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THE LAPLACE RESONANCE: BETWEEN THEORY AND
SPACE MISSIONS

Abstract. The Galilean satellites of Jupiter - Io, Europa, and Ganymede - are observed to
move in a dynamical configuration known as the “Laplace resonance”. It means that the pairs
of satellites Io-Europa and Europa-Ganymede are characterized by a 2:1 ratio between their
mean longitudes through a relation involving also the arguments of perijoves. Another dy-
namical configuration is known as the “de Sitter resonance” in which a certain combination
of mean longitudes and arguments of perijoves librates, while it rotates in the Laplace reso-
nance. In view of the space mission JUICE, which will be launched in 2022 towards Jupiter
and three of its largest moons, we investigate the dynamics of both resonances using a suit-
able normal form that allows to describe the resonant Laplace and de Sitter configurations.
We review a series of papers in collaboration with F. Paita and G. Pucacco ([8], [30], [9]),
where we study the evolution of the Laplace librating argument and, among other results, we
provide an estimate on its amplitude and frequency.

A. Introduction

The Laplace resonance is one of the most intriguing subjects of Celestial Mechanics
and a continuous source of inspiration for theoretical studies. It represents a commen-
surability between the mean motions of the Galilean satellites of Jupiter: Io, Europa,
Ganymede, Callisto. It was discovered by P.-S. Laplace at the end of the XVIII century,
when he proved a theorem ([19]) that shows that on average (i.e., after averaging over
fast angles) the following relation holds:

(1) n1 −3n2 +2n3 = 0 ,

where n1, n2, n3 denote, respectively, the mean motions of Io, Europa, Ganymede. The
relation (1) is an important result with several consequences. In fact, if we denote by
λ j, j = 1,2,3, the mean longitudes and by ω̃ j the arguments of perijoves of Io, Europa,
Ganymede, then one has

λ1 −2λ2 + ω̃1 = 0
λ1 −2λ2 + ω̃2 = π
λ2 −2λ3 + ω̃2 = 0 .

As a consequence of the previous relations, the Laplace angle ΦL ≡ λ1 − 3λ2 + 2λ3
librates around π.

A further consequence is that from the relation

(2) λ1 −3λ2 +2λ3 = π ,

one finds that the three satellites can never be in triple conjunction. A graphical repre-
sentation of this statement is given in Figure 1.
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Figure 1: The four panels - from left to right - show the geometry of the Laplace
resonance with the satellites denoted by the letters I, E, G, and Jupiter at the center.

In fact, if Europa and Ganymede are in conjunction, then λ2 = λ3 (mod. 2π)
and hence from (2) it follows that λ1 −λ2 = π (mod. 2π), namely Io lies on the same
line, but opposite to Europa and Ganymede as in the first panel of Figure 1.

On the other hand, if Io and Europa are in conjunction, then λ1 = λ2 (mod.
2π), so that from (2) it is λ2 − λ3 = π

2 (mod. π), which means that Ganymede is in
quadrature with the other two satellites (on the left or on the right), as shown in the
second and third panels of Figure 1.

Finally, if Io and Ganymede are in conjunction, then λ1 = λ3 (mod. 2π), which
implies λ1 −λ2 = π

3 (mod. 2
3 π) due to (2); as a consequence, Europa is in opposition

with respect to Io and Ganymede, as shown in the last panel of Figure 1.
The impressive regularity of the mutual configurations of the three inner satel-

lites of Jupiter puzzled astronomers and mathematicians since several years; we will
give in Section B a historical review of the study of the Laplace resonance. Although
theoretical studies and space missions have disclosed many features of such resonance,
several questions are still open and deserve a careful investigation. Among the others:
can we evaluate with enough precision the amplitude of libration of the resonance?
Do we understand the evolutionary mechanism that led the satellites to their present
state? Which are the main physical effects that are responsible for the stability of the
resonance? Is the Laplace resonance a common state in which we can possibly find
extra-solar planets and satellites?

