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ON POLYNOMIAL SOLUTIONS OF THE DIOPHANTINE
EQUATION (X +Y −1)2 = WXY

Abstract. In this paper we consider a particular class of polynomials arising from the solu-
tions of the Diophantine equation (x+y−1)2 = wxy. We highlight some interesting aspects,
describing their relationship with many iportant integer sequences and pointing out their con-
nection with Dickson and Chebyshev polynomials. We also study their coefficients finding a
new identity involving Catalan numbers and proving that they are a Riordan array.

1. A class of polynomials related to integer sequences, Dickson and Chebyshev
polynomials

In [1], the authors solved the Diophantine equation

(1) (x+ y−1)2 = wxy,

where w is a given positive integer and x,y are unknown numbers, whose values are to
be sought in the set of positive integers.
In particular, (x,y) is a solution of the Diophantine equation (1) if and only if (x,y) =
(um+1(w),um(w)), for a given m ∈ N, where (un(w))+∞

n=0 is the following linear recur-
rent sequence:

(2)

!
u0(w) = 0, u1(w) = 1, u2(w) = w
un(w) = (w−1)un−1(w)− (w−1)un−2(w)+un−3(w) ∀n ≥ 3.

This polynomial sequence is very interesting. Indeed, for several values of w, the
polynomial sequence (un(w)) coincides with some well–known and studied integer
sequences. For example, for w = 4, (un(4)) = n2, that is the sequence A000290
in OEIS [7]. When w = 5, (un(5)) is the sequence of the alternate Lucas numbers
minus 2 (see sequence A004146 in OEIS). If w = 9, (un(9)) = F2

2n, where (Fn) is
the sequence of the Fibonacci numbers. For w = 4, ...,20, the sequence (un(w)) ap-
pears in OEIS [7]. In Table 1, we summarize sequences un(w) for different values of w.

In the following, we prove that polynomials un(w) are related to some well–
known and studied polynomials like Chebyshev polynomials of the first and second
kind, respectively Tn(x) and Un(x) (see, e.g., [5]), and Dickson polynomials Dn(x) and
En(x) = Un

" x
2

#
(see, e.g., [3]).

Here we define Tn(x) and Un(x) as the n–th element of the linear recurrent sequence
(Tn(x))+∞

n=0 and (Un(x))+∞
n=0 with characteristic polynomial t2 −2xt + 1 and initial con-

ditions T0(x) = 1, T1(x) = x and U0(x) = 1, U1(x) = 2x, respectively.
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w (un(w))+∞
n=0 OEIS reference

4 0,1,4,9,16,25, ... A000290=(n2)+∞
n=0,

5 0,1,5,16,45,121, ... A004146=Alternate Lucas numbers - 2
6 0,1,6,25,96,361, ... A092184
7 0,1,7,36,175,841, ... A054493 (shifted by one)
8 0,1,8,49,288,1681, ... A001108
9 0,1,9,64,441,3025, ... A049684=F2

2n (Fn Fibonacci numbers)
10 0,1,10,81,640,5041, ..., A095004 (shifted by one)
11 0,1,11,100,891,7921, ..., A098296
12 0,1,12,121,1200,11881, ... A098297
13 0,1,13,144,1573,17161, ... A098298
14 0,1,14,169,2016,24025, ... A098299
15 0,1,15,196,2535,32761, ... A098300
16 0,1,16,225,3136,43681, ... A098301
17 0,1,17,256,3825,57121, ... A098302
18 0,1,18,289,4608,73441, ... A098303
19 0,1,19,324,5491,93025, ... A098304
20 0,1,20,361,6480,116281, ... A049683=(L6n −2)/16 (Ln Lucas numbers)

Table 1.1: Sequence un(w) for different values of w

We recall that Dickson polynomials are defined as follows:

Dn(x) =
%n/2&
∑
i=0

n
n− i

$
n− i

i

%
(−1)ixn−2i

and

En(x) =
%n/2&
∑
i=0

$
n− i

i

%
(−1)ixn−2i.

