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A SURVEY ON MACHINE LEARNING APPLIED TO
SYMMETRIC CRYPTANALYSIS

Abstract. In this work we give a short review of the recent progresses of machine learning
techniques applied to cryptanalysis of symmetric ciphers, with particular focus on artificial
neural networks. We start with some terminology and basics of neural networks, to then
classify the recent works in two categories: "black-box cryptanalysis", techniques that not
require previous information about the cipher, and "neuro-aided cryptanalysis", techniques
used to improve existing methods in cryptanalysis.

1. Introduction

The similarities between retrieving secret information from a symmetric cipher and
finding the unknown weights of a neural network have been known since long time,
for example in Rivest’s survey at Asiacrypt 1991 [1]. Due to the constant progress of
technology, the adoption of machine learning techniques, in particular neural networks,
is becoming increasingly popular and effective in solving more and more complex
problems. This success of these techniques has tempted many cryptographers to exploit
them for cryptanalysis.

The goal of this survey is to provide an overview of the literature involving
machine learning techniques in cryptanalysis of symmetric ciphers. The focus will
be set on theoretical cryptanalysis using neural networks, so, in particular, works on
side-channel analysis are not taken into account. The analyzed works are classified
following a similar scheme to [2], that will be clarified in the following sections.

The survey is organized as follows. In section 2 we give a short introduction of
machine learning techniques which have found application in theoretical cryptanalysis
of symmetric primitives, with particular focus on neural networks (NN). In section 3 the
literature on pure blackbox cryptanalysis via machine learning techniques is reviewed.
In section 4 we review the literature on classical cryptanalytic methods enhanced by
neural networks, that we will call neuro-aided cryptanalysis. In section 5 we conclude
the paper.

1.1. Related Works

In an invited talk during Asiacrypt 1991 [1] on the relationship between cryptography
and machine learning, Rivest discussed for the first time how each field has contributed
ideas and techniques to the other. In 2017, a short survey on automated design and
cryptanalysis of cipher systems was given [3], showing that computational intelligence
methods, such as genetic algorithms, genetic programming, Tabu search, and memetic
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computing, are effective tools to solve many cryptographic problems. In his master
thesis [4] (2018), Lagerhjelm presented a series of experiments using neural networks
to try to decrypt some data encrypted with DES algorithm. In 2020, Baek and Kim [2]
published a survey categorizing the several possible uses of Deep Learning techniques
in the area of block cipher cryptanalysis. They identified two major categories: neural
cryptanalysis and neuro-aided cryptanalysis. In neural cryptanalysis, a block cipher
is seen as a black box, and different types of networks are designed depending on
three main different targets: key recovery, cipher emulation, or cipher identification.
The survey reviews the main works in neural cryptanalysis and concludes that neu-
ral networks can only be used to effectively attack toy or reduced round ciphers. In
neuro-aided cryptanalysis, conventional cryptanalysis techniques are improved by the
adoption of neural network. A special and successfull branch of neuro-aided cryptanal-
ysis is neuro-aided side channel attacks, which falls out of the scope of both this work
and [2].

2. Preliminaries on machine learning

The field of machine learning is concerned with the study of computer algorithms that
improve automatically through experience [5]. Experience is provided in the form of
training data and improvement is measured in terms of how well the algorithm can gen-
eralize the experience. In other words, improvement corresponds to a better algorithm
performance, as a previously unknown sample is submitted to the algorithm.

Depending on the nature of the experience by which the algorithm learns, ma-
chine learning is divided into different learning types: i) supervised (learn a general
rule by being presented example inputs and outputs), ii) unsupervised (find structure in
an unlabeled input) or iii) reinforcement learning (achieve a goal by receiving rewards
and learn from mistakes). Different statistical, probabilistic or optimization techniques
have been used as machine learning techniques. Among them linear and logistic re-
gression, artificial neural networks (ANNs), k-nearest neighbor (kNN), decision trees,
random forests, support vector machines (SVMs) and Naive Bayes.

In the following we give a short introduction of machine learning techniques
based on artificial neural networks which have found application in theoretical crypt-
analysis.