In the next sections we will try to give partial answers to such questions, al-
though we will see that the study of the Laplace resonance presents mathematical dif-
ficulties that need further elaborated studies. However, we will give some results that
contribute to the understanding of the resonance, with a special attention to the space
mission JUICE (JUpiter ICy moon Explorer), that the European Space Agency (ESA)
scheduled for launch in September 2022 with an expected duration of 11 years.

The content of this work, which summarizes the results found in the papers [8],
[30] and [9], is the following. In Section B we give a historical overview of the main
results about the Laplace resonance; in Section C we give a Cartesian and Hamiltonian
formulation for its treatment; a resonance related to the Laplace one, whose discovery
is due to W. de Sitter, is briefly presented in Section D; a discussion of the applicability
of KAM theory to Laplace and de Sitter resonances is shown in Section E; the Laplace
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Io Europa Ganymede Callisto
mass (kg) 8.932 ·1022 4.800 ·1022 1.482 ·1023 1.076 ·1023

radius (km) 1821.5 1560.8 2631.2 2410.3
semima jor axis (km) 4.218 ·105 6.711 ·105 1.070 ·106 1.883 ·106

eccentricity 0.004 0.009 0.001 0.007
inclination (degrees) 0.04 0.47 0.18 0.19

Table 4.1: Physical and orbital elements of the Galilean satellites
(https://nssdc.gsfc.nasa.gov/planetary/factsheet/joviansatfact.html)

resonance in a dissipative context - with the dissipation due to tidal interaction - is
discussed in Section F.

B. A historical remark: from Galileo to JUICE

In 1610 Galileo Galilei announces in his work titled “Sidereus Nuncius” the discovery
of four satellites around Jupiter. They were named Io, Europa, Ganymede and Callisto;
their importance resides on the fact that they were the first objects observed to orbit
around another planet and forming a Solar system in miniature. Later on, Johannes
Kepler made his own observations and confirmed the discovery in 1611.

The main physical and orbital parameters of the satellites are reported in Ta-
ble 4.1, which shows that the four satellites are on almost circular and planar orbits.

It is remarkable that in 1676 the Danish astronomer O. Rømer gave an estimate
of the speed of light by timing the eclipses of the satellite Io. His estimate of the light
speed was of about 200 000 km/sec, while the true value amounts to about 299 792
km/sec. The eclipses of the Galilean satellites were extensively used in the XVI and
XVII centuries in a different context: the determination of the longitude. Indeed, the
method for computing the longitude is (again) due to Galileo; the occurrence and times
of the eclipses can be computed theoretically and compared with observations at a local
place, so to obtain the local time and hence to compute the longitude.

A big progress in the theoretical investigation of the dynamics of the satellites
was obtained through a monumental work by J.-L. Lagrange on the theory of Jupiter’s
satellites, which was awarded a prize in 1766 by the Paris Academy of Sciences.

At the end of the XVIII century, P.S. Laplace discovered the resonance which
bears his name, showing that the first three satellites are never in conjunction, namely
on collinear positions and at the same side. The 1:2:4 Laplace resonance is implied by
the fact that the periods of Io, Europa, Ganymede, say T1, T2, T3, satisfy the relations

T2 = 2T1 , T3 = 2T2 .
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Also F. Tisserand contributed to the study of the Galilean satellites through an out-
standing work published in 1855, titled “Traité de Mécanique Céleste” ([34]), where in
the fourth volume he investigates the theory of the satellites of Jupiter and Saturn.

Another step forward was made by R.A. Sampson ([32]) who published in 1921
an analytical theory of the Galilean satellites to predict their ephemerides. Sampson
theory was later revisited by J.H. Lieske ([21], [22]), also by using an algebraic manip-
ulator.

Meanwhile, a remarkable discovery was made by W. de Sitter in 1925, who
proved the existence of a family of resonant, linearly stable periodic orbits, different
from the Laplace resonance. The dynamical configuration and its link with the Laplace
resonance will be presented in detail in Section D. It is worth mentioning the PhD
thesis at Yale University in 1966 by B. Marsden ([24]), who used von Zeipel method
to average the short-period terms of the Hamiltonian describing the Laplace resonance
to compute long-period effects.

