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LAMBERT’S THEOREM ON THE SPHERE

Abstract. In this note, we survey a generalization of the classical Lambert’s Theorem [3] to
the spherical and pseudospherical Kepler problems together with some background informa-
tions.

A. Introduction.

In [12], P. Serret asked and solved the inverse question of finding a central force poten-
tial on the sphere whose orbits are spherical conic sections: Up to a multiplicative mass
factor, the potential should take the form of the cotangent of the central angle between
the moving particle and the attracting center. The natural mechanical system with this
Serret potential is thus considered as a generalization of the classical Kepler problem
to the sphere. A similar generalization of the Kepler problem to the pseudosphere has
been obtained by Killing [7].

The classical and spherical/pseudospherical Kepler problems share many simi-
larities:

* The orbits are conic sections, with one focus at the attracting center (P. Serret
[12], Killing [7]);

* The energy depends only on the (geodesic) semi major axis (Killing [7], Velpry
[14]);

¢ The assertion of Bertrand theorem (c.f. [1, Lecture 3]) holds (Liebmann [11],
Higgs [5], Ikeda and Katayama[6], Kozlov and Harin [8]).

With the help of Appell’s central projection, the Kepler problem on the sphere
and the pseudosphere can be effectively deduced from the classical Kepler problem in
Euclidean space ([1, Lecture 5]). All these phenomena can be derived from the fact that
unparametrized orbits are related directly by the central projection, as part of Appell’s
theory.

Concerning time parametrization of Kepler problem in Euclidean space, Lam-
bert’s theorem states the following: For simplicity we consider the planar problem. For
two points A and A; in a plane, the passing time from A; to A, along an arc of the Ke-
plerian orbit with attracting center O and semi major axis a is a multivalued function of
the energy of the orbit and the three mutual distances ¢ = |A1Az|,r1 =|A10|,r2 = |OA3|.
Indeed, when the energy is negative, the energy / determines the semi major axis
length, which measures the size of the elliptic orbit, while ri,r;,c subsequently de-
termine (in a multi-value way) the eccentricity of the orbit. Lambert’s theorem [10]
asserts that this dependence on four variables can be effectively reduced to three: the
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energy, or equivalently the semi major axis a, the mutual distance ¢ and the sum r| +r;.
The two functions ¢ and r| 4 r, are well-defined for all triples of positive real numbers
(r1,r2,¢) and are independent of the semi major axis a. We note that this fact is also
true for parabolic and hyperbolic orbits, corresponding respectively to cases with zero
and positive Kepler energies.

THEOREM 1. The passing time along a Keplerian arc is a multivalued function
of c,ri+rp,h.

In the spherical/pseudospherical problem, the passing time is analogously a
multivalued function of the spherical energy and the three geodesic distances on the
sphere. Again, the spherical/pseudospherical energy determines the geodesic semi ma-
jor axis. An analogue of Lambert’s theorem on the sphere would thus be a similar
reduction of number of variables on which the passing time depends.

Question 1. In the spherical/pseudospherical Kepler problem, do there exist two func-
tions f, g of the three geodesic distances among the start point, the end point and the
attracting center, so that the passing time from the start point to the end point along
a Keplerian arc of the orbit can be expressed as a multivalued function only of these
two functions f, g and the geodesic semi major axis (or equivalently the energy) of the
orbit?

The answer to this question was thought to be negative, due to the fact that
Appell’s projection changes time. It was thus quite surprising when the author received
some argumentss from my collaborator A. Albouy showing in particular that the answer
to this question should be positive. This leads in the end to the following theorem of

[3]:

THEOREM 2. Lambert’s theorem generalizes to the spherical and pseudospher-
ical Kepler Problems, with mutual distances replaced by the geodesic mutual distances
on the sphere/pseudosphere.

Indeed there is also a Lambert’s theorem for the Hooke problem of isotropic
harmonic oscillators as well as their spherical/pseudospherical analogues. This is dis-
cussed in [3] and we opt not to discuss these systems in this note.

In Section B, we shall recall the definition and some properties of the spherical
Kepler problem from [1, Lecture 5]. We then analyse the passing time along Keplerian
arcs and Lambert’s Theorem in Section C. In Section D, we analyze the passing time
in the spherical problem. In Section E, we provide our findings from [3] with some
additional remarks.