2.1. Artificial Neural Networks

Artificial neural networks are used for image classification (e.g. Google Images),
speech recognition (e.g. Siri), recommender systems (e.g. YouTube) or to win Go
against the world champion (AlphaGo). A book which covers the mathematical back-
ground in greater detail is [6] while a practically oriented introduction is given in [7].

All artificial neural networks feature artificial neurons organized in layers as
their elementary building blocks. In its minimum configuration an ANN contains an
input and an output layer. At the input layer the unlabeled data is presented to the
network, while at the output layer each neuron represents a possible outcome. Ad-
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ditionally to the input and output layers the ANN usually contains a stack of hidden
layers. A deep neural network is a special kind of ANN, in which the number of hid-
den layers is especially high.

The computational model of an artificial neuron has been inspired by animal
brains and was proposed in 1943 by McCulloch and Pitts [8]. Each neuron in the
ANN’s hidden and output layers has trainable parameters: on one hand the connection
weights to other neurons and on the other hand a bias term b.

The basic working principle of the ANN is that it approximates an arbitrary
continuous function by utilizing its large parameter space. The parameter space of
the neural network is determined by hyperparameters which relate to the design of the
ANN (e.g. number of neurons, number of layers, ...) and network parameters (weights
and biases of the neurons) obtained from the learning process on the training data. For
continuous functions it has been shown in 1989 by Cybenko [9] that any continuous
function of n real variables can be approximated to any desired precision by a neural
network with as few as one hidden layer of sufficient size and a sigmoidal nonlinearity.
The result was extended by Hornik et al. in 1989 to a more general form w.r.t. the used
activation functions [10, 11], which is known today as The Universal Approximation
Theorem of neural networks.

Neural Network Training
During the training phase of neural networks, first, the parameters of the neural net-
work are initialized to a starting value. Then the parameters are refined in learning
epochs: in each epoch the input of the neural network is the complete training data set.
The training dataset consists of an input for the ANN and the corresponding labels y.
Usually, the training dataset is not presented all at once but in batches.

During the learning process in a supervised setting a loss function L(z,y) is used
to quantify the difference of the neural network output z to the labeled training dataset
y. During the backpropagation [12] the contribution of each network parameter to the
overall loss is evaluated. Afterwards the network parameters are updated to minimize
the loss by gradient descent and the next batch is presented at the input.

The hyperparameter with largest influence on the gradient descent is the learn-
ing rate. It determines the step size with which the network parameters are updated
during gradient descent. A popular policy to choose the learning rate follows the cyclic
learning rate approach, proposed by Smith in 2015 [13]. The idea is to escape local
minima and saddle points with a high learning rate and still be able to descend into
lower loss areas without divergence.

The regular gradient descent optimizer can be substituted by more sophisticated
choices: momentum techniques like momentum optimization [14] or Nesterov Accel-
erated Gradient (NAG) [15] take previous gradients into account and allow for faster
propagation. They use the accumulated gradient for acceleration and a friction param-
eter to allow for stopping in a found minimum. Adaptive learning rate techniques like
AdaGrad [16] (adaptive gradient descent) and RMSProp adapt not the momentum, but
the learning rate to allow for faster propagation towards the optimum. RMSProp adds
a decay parameter to accumulate only the most recent gradients. Adam [17] stands for
adaptive moment estimation and combines the advantages of momentum optimization
and RMSProp. Nadam [18] additionally combines the NAG method with Adam.
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Activation Functions and Initialization
Neurons compute the weighted sum of their inputs plus one bias term b for each input
and obtains z⃗ = x⃗T w⃗+ b⃗. Afterwards an activation function φ(z) is applied and the
signal propagates to the neurons in the subsequent layer. Since the backpropagation
is based on gradient descent, the activation function has to provide a gradient. His-
torically, step functions or sigmoids have been used, that may lead to problems like
vanishing or exploding gradients.

In 2010 it has been found that this problem relates to weight initialization as well
as the use of the then popular sigmoid activation function [19]. The sigmoid function
saturates, i.e. it has zero gradient for z ≫ 0 for large absolute values of z and therefore
doesn’t provide a large enough gradient for backpropagation. Since [19] the ReLU
activation function and other weight initialization schemes (like Glorot after the author
of [19]) are more commonly used. An improvement to circumvent dead neurons has
been proposed with the LeakyReLU variant [20], which provides a nonzero gradient
for z ≪ 0.