We also recall that for Dickson polynomials the following identities hold

(3) Dn
"
x+ x−1# = xn + x−n, En

"
x+ x−1# =

xn+1 − x−(n+1)

x− x−1

THEOREM 1. We have

(4) un(w) =
Dn(w−2)−2

w−4
= 2

Tn(w−2
2 )−1

w−4
, ∀n ≥ 0

and in particular for all n ≥ 1

(5) u2n(w) = wE2
n−1(w−2) = wU2

n−1

$
w−2

2

%

u2n−1(w) = (En−1(w−2)+En−2(w−2))2 =

=
$

Un−1

$
w−2

2

%
+Un−2

$
w−2

2

%%2(6)
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Proof. The recurrence relation described in (2) clearly shows that the characteristic
polynomial of (un(w)) is

x3 − (w−1)x2 +(w−1)x−1 = (x−1)(x2 − (w−2)x+1)

whose zeros are x1 = 1 and x2,3 = w−2±
√

w2−4w
2 . If we set x2 = ζ we easily observe

that x3 = ζ−1 so that ζ + ζ−1 = w− 2 and ζ− ζ−1 =
√

w2 −4w. Moreover, using the
initial conditions in (2), with standard tecniques we find the following closed form for
every element of (un(w))

(7) un(w) =
ζn +ζ−n −2

w−4
=

ζn +ζ−n −2
ζ+ζ−1 −2

. Thanks to the first identity in (3) it is straightforward to observe that

(8) un(w) =
Dn(ζ+ζ−1)−2

w−4
=

Dn(w−2)−2
w−4

.

Since x2 − (w− 2)x + 1 is the characteristic polynomial of the sequence (Tn
"w−2

2

#
),

with roots x2 = ζ and x3 = ζ−1, and the initial conditions are T0
"w−2

2

#
= 1, T1

"w−2
2

#
=

w−2
2 we obtain

(9) Tn

$
w−2

2

%
=

ζn +ζ−n

2
=

Dn(ζ+ζ−1)
2

=
Dn(w−2)

2

Thus substituting (9) in (8) we prove equality (4). Now considering the equality (7)
and the second identity in (3) we have

u2n(w) =
ζ2n +ζ−2n −2

ζ+ζ−1 −2
=

(ζn −ζ−n)2

(ζ−ζ−1)2
(ζ−ζ−1)2

ζ+ζ−1 −2
= w(En−1(w−2))2,

which proves (5), and

(10) u2n−1(w) =
ζ2n−1 +ζ−2n+1 −2

ζ+ζ−1 −2
=

(ζ2n−1 +ζ−2n+1 −2)(ζ+ζ−1 +2)
(ζ−ζ−1)2

where we use the identity

(ζ−ζ−1)2 = w(w−4) = (ζ+ζ−1 +2)(ζ+ζ−1 −2).

An easy calculation shows that

(ζ2n−1 +ζ−2n+1 −2)(ζ+ζ−1 +2) =
&

ζn −ζ−n +ζn−1 −ζ−(n−1)
'2

and substituting in (10) we find

u2n−1(w) =

&
ζn −ζ−n +ζn−1 −ζ−(n−1)

'2

(ζ−ζ−1)2 =

=

(
ζn −ζ−n

ζ−ζ−1 +
ζn−1 −ζ−(n−1)

ζ−ζ−1

)2

=

= (En−1(w−2)+En−2(w−2))2 ,
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proving (6). ()

As a consequence of (4) we highlight the following relation, where we posed
w−2

2 = x

(11) Tn(x) = 2Dn(2x) = un(2x+2) · (x−1)+1

The coefficients of polynomials un(w) are particularly interesting and we ex-
plicitly determine them in the following

THEOREM 2. For any integer n ≥ 1, we have

un(w) =
n

∑
k=0

dn(k)wk,

where

dn(k) =
n−k−1

∑
i=0

(−1)i
$

i+2k
2k

%
, ∀0 ≤ k < n

and dn(n) = 0.

Proof. The theorem can be proved by induction. For n = 1, we have u1(w) = 1 and
d1(0)w0 +d1(1)w = 1. Similarly, it is straightforward to check the theorem when n = 2
and n = 3.
Now, let us suppose that the thesis holds for any integer less or equal than n, for a given
integer n. We have

un+1(w) = (w−1)un(w)− (w−1)un−1(w)+un−2(w) =

= (w−1)
n

∑
k=0

dn(k)wk − (w−1)
n−1

∑
k=0

dn−1(k)wk +
n−2

∑
k=0

dn−2(k)wk.

