\right)\right.$: $\left.a_{i} \in \mathbb{F}_{1}\right\}$. Clearly, $\operatorname{ann}\left(a_{i}, 0\right) \subsetneq \operatorname{ann}\left(0, b_{j}\right)$ and vice versa $\operatorname{ann}\left(0, b_{j}\right) \subsetneq \operatorname{ann}\left(a_{i}, 0\right)$. Thus, $\Gamma_{\mathcal{A}}(\mathcal{R})$ is connected.

3. Lattice graph of subgroups of a group

We know that the set of subgroups of a group \mathbb{G} forms a lattice $\mathcal{L}=(H, \wedge, \vee)$, where for any two subgroups H_{1} and $H_{2}, H_{1} \vee H_{2}=H_{1} \cup H_{2}$ and $H_{1} \cap H_{2}=H_{1} \wedge H_{2}$. The lattice graph $\Gamma_{L}(\mathbb{G})$ of a group is defined as a graph whose vertex set is the set of proper subgroups of \mathbb{G} and the two vertices H_{1} and H_{2} in $\Gamma_{\mathcal{L}}(\mathbb{G})$ are adjacent if and only if $H_{1} \cap H_{2} \neq\{e\}$. Let $(\mathcal{L}, \vee, \wedge)$ be a lattice with least element 0 . Then $a \in \mathcal{L}$ is called an atom if there is no element $b \in \mathcal{L}$ such that $0<b<a$. We gather atoms of \mathcal{L} in the set $A(\mathcal{L})$. Let $(\mathcal{L}, \vee, \wedge)$ be a lattice with the maximal element 1 . Then $d \in D A(\mathcal{L})$ is called a dual atom, if $0<d<1$.

THEOREM 3. Let $\mathcal{L}=(H, \vee, \wedge)$ be the lattice of subgroups of the group $\mathbb{Z}_{p^{n}}$, then $\operatorname{diam}\left(\Gamma_{\mathcal{L}}\left(\mathbb{Z}_{p^{n}}\right)\right)=1$ and $|A(\mathcal{L})|=1$.

Proof. We know that the proper subgroups of a group $\mathbb{Z}_{p^{n}}$ are generated by the divisors of p^{n} and are $\langle p\rangle,\left\langle p^{2}\right\rangle,\left\langle p^{3}\right\rangle, \ldots,\left\langle p^{n-1}\right\rangle$. Clearly, $\left\langle p^{i}\right\rangle \wedge\left\langle p^{j}\right\rangle$ is a non-trivial subgroup for all $i \neq j$. Thus, $\Gamma_{\mathcal{L}}\left(\mathbb{Z}_{p^{n}}\right)$ is a complete graph K_{n-1}. Therefore, $\operatorname{diam}\left(\Gamma_{\mathcal{L}}\left(\mathbb{Z}_{p^{n}}\right)\right)=1$. Since, $\Gamma_{\mathcal{L}}\left(\mathbb{Z}_{p^{n}}\right) \cong K_{n-1}$, then any two vertices H_{1} and H_{2} different from $H=\left\langle p^{n-1}\right\rangle$ are adjacent in $\Gamma_{\mathcal{L}}\left(\mathbb{Z}_{p^{n}}\right)$. So, $H \leq H_{1} \wedge H_{2}$, implies $H \leq H_{i}$ for all $H_{i} \in \mathcal{L}$, implies that H is a solitary atom, that is, $|A(\mathcal{L})|=1$.

EXAMPLE 2. Consider a group $\mathbb{Z}_{p^{4}}$. The set of proper subgroups are:
$H_{1}=\langle p\rangle=\left\{0, p, 2 p, \ldots,(p-1) p, p^{2}, \ldots,\left(p^{3}-1\right) p\right\}$,
$H_{2}=\left\langle p^{2}\right\rangle=\left\{0, p^{2}, 2 p^{2}, \ldots,\left(p^{2}-1\right) p^{2}\right\}$ and
$H_{3}=\left\langle p^{3}\right\rangle=\left\{0, p^{3}, 2 p^{3}, \ldots,(p-1) p^{3}\right\}$.
Clearly, $H_{i} \wedge H_{j} \neq\{0\}$. Thus, $\Gamma_{L}\left(\mathbb{Z}_{p^{4}}\right) \cong K_{3}$.
THEOREM 4. Let \mathbb{G} be a group such that $\mathbb{G} \cong \mathbb{Z}_{p_{1} p_{2} \ldots p_{n}}$, where every $p_{i}(1 \leq$ $i \leq n)$ is a prime integer and $p_{1}<p_{2}<\cdots<p_{n}$. Then, $\Gamma_{\mathcal{L}}\left(\mathbb{Z}_{p_{1} p_{2} \ldots p_{n}}\right)$ is isomorphic to $K_{2^{n}-2}$.