Convolutional Neural Networks (CNNs)
The most important building block of a CNN is the convolutional layer. Each neuron in
the convolutional layer is only connected to neurons located within a small rectangle,
or field of view, in the previous layer. A 2D mask is applied to the field of view of
the convolutional-layer-neuron. The 2D mask acts as a filter which performs a 2D
convolution. The field of view is determined by the size of the convolution kernel
(kernel size), or, equivalently, by the size of the filter. Depending on the applied filter
the neuron becomes more sensitive to certain patterns in the previous layer. Since many
such patterns may exist, there is a range of predefined filters available and each of the
filters will produce its own 2D layer, called a feature map. Hence, the convolutional
layer is actually a 3D object with a depth corresponding to the number of chosen filters.
However, all neurons within one feature map share the same weights and bias term,
which leads to drastically less parameters than in a fully connected network.

In some works, e.g. Baksi et al. [21], it is shown that CNNs are not suitable for
the purpose of finding a cryptographic distinguisher. This because CNNs are aimed at
recognizing patterns in input data, which helps in image recognition or natural language
processing, but does not work for cipher input where the bits are not related in any way.

Recurrent Neural Networks (RNNs)
A recurrent neural network (RNN) is a neural network with an active data memory.
It is applied to a sequence to guess the next step in the sequence. In contrast to a
feedforward neural network, where the activations flow only in one direction from input
to the output layer, the recurrent neural network also contains connections backwards.
Therefore a recurrent neuron receives inputs from the previous layer, but also its own
output from one or more previous timesteps. Since the neuron’s output depends on its
state in previous timesteps it retains a memory. The weight of the connection of the
recurrent input becomes another network parameter to be adjusted during training.
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RNNs are trained similarly to feedforward ANNs, however, because of the ad-
ditional time dynamic they first need to be "unrolled through time” and the training
strategy is called backpropagation through time (BPTT). The "unrolling" actually cre-
ates a deep network which may have more error back-flow difficulties with vanishing
and exploding gradients. ReLU activations can lead to even larger instability, which is
why the standard activations in an RNN are saturating functions like tanh. A popular
remedy is the usage of Long Short-Term Memory (LSTM) cells in the network. LSTMs
were proposed by Hochreiter and Schmidhuber in 1997 [22] and as the name suggests,
these cells keep track of the long term memory in a way compatible with BPTT. A
simplified version of the LSTM cells are the Gated Recurrent Units (GRU) proposed
by Cho et al. in 2014 [23].

As noted by Baksi et al. [21], LSTMs perform better than CNNs for crypto-
graphic distinguishers, but worse than fine-tuned MLP. The main drawback of LSTMs
seems the training speed.

2.2. Complexity of training neural networks

The complexity of training a neural network is determined by (see e.g. [24]): i) the
expressiveness of the neural network, i.e. which prediction rules can be theoretically
learned by a given network architecture, ii) the sample or data complexity, i.e., how
many examples of a certain class are required and iii) the training time or complexity,
i.e., the computation time required to learn a certain class.
To generally quantify the expressive power of a classifier the Vapnik-Chervonenkis
(VC) dimension [25] may be used. However, the problem of successfully training a
network with sufficient expressive power can still be NP-hard [24], resulting in practi-
cally unmanageable training times. Attempts to alleviate the training difficulty include
to allow for improper training, where the found solution is not the optimal one and to
over-specify the network, i.e. making the network larger than needed [24].

The question of the needed data complexity is an active field of research. It
is not easy to exactly determine how many samples of a given class will be needed to
learn it with a certain accuracy. For example Wang et al. [26] demonstrated the concept
of dataset distillation in 2020: Instead of training a neural network on 60,000 MNIST
images of handwritten digits, they "distilled" the whole dataset into just 10 distilled
images, only one single image per class. In another work from 2020 [27] ‘Less Than
One’-shot learning is proposed, i.e., a method in which N classes are learned by the
usage of M < N examples.