By normalization, we assume throughout this note that the masses are unit.
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B. Central Projection and the Spherical Kepler Problem

In this section, we shall first define the spherical Kepler Problem. The sphere has
dimension 2 and is considered as embedded in a Euclidean space of dimension 3.
The choice of dimensions here is just for convenience and is certainly not essential.
The choice to work with a sphere of radius R instead of the unit sphere is of course
inessential. A small purpose for this is to make the link between spherical problem and
the classical Kepler problem somehow more transparent. The pseudospherical Kepler
Problem can be defined analogously by a completely parallel construction, by consid-
ering a pseudosphere as embedded in a Minkowski Space instead of a sphere embedded
in a Euclidean space, for which we shall not make detailed discussion here. Note that
both the spherical and pseudospherical Kepler problems can be discussed in an intrin-
sic way using proper charts, say gnomonic chart as given by the central projection, or
the stereographic chart projected from the antipodal point of the attracting center to
have a complete and conformal chart. In the pseudospherical case these correspond to
the Beltrami-Klein model and Poincaré’s disc models respectively.

Now we proceed with the spherical case. Let (F,(,)) be a three-dimensional
Euclidean space and

E:={qeF:<Z,g>=R}

be a plane in F for some Z € F of unit norm, and some R > 0. For a particle ¢ moving
in F, let h = (Z,q)/R be the “normalized height” of ¢g. For those ¢ € F such that
(Z,q) # 0, we consider the motion of its central projection gg = g/h in E. We have

hi—hg d .
= M2 L (W) = hi— g

dE

o dr

Figure 1: Central projection of a sphere (from [1]).

Let the motion of ¢ be given by § = y(q) +Ag, where A is a function of ¢, ¢ and
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also possibly a function of time ¢. We have then

<Z, >
v(q) "

L 0Rg) = () - =Y

1 —
ey 7
Denote by B := B(R) the sphere in F centered at the origin with radius R. From
now on, the motion of ¢ is restricted on B. We have

PROPOSITION 1. (Appell [4], see also [1]) A force field on B induces a force
field on E CF, s.t. the central projection of the moving particle g € B moves under the
induced force field on E up to a time reparametrization dt = h™=2dt.

A central field on B, with an attracting center at the contact point O = RZ of E
and B, thus naturally induces a central field on E. When the induced central field on E
is that of the Kepler problem, the corresponding force field on B defines the spherical
Kepler problem.

The unit normal vector Z of E can be extended to a constant vector field in
F normal to E for which we still denote it by Z. By projecting Z orthogonally to

h
the tangent planes of B we get a central force field Zp = Z — L on B, in which h =

zZ
<R+q>. The centers of the central force field are respectively RZ and —RZ. Any other

central force field with the same centers can be expressed as b(q)Zg, where b : B\
{RZ,—RZ} — R is a scalar function.

In order to calculate the central force field on E corresponding to bZp, let Q =
gE — RZ, and recall that T is a new time variable defined by dt = h~2dt. From Eq.(1)
with y(g) = bZg, we have

Q0 _d’qp _ ,d
dt?2  dt* 0 dr

(de) = i1~ L2 g) = iz~ ) =

B b0
R

and
R R 1
h= = 7 2’
el /RZ+] Q| \/Hn%\

2

which is equivalent to
loll = Rh™" (11?2,

In order to have

d*Q

dr?

i.e. the induced central force field defines the Kepler problem on E, we need to have

=[0I %0,

b
=017, thatis b=R(1-1*)2.

[
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By Proposition 1, the Keplerian orbits on B are spherical conics (c.f. [13]) and
the attracting center is one of their foci. Its energy takes the form

L.

in which the function U (q) (that we suppose moreover to be homogeneous to eliminate
the constant of integration) satisfies

VU(q) =v(q) =bZs.
By a direct calculation, we find

(9,2) ____h
lal? = (0.2 RVI-W>

We now write the energy E with the semi major axis a and the eccentricity e of
the projected Keplerian orbit in E:

U(q):*R

PROPOSITION 2.

1 a(l1—é*
3) E= % + (TZ)
Proof. In terms of Q, the expression of U is
B h _ 1
rRVI=RZ ol

Now we calculate ||g||>. From ¢ = hgg we get ¢ = hqg +hgg. Note also
gE = RZ + Q. We have thus ¢g = Q and (¢g, gg) = (Q, Q). From (2), we also have

(0,0) _ 0,0
R2(\/1+]|QI?/R2)} R

Therefore

lg|1* = (hqe +hdg, hqe + hdg)
= I?|lqe|* + 1* ||ge|* + 2k (qE, )

R? . . .
=i 5+ 12|l +2hh(Q, 0)
215112 h4 )\ 2
= 1Ql° - 25 (0. 0)