A remarkable contribution was given by S. Ferraz-Mello ([11]) who gave a com-
prehensive study of the classical results, with special reference to [34], and provided
a complete first-order solution by solving integro-differential equations for the oscilla-
tions in longitude and latitude.

Estimates of the amplitude of libration of the resonance were computed by J.
Henrard in [15], using an appropriate set of variables and a Hamiltonian normal form,
and by Lieske in [21] (see also [22]), using the ephemerides of the Galilean satellites;
this latter computation gives a result of 0.066o with a period of 2 071 days. The li-
bration amplitude was confirmed by Musotto et al in [29], using long-term numerical
simulations. We also mention [18], where accurate ephemerides over centuries have
been computed, based on a numerical integration of quite elaborated equations of mo-
tion.

The studies we have described up to now mainly rely on a setting where only
conservative forces have been considered. However, dissipative forces may play a role
in the evolutionary history; in this context we mention the works by Yoder ([36]),
Yoder and Peale ([37]), Malhotra ([23]), which present an analytical theory for the
tidal origin of the Laplace resonance (see also Section F). More recently, the stability
of the de Sitter resonance has been investigated by Broer, Hanssmann, Zhao ([4], [3]),
using Kolmogorov-Arnold-Moser (KAM) theory. This study is non trivial and requires
a deep analytical investigation; we will mention some results in Section E.

We conclude this section by mentioning that the Galilean satellites Europa,
Ganymede, Callisto will be the target of the ESA space mission JUICE with nomi-
nal launch date in September 2022. The goal of the mission will be to investigate the
conditions that led to the emergence of habitable worlds around Jupiter. The Laplace
resonance may play a relevant role, since it can contribute to redistribute the energy
between the satellites and Jupiter, thus provoking a tidal dissipation on Io that triggers
a volcanic activity on the satellite ([36], see also [2], [23], [37]).
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C. Cartesian and Hamiltonian formulation

In this Section we introduce the equations of motion using Cartesian formalism (Sec-
tion C.1) and a Hamiltonian approach (Section C.2). The model will include the attrac-
tion of Jupiter with the effects due to its non-spherical shape, the mutual gravitational
interactions of the satellites, the influences of Callisto and the Sun.

C.1. Cartesian equations of motion

We consider the three satellites of Jupiter, Io, Europa, Ganymede, labeled as S1, S2,
S3, with masses m1, m2, m3; the satellites move around Jupiter whose mass is denoted
by m0. We assume that the satellites are point-masses, while Jupiter is considered to
have a non-spherical shape and, hence, it generates an oblateness potential on the i-th
satellite that we approximate within its spherical harmonic coefficient J2, i.e.

Ui0 =
R2

r3
i

J2 P2(sinϕi) ,

where ri = |ri|, R denotes Jupiter’s mean radius, P2 is the second order Legendre poly-
nomial and (ri,ϕi,λi), i = 1,2,3, represent the equatorial Jovicentric spherical coordi-
nates of the satellites; in particular, ϕi and λi denote the latitude and longitude of each
satellite, whose position is given by the vector ri, i = 1,2,3. With this notation and
denoting by G the gravitational constant, the Cartesian equations of motion read as

r̈i = −G(m0 +mi)
r3

i
ri +

4

∑
j=1, j ̸=i

Gm j

(
r j − ri

r3
i j

−
r j

r3
j

)

+ G(m0 +mi)∇iUi0 +
4

∑
j=1, j ̸=i

Gm j∇ jUj0 ,(3)

where ri j = |r j − ri|. Such equations are supplemented by the energy preservation
E =constant along the motion (see [30]), where

E =
4

∑
i=1

mi|ṙi|2
2

− 1
2M

(
4

∑
i=1

miṙi

)2

+
4

∑
i=1

Gmim0

(
1
ri

+Ui0

)
+

3

∑
i=1

4

∑
j=i+1

Gm jmi

ri j
,(4)

where M denotes the total mass of the system.
A remarkable result obtained in [30] is the comparison between the numerical

integration of equations (3) under the energy preservation (4) with the results obtained
from the ephemerides taken at the epoch J2000 from the NASA Spice toolkit. Both the
ephemerides and the integration of the Cartesian equations of motion give a libration
in longitude of about 0.8o. The power spectrum of the Laplace angle ΦL versus time