Assuming the expressive power of the neural network is large enough and train-
ing data of sufficient size and quality is available, the training complexity is closely
related to the number of trainable parameters of the neural network and the number
of multiply-accumulate operations needed to pass an input through the network, see
e.g. [28]. The training time needed to perform these operations will depend on the
hardware configuration (e.g. GPU vs CPU) and on the possibility of parallelization for
the network architecture.
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3. Neural black-box cryptanalysis

By black-box neural cryptanalysis (or direct attacks with no prior information), we
mean attacks that can be performed to any cipher, regardless of the cipher structure,
except the input/output/key size. The aims of these attacks mainly are

• Cipher identification: distinguishing the output of the cipher from the output of
another cipher, or distinguishing the output of the cipher from a random string;

• Cipher simulation: simulating the behaviour of a cipher;

• Key recovery: finding the key of the cipher.

Of course, an attacker able to perform key recovery can also perform cipher simula-
tion, and being able to perform cipher simulation implies being able to perform cipher
identification.

Usually, these kind of attacks are performed in the known plaintext scenario,
so the attacker is given access to an oracle that can provide plaintext-ciphertext pairs
encrypted under a certain key only known by the oracle. Furthermore, the attack is
repeated for several keys, and in the case of key recovery, a new key (different from the
ones used in the training) needs to be predicted.

Cipher identification (full ciphers)
Neural networks can be used to distinguish the output of a cipher from random bit
strings or from the output of another cipher, by training the network with pair of plain-
text, ciphertext, obtained from a single key (single known-key distinguisher [29] or
from multiple keys (single secret-key distinguisher). Variations of this attack might
exist in the related key scenario, but we are not aware of any work in this direction
related to neural networks.

A direct application of ML to distinguishing the output produced by modern
ciphers operating in a reasonably secure mode such as CBC was explored in [30]. The
ML distinguisher did not have prior information on the cipher structure, and the authors
conclude that their method was not successful in the task of extracting useful informa-
tion from the ciphertexts when CBC mode was used and not even distinguish them
from random data. Better results were obtained in ECB mode, as one may easily ex-
pect, due to the lack of semantic security (non-randomization) of the mode. The main
tools used in the experiment are Linear Classifiers and Support Vector Machine with
Gaussian Kernel. To solve the problem of cipher identification, the authors focused
on the bag-of-words model of feature and the common classification framework previ-
ously used in [31,32], where the features of the input examples are mostly related to the
varying length words. In [30], the features that are considered are the entropy, the num-
ber of symbols appearing in the ciphertext, 16-bit histograms with 65536 dimensions,
the varying length words proposed in [31].

Similar experiments to the one of [30] have also been presented, essentially,
with similar results. For example, in [33], the authors consider 8 different plaintext
languages, 6 block ciphers (DES, Blowfish, ARC4, Rijndael, Serpent and Twofish) in
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ECB and CBC mode and a "CBC"-like variation of RSA, and perform the identifi-
cation on a more performing machine (40 computational nodes, each with a 16-core
Opteron 6276 CPU, a NVIDIA Tesla K20 GPU and 32GB of central memory) com-
pared to [30], by means of different classical machine learning classifiers: C4.5, PART,
FT, Complement Naive Bayes, Multilayer Perceptron and WiSARD. The NIST test
suite was applied to the ciphertexts to guarantee the quality of the encryption. The
authors conclude that the influence of the idiom in which plain texts were written is
not relevant to identify different encryption. Also, the proposed procedures obtained
full identification for almost all of the selected cryptographic algorithms in ECB mode.
The most surprising result reported by the author is the identification of algorithms in
CBC mode, which showed lower rates than the ECB case, but, according to the au-
thors, "not insignificant", because "greater than the probabilistic bid". Moreover, the
authors pointed out that rates increased monotonically, and thus can be increased by
intensive computation. The most efficient classifier was Complement Naive Bayes, not
only with regard to successful identification, but also in time consumption.

Another recent work is the master thesis of Lagerhjelm [4], in 2018. In this
work, long short-term memory networks are used to (unsuccessfully) decrypt encrypted
text, and convolutional neural network to perform classification tasks on encrypted
MNIST images, again with success when distinguishing the ECB mode, and with no
success in the CBC case.