”2 1 dQ . ,

=h" 2” <Q7

=)’

fn 2P+ (HQIIZIIEH -

Loy c
R2
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aQ

In which C := ||Q x —|| is the norm of the angular momentum of the Keplerian orbit

in E. As by definition
1

1
E= 7”(’1“2 ERRTIPNTE]
2 ol

we have )
C
E=E+—
+ 2R?’
where we have denoted by E the energy of the projected Kepler problem in E. We thus
get Eq. (3) from the classical expressions E = 55" C*=a(l—é%). O
a
On the other hand, if we denote the geodesic major axis by RO,, where 0, is
the maximal central angle of the spherical ellipse, it is already known from Killing
(c.f. [7], [14]) that 6, is only a function of E. Let us calculate a little more to see
that this is indeed the case: By central projection, the pericenter and apocenter of the
spherical ellipse in B is projected respectively to the pericenter and apocenter of the
projected ellipses in E. The line passing through the origin of F and the point RZ is
perpendicular to E, and divides the angle 6, into two angles 6’ and 6”. The major axis
of the projected ellipse in E is divided by the focus point O = RZ into two segments
with length a(1 + ¢) and a(1 — e) respectively. As the vector RZ has length R, we have

a(l—e) a(l+e
{tan®’,tan®"} = {%’%}
Therefore
2 1 1
tan®, = tan(6' +0") = 1— ail—ez) - R( 1 a(l—eZ)) T RE
R? 2a 2R?

And thus for fixed R, the angle 0, is only a function of ‘E.

C. Lambert’s Theorem for the Kepler Problem

For two points A; and A, in E, the passing time AT from A; to A, along a Keplerian
arc of an elliptic orbit with semi major axis a can be expressed as a function of the
three mutual distances r; = |OA|], r» = |OAz|, ¢ = |A1A;| and a. In general, there are
two ellipses passing through the points A;,A; with semi major axis a. We denote by u
the eccentric anomaly of a point on an elliptic orbit, and denote by u;,u, the eccentric
anomalies of A, A, respectively. There are yet many choices for these angles and thus,
it is seen that AT is a multivalued function of r1,r,,c and a.

Nevertheless, once (u1,uz,e,a) are chosen, we deduce directly from the Kepler
equation that

Claim 1.

4) AT:/ " 43 (1= ecosu) du.
up
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Following Lagrange [9], we define two angles 0,y by the relations

¢ = arccos(ecos((u +u2)/2));
©) { V= (ug —uz)/2.

The change of coordinates from (uy,uz,e) to (0, y,e) is regular when
e#0,e# 1,u; +uy # 0(mod2m).

In general this change of coordinates is given by a two-to-one mapping, with (u;,u;,e)
and (4} = —up,ub = —uy,e) corresponding to the same value of (0,,e).
By substitution, we see that AT, as a function of (¢, y,e,a), does not depend on

3 . . 3 .
AT = a2 (up —uy —e(sinup —sinuy)) = a2 (—2y+2sinycos o).

On the other hand, the following relations have been deduced by Lagrange in [9, pp.
564-566]

(©)

ri+ry=2a(l —cosycosd)
¢ =2alsinysing|,

which allows to express Y and ¢ as multi-valued functions only of r| + r, a and c.
Following Lagrange, we may thus conclude that

THEOREM 3. (Lambert [10]) AT is a multi-valued function of ¢, ri +r» and a.

The proof presented here is just one of many proofs of Lambert’s theorem that
were found in the history. In [2], a detailed timeline of these proofs can be found,
together with yet two new proofs of this theorem.

D. Period of periodic orbits in the spherical Kepler problem

‘We shall now consider the corresponding spherical Kepler problem on B defined above.
The point O is the North pole of B. Let By, B; be two points on the north hemisphere.
Let s1,52,d be respectively the geodesic distances OB, OB; and BB, on B, and let
01 =s1/R, 02 = s2/R, 6 = d/R. Let A'T be the passing time for a particle to move
from B; to B, along a spherical Keplerian orbit in a spherical ellipse with energy E.

We shall eventually analyze A'T in E while keeping the time reparametrization
in mind. We suppose that one of the ellipses determined by O, By, B, and ‘E lies entirely
in the north hemisphere, so that it projects to an ellipse in E.

Let r = || Q|| be the distance of the projected particle gg from O. In terms of the
elliptic elements of the projected ellipse in E, we have

r=a(l —ecosu)

and
R

1
h= T 2 12 2’
\/14_% V/R2+a%(1—ecosu)
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Also, by differentiating the Kepler equation in E, we obtain

3
dt=a2(1—ecosu)du.