68 A. Celletti

shows several frequencies, beside that at about 2 000 days. To remove such frequen-
cies, a low-pass filter (e.g., at 1 000 days) can be implemented, yielding a maximum
amplitude for the libration of the Laplace angle of less than 0.02o (compare with [30],
[29], [21]). A numerical integration of the Cartesian equations of motion without taking
into account the J2 effect shows a libration of the Laplace angle of about 65o (compare
with [30]), thus highlighting the importance of the oblateness of Jupiter in shaping the
Laplace resonance.

C.2. Hamiltonian formulation

The description of the equations of motion using a Hamiltonian approach can be con-
veniently used to explore the Laplace resonance as well as the de Sitter resonance,
and their generalizations. The first task is to introduce the so-called Jacobi coordi-
nates ([23]), which are defined as follows. Let r̃i, i = 1,2,3, be the position vectors
of the satellites in an inertial reference frame with fixed origin O and let r̃i j = r̃ j − r̃i
be the mutual distances. Let κi = mi/Mi with M1 = m0 + m1, M2 = m0 + m1 + m2,
M3 = m0 +m1 +m2 +m3; then, the Jacobi coordinates ρ

i
, i = 1,2,3, are defined by

ρ
1

= r̃1,

ρ
2

= r̃2 −κ1ρ
1
,

ρ
3

= r̃3 −κ1ρ
1
−κ2ρ

2
.

Introducing the quantities

µ1 =
m0m1

M1
, µ2 =

M1m2

M2
, µ3 =

M2m3

M3
,

the Keplerian part of the Hamiltonian, providing the interaction of each satellite with
Jupiter, is given by

HKep = −GM1µ1

2a1
− GM2µ2

2a2
− GM3µ3

2a3
,

where ai denotes the semimajor axis of each satellite. The Hamiltonian function pro-
viding the mutual satellite’s interactions is given by

Hint = − Gm1m2

|ρ
2
− (1−κ1)ρ1

| −
Gm2m3

|ρ
3
− (1−κ2)ρ2

| −
Gm1m3

|ρ
3
− (1−κ1)ρ1

+κ2ρ
2
|

− GM1m2

( m0/M1

|ρ
2
+κ1ρ

1
| −

1
ρ2

)
−GM2m3

( m0/M2

|ρ
3
+κ1ρ

1
+κ2ρ

2
| −

1
ρ3

)
,

where ρi = |ρ
i
|. To study the resonance, it is important to expand Hint in terms of the

orbital elements ai, ei (ei denotes the eccentricity) and in terms of the angles λi, ω̃i,
i = 1,2,3.

Retaining only the secular and resonant terms, one obtains the following ex-
pansions of the mutual interactions H 1,2, H 2,3, H 1,3, truncated at second order in the
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eccentricities:

H 1,2 = −Gm1m2

a2

[1
2

b(0)
1/2(α1,2)+ f 1,2

1 e1 cos(2λ2 −λ1 − ω̃1)+ f 1,2
2 e2 cos(2λ2 −λ1 − ω̃2)

+ f 1,2
3 (e2

1 + e2
2)+ f 1,2

4 e1e2 cos(ω̃1 − ω̃2)+ f 1,2
5 e1e2 cos(4λ2 −2λ1 − ω̃1 − ω̃2)

+ f 1,2
6 e2

1 cos(4λ2 −2λ1 −2ω̃1)+ f 1,2
7 cos(4λ2 −2λ1 −2ω̃2)

]
,

H 2,3 = −Gm2m3

a3

[1
2

b(0)
1/2(α2,3)+ f 2,3

1 e2 cos(2λ3 −λ2 − ω̃2)+ f 2,3
2 e3 cos(2λ3 −λ2 − ω̃3)

+ f 2,3
3 (e2

2 + e2
3)+ f 2,3

4 e2e3 cos(ω̃2 − ω̃3)+ f 2,3
5 e2e3 cos(4λ3 −2λ2 − ω̃2 − ω̃3)

+ f 2,3
6 e2

2 cos(4λ3 −2λ2 −2ω̃2)+ f 2,3
7 cos(4λ3 −2λ2 −2ω̃3)

]
,

H 1,3 = −Gm1m3

a3

[1
2

b(0)
1/2(α1,3)+ f 1,3

3 (e2
1 + e2

3)+ f 1,3
4 e1e3 cos(ω̃1 − ω̃3)

]
,

where the functions f i, j
k are linear combinations of the Laplace coefficients b(n)

s and
their derivatives (see [28]).