Cipher simulation (reduced/small/full ciphers)
Neural networks can be used to simulate the behaviour of a cipher, by training the
network with pairs of plaintext and ciphertext generated from the same key. Without
knowing the secret key, one could either aim at predicting the ciphertext given a plain-
text (encryption simulation), as done, for example, by Xiao et al. in [34], or to predict
a plaintext given a ciphertext (decryption simulation), as done, for example, by Alani
in [35, 36].

In 2012, Alani [35, 36] implemented a known-plaintext attack based on neural
networks, by training a neural network to retrieve plaintext from ciphertext without
retrieving the key used in encryption, or, in other words, finding a functionally equiv-
alent decryption function. The author claimed to be able to use an average of 211
plaintext-ciphertext pairs to perform cryptanalysis of DES in an average duration of
51 minutes, and an average of only 212 plaintext-ciphertext pairs for Triple-DES in an
average duration of 72 minutes. These results, though, could not be reproduced by, for
example, Xiao et al. [34], and no source code was provided to reproduce the attack.
The adopted network layouts were 4 or 5 layers perceptrons, with different configura-
tions. The average size of data sets used was about 220 plaintext-ciphertext pairs. The
training algorithm was the scaled conjugate-gradient. The experiment, implemented
in MATLAB, was run on single computer with AMD Athlon X2 processor with 1.9
Gigahertz clock frequency and 4 Gigabytes of memory.

In 2019, Xiao et al. [34] try to determine the output of a cipher treating it as a
black box using an unknown key. Their method was based on training a neural network.
The error function chosen to correct the weights during the training was mean-squared
error. Weights were initialized randomly. The maximum numbers of training cycles
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(epochs) was set to 104. Then, the measure of the strength of a cipher was given by
three metrics: cipher match rate, training data, and time complexity.

They performed their experiment on reduced-round DES and Hitaj2 [37], a
48-bit key and 48-bit state stream cipher, developed and introduced in late 90’s by
Philips Semiconductors (currently NXP), primarily used in Radio Frequency Identifi-
cation (RFID) applications, such as car immobilizers.

Note that Hitaj2 has been attacked several times with algebraic attacks using
SAT solvers (e.g. [38, 39]) or by exhaustive search (e.g. [40, 41]).

Xiao et al. tested three different networks: a deep and thin fully connected
network (MLP with 4 layers of 128 neurons each), a shallow and fat network (MLP
with 1 layer of 1000 neurons), and a cascade network (4 layers with 128, 256, 256, 128
neurons). All three networks end with a softmax binary classifier. Their experiments
showed that the most powerful attack based on neural networks varies from cipher to
cipher. While a fat and shallow shaped fully connected network is the best to attack the
round-reduced DES (up to 2 rounds), a deep-and thin shaped fully connected network
works best on Hitag2.

Three common activation functions, sigmoid, tanh and rectified linear unit
(ReLU), were tested, only for the shallow-fat network. The authors concluded that
the sigmoid function allows a faster training, though all functions eventually reach the
same accuracy.

Training and testing were performed on a personal laptop (no details provided),
so the network used cannot be too large. The training has been performed with up to
230 samples.

In 2022 Bellini, et al. [42] showed some insights on why, in general, black-box
cipher simulation via neural networks gives little hope of success on modern symmetric
ciphers. The main idea is to represent a block cipher using a set of boolean functions,
and then prove that learning boolean functions is hard for neural networks. This was
supported both by practical experiments on random boolean functions and theoretical
calculations to estimate the resources needed to emulate round-reduced versions of
AES, a task that has never been done successfully due to its complexity.

The authors also provided a review of the work of Xiao et al. [34], using their
framework. Results on both DES and Hitag2 were confirmed to be plausible. On
the other hand, results in [35, 36], were considered unlikely to be reproducible by the
authors, confirming Xiao et al.’s thesis.

Key recovery attacks (simplified ciphers)
Neural networks can be used to predict the key of a cipher, by training the network with
triples of plaintext, ciphertext and key (different from the one that needs to be found).