Proof. The proper subgroups of $\mathbb{G} \cong \mathbb{Z}_{p_{1} p_{2} \ldots p_{n}}$ are generated by divisors of $p_{1} p_{2} p_{3} \ldots p_{n}$ and are $2^{n}-2$ in number. Therefore, it is clear that the element $p_{1} p_{2}$ belongs to all the proper subgroups of \mathbb{G}. Thus, there is an edge between every pair of subgroups of \mathbb{G}, that is $\mathbb{G} \cong K_{2^{n}-2}$.

THEOREM 5. The lattice graph of a group $\mathbb{G}=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ is disconnected.
Proof. We know that $\mathbb{G}=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ contains $p+1$ subgroups of order p given by: $H_{1}=\{00,01,02, \ldots, 0(p-1)\}$, note that here $a_{i} a_{j}=\left(a_{i}, a_{j}\right)$.
$H_{2}=\{00,10,20, \ldots,(p-1) 0\}$,
$H_{3}=\{00,11,22, \ldots,(p-1)(p-1)\}, \ldots$
$H_{p+1}=\{00,1(p-1), 2(p-2), \ldots,(p-1)(p-1)\}$.
Clearly, the intersection of no two subgroups is non-trivial. Thus, $\Gamma_{\mathcal{L}}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right)$ is disconnected.

Let \mathcal{L} and \mathcal{L}^{\prime} be two lattices, a lattice isomorphism is one to one mapping f : $\mathcal{L} \longrightarrow \mathcal{L}^{\star}$ such that $f(a \vee b)=f(a) \vee f(b)$ and $f(a \wedge b)=f(a) \wedge f(b)$.

THEOREM 6. Let \mathbb{G} and \mathbb{G}^{\star} be two isomorphic groups. Then $\Gamma_{\mathcal{L}}(\mathbb{G})$ and $\Gamma_{\mathcal{L}}\left(\mathbb{G}^{\star}\right)$ are isomorphic, where \mathcal{L} and \mathcal{L}^{\star} are lattice of subgroups of \mathbb{G} and \mathbb{G}^{\star}.

Proof. Let $f: \mathbb{G} \longrightarrow \mathbb{G}^{\star}$ be an isomorphism. Then for a subgroup $H^{\star} \leq \mathbb{G}^{\star}$, there exists a unique subgroup $H \in \mathbb{G}$ such that $f(H)=H^{\star}$. Let $V\left(\Gamma_{\mathcal{L}}(\mathbb{G})\right)=\left\{H_{1}, H_{2}, \ldots, H_{m}\right\}$ and $V\left(\Gamma_{\mathcal{L}}\left(\mathbb{G}^{\star}\right)\right)=\left\{H_{1}^{\prime}, H_{2}^{\prime}, \ldots, H_{n}^{\prime}\right\}$. Define a mapping $\phi: \mathcal{L} \longrightarrow \mathcal{L}^{\prime}$ by $\phi(H)=f(H)$. It is easy to see that ϕ is a bijection. To show that ϕ is a graph isomorphism, we show for any H_{i} and H_{j} in $\Gamma_{\mathcal{L}}(\mathbb{G})$ are adjacent if and only if $\phi\left(H_{i}\right)$ and $\phi\left(H_{j}\right)$ are adjacent in $\Gamma_{\mathcal{L}}\left(\mathbb{G}^{\star}\right)$. Let H_{i} and H_{j} be two adjacent vertices in $\Gamma_{\mathcal{L}}(\mathbb{G})$, that is,

$$
\begin{array}{ll}
& H_{1} \wedge H_{2} \neq\{e\} \\
\Leftrightarrow & f\left(H_{1} \wedge H_{2}\right) \neq\left\{e^{\star}\right\} \\
\Leftrightarrow & f\left(H_{1}\right) \wedge f\left(H_{2}\right) \neq\left\{e^{\star}\right\} \\
\Leftrightarrow & \phi\left(H_{1}\right) \wedge \phi\left(H_{2}\right) \neq\left\{e^{\star}\right\} \\
\Leftrightarrow & \phi\left(H_{1}\right) \text { is adjacent to } \phi\left(H_{2}\right) .
\end{array}
$$

We observe that there exists a family of non-isomorphic groups whose lattice graphs are also non-isomorphic. Say, for example, Dihedral group $D_{n}=\left\{x^{i} y^{j} \mid i=\right.$ $\left.0,1, j=0,1, \cdots, n-1, x^{2}=e=y^{n}, x y=y x^{-1}\right\}$, in particular octic group $D_{8}=$ $\left\{R_{0}, R_{90}, R_{180}, R_{270}, H, H^{\prime}, D, D^{\prime}\right\}$ and $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$.

Note that there exist non-isomorphic groups, but their lattice graph is identical. For illustration, consider Klien's 4-group and \mathbb{Z}_{4}.