The Hamiltonian contributions due to the oblateness of Jupiter and to the gravi-
tational effect of the Sun and Callisto can be reduced to the study of the secular Hamil-
tonian, averaged over the fast angles. Precisely, the corresponding Hamiltonians, that
we denote by Hobl , HSun, HCal , are given by the following expressions:

Hobl = −
3

∑
i=1

GMiµi

2ai
J2(

R
ai

)2 (1+
3
2

e2
i ) ,

while HSun and HCal are given by

Hτ = −
3

∑
i=1

Gmimτ

aτ

[1
2

b(0)
1
2

(
ai

aτ
)−1+

1
8

ai

aτ
b(1)

3
2

(
ai

aτ
) (e2

i + e2
τ)

]
,

where τ denotes, respectively, the Sun and Callisto.
We sum up the different terms to obtain the Hamiltonian in the planar case:

(5) H = HKep +Hint +Hobl +HSun +HCal ,

in which, as before, we retain only the secular and resonant terms.
The derivation of the Hamiltonian function can be generalized to other reso-

nances of different type in which two pairs of satellites, say S1 −S2 and S2 −S3, are in
a p : q and m : n resonance for p,q,m,n ∈ Z+, whereas the Laplace resonance corre-
sponds to 2:1 and 2:1. In [9] the resonances 3:1 and 3:1, 2:1 and 3:2, 2:1 and 3:1 have
been considered; the computation of chaos indicators (most notably the Fast Lyapunov
exponents) shows a marked regularity of the 2:1 and 2:1 resonance, despite a chaotic
behavior of the other resonances on a relatively short time scale.

We also point out that in [9] a detailed study of the dependence of the Laplace
resonance on the main parameters of the satellites (masses, eccentricities, etc.) has
been performed.
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D. From Laplace to the de Sitter resonance

As we mentioned in Section B, a different periodic configuration, in which three satel-
lites orbiting a central planet can be found, was discovered by de Sitter ([10]), who
showed the existence of a family of linearly stable periodic orbits in a 4:2:1 mean mo-
tion resonance. This solution was deeply studied in [4], [3] using KAM theory (see
Section E). The difference between Laplace and de Sitter resonances has been conve-
niently explained in [8], using the following approach (we refer to [8] for full details).

From the 6 degrees of freedom (d.o.f.) Hamiltonian (5), implementing a trans-
formation to introduce resonant angles, one obtains a 4 d.o.f. Hamiltonian, since two
angles are cyclic. Then, by implementing a resonant normal form, one obtains a 1
d.o.f. Hamiltonian, whose structure clarifies the difference between Laplace and de
Sitter resonances. The results will show that the Laplace periodic orbit is characterized
by a locking of ω̃1, ω̃2, while the angle 2λ3 −λ2 − ω̃3 rotates; on the contrary, in the
de Sitter resonance also the angle 2λ3 −λ2 − ω̃3 librates.

According to [8], we retain only the contributions due to the Keplerian part,
the mutual interactions and the oblateness, obtaining a Hamiltonian function that we
express in modified Delaunay variables defined as

Li = µi
√

GMiai , Gi ≡ Li(1−
√

1− e2
i )

and conjugated angles λi, ω̃i, i = 1,2,3. Then, we obtain a Hamiltonian of the form

H6 = H6(L1,L2,L3,G1,G2,G3,λ1,λ2,λ3, ω̃1, ω̃2, ω̃3) ,

that we further transform using the following resonant coordinates according to [15],
[23]:

q1 = 2λ2 −λ1 − ω̃1, P1 = G1,

q2 = 2λ2 −λ1 − ω̃2, P2 = G2,

q3 = 2λ3 −λ2 − ω̃3, P3 = G3,

q4 = 3λ2 −2λ3 −λ1, P4 = 1
3 (L2 −2(G1 +G2)+G3) ,

q5 = λ1 −λ3, P5 = 1
3 (3L1 +L2 +G1 +G2 +G3) ,

q6 = λ3, P6 = L1 +L2 +L3 −G1 −G2 −G3 .