In 2014, Danziger and Henriques [43] successfully mapped the input/output be-
haviour of the Simplified Data Encryption Standard (S-DES) [44], a simplified version
of DES with 10 bit keys and 8 bit messages, with the use of Single Hidden Layer Per-
ceptron (MLP) neural network. They also showed that the effectiveness of the MLP
network depends on the nonlinearity of the internal s-boxes of S-DES. Indeed, the main
goal of the authors was to understand the relation between the differential cryptanaly-
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sis results and the ones obtained with the neural network. In their experiment, given
the plaintext P and ciphertext C, the output layer of the neural network is used to pre-
dict the key K. Thus, for the training of the weights and biases in the neural network,
training data of the form (P,C,K) are needed. After training has finished, the neural
network was expected to predict a new value of K (not appearing in the training phase)
given a new (P,C) pair as input.

Prior works on S-DES include [45, 46], where Alallayah et al. proposed the
use of Levenberg-Marquardt algorithm rather than the Gradient Descent to speed up
the training. Beside key recovery, they also used a single layer perceptron network to
emulate the behaviour of S-DES, modelling the network with the plaintext as input,
and the ciphertext as output. Their results were positive due to the small size of the
cipher, and a thorough analysis of the techniques used is lacking.

In 2020, So [47] proposed the use of 3 to 7 Layer Perceptron Neural Networks
to perform a known plaintext key recovery attack on S-DES (8 bit block, 10 bit key,
2 rounds), Simon32/64 (32 bit block, 64 bit key, 32 rounds), and Speck32/64 (32 bit
block, 64 bit key, 22 rounds). Besides considering random keys, So additionally re-
stricted keys to be made of ASCII characters. In this second case, the NN was able to
recover keys for all the non-reduced ciphers. It is important to notice that the largest
cipher analyzed by So has a key space of 264 keys, which is reduced to 248 = 648 keys
when only ASCII keys are considered. The number of hidden layers adopted in this
work ranges between 3,5,7, while the number of neurons per layer ranges between 128,
256, 512. In the training phase, So used 5000 epochs and the Adam adaptive moment
algorithm for the learning rate optimization of the NN. The training and testing were
run on GPU-based server with Nvidia GeForce RTX 2080 Ti and its CPU was Intel
Core i9-9900K.

Key-schedule inversion
As for the simulation of cipher decryption described in section 3, one might try to invert
the behavior of the key schedule routine, as done for example by Pareek et al. [48], in
2020. In their work, they considered the key schedule of PRESENT and tried to retrieve
the 80-bit key from the last 64-bit round key, using a MLP network with 3 hidden layers
of 32, 16, and 8 neurons. Unfortunately, the authors concluded that, using this type of
network, the accuracy of predicting the key bits, were not significantly deviating from
0.5.

4. Neuro-aided cryptanalysis

By neuro-aided cryptanalysis we refer to methods that improve conventional crypt-
analysis techniques by means of neural networks. In the recent and existing literature
covering this case, neural networks are used only to provide more effective and efficient
distinguishers, that can be used later to perform key recovery attacks using conventional
techniques.

Works in this direction focus on extending the commonly used model of differ-
ential distinguisher by using ML techniques. In the case of differential distinguisher,
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the attacker Eve XORs a chosen input difference δ to the input of the state of the (re-
duced round) cipher and watches for a particular output difference ∆, with randomly
chosen inputs. If the (δ,∆) pair occurs with a probability significantly higher for the
(reduced round) cipher than what it should be for a random case, the (reduced round)
cipher can be distinguished from the random case. In conventional cryptanalysis, this
probability distribution of δ 7→ ∆ is modeled by the differential branch number [49] or
by automated tools like Mixed Integer Linear Programming (MILP) [50]. The mod-
eling for differential distinguisher can be extended by incorporating machine learning
algorithms.

In 2019, the work by Gohr [51] was the first that compared cryptanalysis per-
formed by a deep neural network to solving the same problems with strong, well-
understood conventional cryptanalytic tools. It was also the first paper to combine
neural networks with strong conventional cryptanalysis techniques and the first paper
to show a neural network based attack on a symmetric cryptographic primitive, improv-
ing upon the published state of the art. All this is applied to Speck32/64, a lightweight
cipher designed by the NSA, with a 32 bit block input and a 64 bit key. Other similar
works appeared following Gohr’s approach.