THEOREM 7. Let $\Gamma_{\mathcal{L}}(\mathbb{G})$ be the lattice graph with no cycle of length 3 , associated to a group $\mathbb{G}=\mathbb{G}^{\star} \times \mathbb{Z}_{2}$ and if $H \leq \mathbb{G}$ such that $H \in A(\mathcal{L})$, then H is a pendent vertex in $\Gamma_{\mathcal{L}}(\mathbb{G})$.

Proof. Consider a group $\mathbb{G}=\mathbb{G}^{\star} \times \mathbb{Z}_{2}$. We note that the subgroup $H=\{(0,0),(0,1)\}$ is a minimal element, that is, $H \in A(\mathcal{L})$ of \mathbb{G}. We claim that $\operatorname{deg}(H)=1$. If $\operatorname{deg}(H) \geq 2$, then H is adjacent to atleast two subgroups, say H_{j} and H_{k}. So, that $H \wedge H_{j} \neq\{e\}$ and $H \wedge H_{k} \neq\{e\}$. But then, $H \wedge H_{j}=H=H \wedge H_{k}$, implies that $H \leq H_{j}$ and $H \leq H_{k}$, implies that $H \leq H_{j} \wedge H_{k}$, implies that H_{j} and H_{k} are adjacent, which is a contradiction to the hypothesis that $\Gamma_{\mathcal{L}}(\mathbb{G})$ has no cycle of length 3 . Thus, $\operatorname{deg}(H)=1$.

Corollary 1. If $H \in A(\mathcal{L})$ and $\operatorname{deg}(H)=1$, then $H \leq H_{k}$, where $H_{k} \in$ $D A(L)$.

Proof. Let $H_{j} \in D A(\mathcal{L})$, then $H \wedge H_{j} \neq\{e\}$, implies $H \wedge H_{j}=H$, implies $H \leq H_{j}$. But H_{k} is the maximal element, implies $H \leq H_{j} \leq H_{k}$, implies $H \leq H_{k}$, implies $H \wedge H_{k} \neq$ $\{e\}$, that is H and H_{k} are adjacent, a contradiction. Thus, $H \leq H_{k}$.

References

[1] Afkhami M., Barati Z. and Khashyarmanesh K., A graph associated to a lattice, Ricerche mat. 63 (2014), 67-78.
[2] Anderson D.F. and Livingston P.S., The zero divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447.
[3] Anderson D.D. and Naseer M., Beck's coloring of a commutative ring, J. Algebra 159 (1993), 500-514.
[4] Anderson D.F., Levy R. and Shapiro J., Zero divisor graphs, von Neumann regular rings and Boolean algebras, J. Pure Appl. Algebra 180 (2003), 221-241.
[5] Beck I., Coloring of Commutative rings, J. Algebra 116 (1988), 208-226.
[6] Bessonov Y.E. and Dobrynin A.A., Lattice Complete Graphs, J. Applied and Industrial Mathematics 114 (2017), 481-485.
[7] DeMeyer F., McKenzie T. and Schneider K., The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 (2002), 206-214.
[8] Donnellan T., Lattice Theory, Pergamon Press, Oxford, 1968.
[9] Estaji E. and Khashyarmanesh K., The zero divisor graph of a lattice, Results Math. 61 (2012), 1-11.
[10] Filipov N.D., Comparability graphs of partially ordered sets of different types, Colloq. Math. Soc. János Bolyai 33 (1980), 373-380.
[11] Hosseinzadeh N., Graph operations on zero-divisor graph of posets, International J.Math. Combin. 2 (2018), 129-133.
[12] Nimbhorkar S.K., Wasadikar M.P. and Pawar M.M., Coloring of lattices, Math. Slovaca 60 (2010), 419-434.
[13] Pirzada S., An Introduction to Graph Theory, University Press, Orient Blackswan, India, 2012.
[14] Spiroff S. and Wickham C., A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra 397 (2011), 2338-2348.
[15] TAmizh Chelvam T. and Nithya S., A note on the zero divisor graph of a lattice, Transactions on Combinatorics 33 (2014) 51-59..

AMS Subject Classification: 13A99, 05C78, 05C12

M. Imran Bhat, N. Hosseinzadeh and Ahmad M. Alghamdi

Department of Mathematics, Central University of Kashmir, Ganderbal 191201, Tulmulla, INDIA
Department of Mathematics, Dezful Branch, Islamic Azad University, Dezful, IRAN
Umm Al-qura University, Faculty of applied Sciences, Department of Mathematical Sciences
P.O. Box 14035, Makkah 21955, SAUDI ARABIA
e-mail: imran@cukashmir.ac.in, narges.hosseinzadeh@gmail.com, amghamdi@uqu.edu.sa

Lavoro pervenuto in redazione il 26.11.2021.