For the resulting Hamiltonian, it turns out that at first order in the eccentricities, the
variables q5, q6 are cyclic, so that the associated actions P5, P6 are constants, yielding
a 4 d.o.f. Hamiltonian of the form:

H4 = H4(P1,P2,P3,P4,q1,q2,q3,q4) ,

depending parametrically on P5, P6. By solving the equations

∂H
∂Pk

(P1,P2,P3,P4,q1,q2,q3,q4)= 0,
∂H
∂qk

(P1,P2,P3,P4,q1,q2,q3,q4)= 0, k = 1, ...,4 ,
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Figure 2: The de Sitter solution corresponds to the equilibrium position in the plane
(q3,P3), while the Laplace solution corresponds to a rotational curve outside the libra-
tional region.

one obtains 16 equilibrium positions. We refer to the de Sitter solution as the only
stable equilibrium position, which corresponds to

(q1,q2,q3,q4) = (0,π,π,π) ,

while all other combinations are unstable. We notice that in the de Sitter equilibrium,
the angle q3 librates around π.

Next, we expand the Hamiltonian truncated at first order in the eccentricity
around the de Sitter equilibrium and we retain only terms up to second order in the
momenta. Applying a Lie-series transformation to eliminate the variables q1, q2, q4, we
obtain the 1-dimensional Hamiltonian (compare with [5], [31] for a similar reduction
procedure in a different context):

H1(P3,q3) = −0.00368693P3 −1.66667P2
3

− (6.04641×10−6
√

P3 −1.14398 ·10−5P3/2
3 )cosq3 .

The level curves of the Hamiltonian H1 are shown in Figure 2, which gives a straight-
forward explanation of the difference between the Laplace and the de Sitter resonance:
the de Sitter solution corresponds to the equilibrium position with q3 = π, while the
Laplace solution corresponds to one of the rotational curves outside the librational re-
gion surrounding the de Sitter resonance, compare with Figure 2.

E. Applications of KAM theory

A powerful tool to study the existence of invariant surfaces in dynamical systems is
given by KAM theory ([17], [1], [27]), which gives results on quasi-periodic motions
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in non-integrable systems and, in particular, on the persistence of invariant surfaces in
nearly-integrable Hamiltonian systems.

The theory gives the existence of rotational (or primary) and librational (or sec-
ondary) tori (compare, e.g., with [6], [7]; see also [35] for applications to exoplanets).
In nearly integrable systems, having fixed a frequency for the unperturbed system,
KAM theory ensures the persistence of an invariant surface for the perturbed system
on which the motion is quasi-periodic with the same frequency of the unperturbed sys-
tem. The KAM theorem can be applied provided the following conditions are fulfilled:

(i) the frequency must satisfy a Diophantine condition (which is necessary to
deal with the so-called small divisor problem);

(ii) a non-degeneracy condition (on coordinates and parameters) must be sat-
isfied (which is necessary to solve a suitable cohomological equation that gives a se-
quence of approximate solutions, which converge to the true quasi-periodic solution).

As for the second assumption, there are a number of non-degeneracy conditions,
due to different authors. In particular, we speak of:

- Kolmogorov’s non-degeneracy, when the determinant of the Hessian matrix
of the unperturbed Hamiltonian is non-zero, thus ensuring that the mapping from the
actions to the frequencies is a local diffeomorphism;

- Arnold’s isoenergetic non-degeneracy condition, which involves both first and
second derivatives of the unperturbed Hamiltonian and which ensures that the fre-
quency ratio is fixed and that KAM tori exist on a given energy level;

- Rüssmann non-degeneracy condition, which ensures that the span to a given
order of the frequency map coincides with Rn (where n is the number of degrees of
freedom).