In order to transform the differential distinguisher to a classification problem,
Baksi et al. [21] proposed two models. In the first model, the attacker chooses t input
differences. In the training (offline) phase, the attacker tries to learn whether there is
any pattern in the cipher outputs that the machine learning tool is capable of finding. To
test that, Eve creates t differentials with those input differences and feeds all the data
to the machine learning. If the accuracy of ML training is higher than what it should
be for random data (i.e., 1/t), the attacker is able to extract pattern from the cipher
outputs and proceeds to the online phase. Otherwise (if the training accuracy is 1/t),
the process is aborted. While the first model can work with an arbitrary number, t ≥ 2,
of input differences, in the second model the authors propose a different model that can
work with only one input difference.

Baksi et al. applied the first model to round-reduced Gimli-Hash and Gimli-
Cipher (8 round distinguisher), Ascon 320-bit permutation (3 round distinguisher), and
Knot-256 (10 round distinguisher) and Knot-512 (12 round distinguisher). They also
showed the effectiveness of the second model over the lightweight MAC Chaskey.
In general, they were able to reduce the online data complexity of the conventional
distinguisher, up to the cube root in the case of Gimli (from 2−52 to 2−14.3), at the
cost of processing offline data for the training phase (2−17.6). The authors also investi-
gated effects of choosing different neural network architectures with respect to 8-round
GIMLI-PERMUTATION as the target cipher, concluding that MLP networks are the
most performing, followed by LSTM. On the other hand CNN seems not suited for the
task of building a crytpographic distinguisher. The tested networks, use from 3 to 6
layers, and up to 1024 neurons per layer, for a total number of paramenters that ranges
from 90,818 to 2,249,858. They used ReLU and LeakyRELU for MLP and CNN, and
tanh and sigmoid for LSTM.

Jain et al. [52] adopted the same approach of Baksi et al. to analyze 3-6 round
reduced PRESENT lightweight block cipher. They used 2 MLP networks with three
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hidden layers of 128, 1024, and 1024 neurons (the most successful configuration in
Baksi), and two 2-hidden layer MLP networks, which seemed to produce the same
results in less time and better chances of avoiding data over-fitting. They used batch
size of 200, 25 epochs, samples of 10000, Adam optimizer, MSE loss function, and
learning rate of 0.001. The authors also showed, as one might expect, that randomly
generated input differences generate a worse distinguisher than using differences found
by means of conventional cryptanalysis.

Again, following Gohr and Baksi et al., Yadav and Kumar [53] obtained a multi-
layer perceptron distinguisher for 12 rounds SIMON, 9 rounds SPECK, and 8 rounds
GIFT. In their work they also propose to extend a classical distinguisher with a neural
one. They used two hidden layers having 1024 neurons each.

Still on the line of Gohr’s idea, Bellini and Rossi [54] made a framework to
compare the performance of blackbox and differential conventional distinguishers,
and neuro-aided distinguisher exploiting the knowledge of differential trails found by
means of conventional cryptanalysis. They used TEA and RAIDEN ciphers as a case
study, and showed the superiority of the neural distinguisher. In their experiment, they
use a MLP and CNN of 3 to 5 hidden layers, with only 32 and 64 neurons. All previous
deep learning works focus on xor-differential cryptanalysis, while in [54] the authors
analyze two ciphers based on additive-differential cryptanalysis. One peculiarity of
their approach is the use of an MLP that is divided in two parts, a "time distributed"
network and a fully connected MLP. The idea of splitting the network in two parts
comes from the fact that in both ciphers (Feistel structure) the output is calculated sep-
arately as two different words (although not independently), so they want the network
to see these words alone. The expected effects for the network is to emphasize the key
features of each word independently from the others. They also tried to use only the
fully connected part of the network (without the time distributed one) getting worse
results on the accuracy metric.