Thus with df = h?dt = > We obtain
R
%) 4%) 1 uy 3 1 _
) A/T:/ dt:/ zdr:/ al— gy,
1 u I+ m 145 (1 —ecosu)?

By normalization we set R = 1 from now on.

The period of the spherical elliptic motion has been calculated in [7], [8], and it
has been found to depend only on ‘E. Indeed, we may calculate the integral

/2" 3 1 —ecosu
T = az
0 1+ a%(1—ecosu)?

by decomposing the integrand as

a

3 1 —ecosu B \/5( 1 N 1 )
1+a%(1—ecosu)>2 2 ‘i+a(l—ecosu) —i+a(l—ecosu)

which allows us to integrate them out separately. We thus get

1 1
T=nva

(\/az(l—ez)—l+2ai+ \/az(l—ez)—l—Zai)

in which both complex square roots are meant to have positive real parts.
With R = 1, Eq. (3) now reads

_ 2
thus
9) a?(1—e*)—1=2aE.
From this, we have
w2, 1 1

T=

2 (\/Z+i+ \/f—i)'

By squaring this expression and taking square root, we obtain in the end

W EHVE +1
VEX+1

This gives a generalization of Kepler’s third law to the spherical Kepler problem. A
similar formula can be also obtained for the pseudospherical Kepler problem as well.

T
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E. Spherical and Pseudospherical Lambert’s Theorems

It is shown in [3] that Lambert’s theorem can be generalized to the the spherical and
pseudo-spherical Kepler problems, as has been stated in Theorem 2. This surprising
fact yet enhances the list of similarities between Kepler problem in a Euclidean space
and Kepler problem on a sphere or on a pseudo-sphere.

Referring the proof to the paper jointly written with A. Albouy [3], we shall be
content to make a few comments in this section which illustrates the proof.

The generalization of Lambert theorem to the spherical and pseudospherical
problems as in [3] is based on the idea of Lambert vectors, which are pair of tangent
vectors (84,05), based on the two end points A and B of the Keplerian arc respectively,
such that along the infinitesimal variation of the Keplerian arc as defined by the in-
finitesimal variation (84,0p) with the same energy, the Maupertuis action functional
and the passing time does not change. Thanks to the theory of Hamilton as explained
in [2], this amounts to require that the relation

(10) (84,va) = (8, vB)

holds for any pair of velocities at end points (v4,vg) along some Keplerian arc. Isome-
tries clearly gives rise to Lambert vectors for which we consider trivial. The phe-
nomenon as indicated in the statement of Lambert’s theorem asserts the existence of
non-trivial Lambert vectors.

Now the key observation is that

PROPOSITION 3. Non-trivial Lambert vectors in the plane give rise to non-
trivial Lambert vectors on the sphere/pseudosphere by Appell’s projection.

Indeed Appell’s projection when applied to a tangent vector is not only the push-
forward, but the push-forward composed with a multiplicative factor depending only
on the positions. Now since (10) is linear, and the inner product on tangent vectors on
a sphere/pseudosphere is again a bilinear form, we may further properly adjust each
transformed tangent vector by factors depending only on the positions, to get a non-
trivial Lambert vector on the sphere/pseudosphere from a non-trivial Lambert vector
in the plane, since each isometric symmetry of the planar central force problem lifts to
the sphere and pseudosphere, and vice versa.

There is therefore a certain form of Lambert’s theorem also for the spherical and
pseudospherical Kepler problems. This is surprising since Appell’s projection does not
preserve time parametrization, nor energy hypersurfaces. The effective form of Lam-
bert’s theorem can therefore be worked out with this Lambert vectors and we found
exactly the same statement as in the Euclidean case. The approach shows in partic-
ular that the property stated by Lambert’s theorem for Kepler problem is a projective
dynamical property.

We end by posing yet some questions:

As we have said, there are many proofs of distinct natures for Lambert’s theorem
for the Kepler problem on the plane. This calls for the following general question:
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Question 2. Is it possible to adapt more among these proofs to the spherical/pseudo-
spherical Kepler problems as well?

Another question of interest concerns the role of symmetry and the phenomenon
stated by Lambert’s theorem outside harmonic oscillators and Kepler problems. This
can already be posed in the planar case:

Question 3. Are their non-rotational invariant natural mechanical system in the plane
which has a non-trivial Lambert vector?
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