It is worth mentioning that in [4], [3], a multi-scale parametrized version of
KAM theory has been implemented to show the existence of librating quasi-periodic
KAM orbits around the linearly stable family of periodic orbits. The results can be
presented as follows (we refer to [4], [3] for full details).

THEOREM 1. ([4], [3]) In the 1+3-body problem [Jupiter-Io-Europa-
Ganymede], for almost all masses among which one sufficiently dominates the oth-
ers, there exists a set of positive measure of quasi-periodic orbits librating around the
family of linearly stable de Sitter periodic orbits.

Another result of [4], [3] considers the 1+4 body problem, in which Callisto is
assumed to move on an almost circular orbit. This implies the appearance of an extra
period which, together with the de Sitter periodic orbit, gives rise to normally elliptic,
isotropic invariant 2-tori and maximal tori.

THEOREM 2. ([4], [3]) In the 1+4-body problem [Jupiter-Io-Europa-
Ganymede-Callisto], there is a large measure Cantor set of sufficiently small eccen-
tricities and masses, such that:
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- the system admits normally elliptic invariant 2-tori superposing the family of
the de Sitter periodic orbits with Callisto on an almost circular orbit with a frequency
incommensurable with the frequencies of the inner three satellites;

- the system admits Lagrangian invariant tori (obtained by excitation of elliptic
normal modes) with Io, Europa, Ganymede close to a 1:2:4 resonance, and Callisto on
an almost circular orbit with a frequency incommensurable with the frequencies of the
inner three satellites.

In the above results, the applicability condition of KAM theorem is that the map
from the parameters to the normal frequencies is a local diffeomorphism. In [4], the
authors prove that non-degeneracy is obtained by solving two quadratic equations in
the parameters given by the rescaled masses m1, m2 and the eccentricity e2.

We conclude by saying that Kolmogorov and Arnold non-degeneracy conditions
are not satisfied when using the actual astronomical values of the parameters and when
considering the Hamiltonian function (5).

The (Kolmogorov or Arnold) non-degeneracy condition is satisfied in a different
regime of values, for example taking m1 = m2 = 0.01 (in units of the mass of Jupiter)
and e = 0.1.

We believe that an appropriate study of the application of KAM theorem to the
Laplace resonance needs dedicated mathematical results for Hamiltonian systems with
high-order degeneracy, for which we refer to [14], [25], [26].

F. Tidal effects

In the previous Sections we have investigated the Laplace resonance within a conser-
vative framework. However, tidal dissipation within the satellites might be relevant for
the evolutionary history of the resonance. As marked in [36], tidal heating in the inner
satellite Io is the most likely source of energy for the volcanic activity, which has been
observed already by the Voyager 1 space mission.

Tidal dissipation affects the evolution of the orbital elements, namely semima-
jor axis and eccentricity. Assuming inelastic planetary and satellite tides, the rates
of variation of the orbital elements are given by the expansions (see [16], [12], [13],
[20]):

ȧ = 3
kJ

QJ

mS

M
(

R
a

)5na [1− (7D− 51
4

)e2]

ė = −3
2

kJ

QJ

mS

M
(

R
a

)5n (7D− 19
4

)e(6)

with
D =

QJ

QS

kS

kJ
(

RS

R
)5(

M
mS

)2 ,

where mS is the mass of the satellite, n its mean motion, kS and kJ are the second order
Love numbers of the satellite and Jupiter, QS and QJ are the tidal dissipation functions
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of the satellite and Jupiter. Equations (6) complement the equations which can be
obtained from the Hamiltonian (5). It was shown in [37] that the tidal dissipation in
Io provokes a damping of the libration amplitude. A formation scenario, due to tidal
effects, of the Laplace resonance has been studied in [23]. Finally, tidal evolution of
Laplace-like resonances has been investigated in [33], which includes seminal results
on the thermal history of Ganymede. In a future work, we plan to go into a deeper
detail of the dissipative effects on the Laplace resonance.
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