In [55] the authors proposed an improvement of Gohr’s work called Neural
Aided Statistical Attack (NASA). The main difference with Gohr’s work is the lack of
dependency from the quantity of neutral bits in a cipher, allowing them to attack more
ciphers. This improvement was obtained via statistical techniques on the processed
data, while the neural network part is basically the same as Gohr’s. Their main results
were an attack on a 10-round recuced version of DES, and a 13-round reduced version
of SPECK32/64. Their results are further improved in [56].

At EUROCRYPT’21, Benamira et al. [57] analyzed Gohr’s work to try to give
an explanation of why the new distinguisher is outperforming classical cryptanalysis.
They found out that Gohr’s distinguisher relies not only on the distribution of differ-
ences in the ciphertext pairs, but also on their distribution in the two previous rounds.
Moreover, they analyzed Gohr’s network architecture and found out that it is possible
to reach the same accuracy with a simpler model, simplifying the prediction head (the
final MLP block in Gohr’s network) and the first convolutional layer. Another work in
this direction has been done by Chen et al. [58], introducing the Extended Differential-
Linear Connectivity Table, a tool from which they claim to be able to extract features
that are learnable by neural distinguishers, and so to be able to explain better how are
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they learning. However, at the moment of writing this survey, the work from Chen et
al. is still a preprint, so no peer-review of their methods has been given.

At ASIACRYPT’22, Bao et al. [59] extended again Gohr’s work, studying the
key-recovery strategies associated with neural network. Moreover, as already did in
[57], they study the dependence from the differences in previous rounds to exploit new
input formats for the neural network. They also introduce a new network architecture,
based on Squeeze-and-Excitation networks (SENet) [60], and show that it outperforms
Gohr’s residual network.

Hou et al. [61] used SAT solvers to enhance the performances of neural distin-
guishers and extend their use to larger-state block ciphers. Using a technique similar
to Bao’s and Gohr’s they perform key-recovery on 13-round SIMON32/64, 14-round
SIMON48/96 and 13-round SIMON64/128.

Zhang et al. [62] proposed an improvement of Gohr’s pipeline by training the
distinguisher for more rounds. Their strategy is based on using multiple parallel convo-
lutional layers with different kernel sizes in the convolutional block, and then give the
output to the residual part of Gohr’s network, taking big inspiration from GoogLeNet
[63]. They obtain a 9-round differential-neural distinguisher for SPECK32/64 and a
12-rounds one for SIMON32/64. Moreover, they reach a key-recovery attack on 17-
rounds SIMON32/64 for the first time. In a subsequent work [64], a subset of the
authors extend these results to DES, Chaskey and PRESENT, altough not being able to
mount a complete key recovery attack.

Bellini et al. [65] created a framework to automatically perform neural crypt-
analysis of ciphers, independently of their size. The framework is composed by two
main parts: as a first component, an evolutionary algorithm for the search of input dif-
ferences that are good for Gohr’s-like neural distinguisher; this algorithm enables the
search for larger ciphers than the original Gohr’s optimizer, fixing its scaling issues.
The second component is a neural distinguisher architecture called DBitNet, that is
independent from the structure of the cipher. This architecture is based on dilated con-
volutions [66], to tackle the problem of investigating both near and long-range depen-
dencies between the network inputs. The authors obtain improvements on the state-
of-the-art neural distinguishers for SPECK64, SPECK128, SIMON64, SIMON128,
GIMLI-PERMUTATION and analyze for the first time in the neural cryptanalysis set-
tings the ciphers HIGHT, LEA, TEA, XTEA and PRESENT.

In 2022 Chen et al. [67] proposed a multi-stage key-recovery framework to
perform the key-recovery task on large state block ciphers. The authors claim to be
able to combine classical distinguishers with neural ones and a Gohr-like key-recovery
attack to obrain the key for 19-rounds SPECK128 and 13-rounds SPECK64. However,
the complexity of their attacks is too high to be executed and tested, so these attacks
remain theoretical.
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5. Conclusions

In this work, we gave a short overview of the literature regarding the application of
machine learning techniques to modern symmetric ciphers. We found out that most of
the applications in the black-box settings are not suitable to attack real world modern
symmetric ciphers, while some of the recent works on neuro-aided cryptanalysis seem
to be promising on round-reduced versions of them.
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