Observing that

dn(k) = dn−1(k)+(−1)n−k−1
$

n+ k−1
2k

%

we obtain

un+1(w) = (w−1)
n

∑
k=0

dn(k)wk − (w−1)
n−1

∑
k=0

&
dn(k)− (−1)n−k−1

$
n+ k−1

2k

%'
wk +

+
n−2

∑
k=0

dn−2(k)wk =

= (w−1)
n−1

∑
k=0

(−1)n−k−1
$

n+ k−1
2k

%
wk +

n−2

∑
k=0

&
dn+1(k)− (−1)n−k

$
n+ k

2k

%
+

−(−1)n−k−1
$

n+ k−1
2k

%
− (−1)n−k−2

$
n+ k−2

2k

%'
wk.



On Polynomial Solutions of the Diophantine Equation (x+ y−1)2 = wxy 9

Thus we have to prove that

(12) (w−1)
n−1

∑
k=0

(−1)n−k−1
$

n+ k−1
2k

%
wk

+
n−2

∑
k=0

&
(−1)n−k−1

$
n+ k

2k

%
− (−1)n−k−1

$
n+ k−1

2k

%
− (−1)n−k−2

$
n+ k−2

2k

%'
wk

−wn +2(n−1)wn−1 = 0

in order to prove that

un+1(w) =
n+1

∑
k=0

dn+1(k)wk.

The left member of equation (12) is equal to

n−3

∑
k=0

(−1)n−k−1
$

n+ k−1
2k

%
wk+1 −

n−2

∑
k=0

(−1)n−k−1
$

n+ k−1
2k

%
wk+

+
n−2

∑
k=0

$
(−1)n−k−1

$
n+ k

2k

%
− (−1)n−k−1

$
n+ k−1

2k

%
− (−1)n−k−2

$
n+ k−2

2k

%%
wk =

=
n−2

∑
k=1

(−1)n−k
$$

n+ k−2
2k−2

%
+2

$
n+ k−1

2k

%
−

$
n+ k

2k

%
−

$
n+ k−2

2k

%%
wk

and using the property of binomial coefficients
$

n
k

%
=

$
n−1

k

%
+

$
n−1
k−1

%

it is easy to check that
$

n+ k−2
2k−2

%
+2

$
n+ k−1

2k

%
−

$
n+ k

2k

%
−

$
n+ k−2

2k

%
= 0.

()

Thanks to previous theorems and relation (11) we find the following expression
for Chebyshev polynomials

Tn(x) = 1+(x−1)
n

∑
k=0

dn(k)(2x+2)k, ∀n ≥ 1,

and an analogous one for Dickson polynomials

Dn(x) =
1
4

(
2+(x−2)

n

∑
k=0

dn(k)(x+2)k

)
, ∀n ≥ 1.

In the following section, we see that coefficients dn(k) allow us to determine a
new identity for Catalan numbers and they can be used to obtain a Riordan array.
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2. Catalan numbers and Riordan array

Catalan numbers are very famous and interesting, deeply studied for their significance
in combinatorics. In the beautiful book of Stanley [8] many combinatorial interpreta-
tions and identities involving Catalan numbers can be found. We whish to point out
another new identity involving Catalan numbers and the coefficients dn(k) studied in
the previous section.

THEOREM 3. For any positive integer n, we have

n

∑
k=0

dn(k)Ck = 1,

where (Ck)+∞
k=0 is the sequence of the Catalan numbers (A000108 in OEIS)

Proof. Since
! 1

−1

Tn(x)√
1− x2

dx = 0,

by Theorem 1, we have

! 1

−1

un(2x+2)(x−1)+1√
1− x2

dx = 0.

Posing y = 2x+2, we obtain

! 4

0

(
un(y)(y−4)+1

2

)
1*

y(4− y)
dy = 0

and consequenlty
! 4

0

un(y)(y−4)

2
*

y(4− y)
dy = −π,

n

∑
k=0

! 4

0

dn(k)yk(4− y)*
y(4− y)

dy = 2π.

Moreover, it is well–known that

! 4

0

yk(4− y)*
y(4− y)

= 2πCk,

thus
n

∑
k=0

dn(k)Ck = 1.

()
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Catalan numbers can be arranged in order to define a Riordan array. We recall
that a Riordan array is an infinite lower triangular matrix, where the k–th column is a
sequence having ordinary generating function of the form f (x)g(x)k, see [6]. Catalan

numbers are used to generate a particular Riordan array defined by f (x) =
1−

√
1−4x

2x

and g(x) =
1−

√
1−4x
2

, see [4]. Thus, considering the previous relation between Cata-

lan numbers and the coefficients of polynomials un(w), we can suppose that also dn(k)
may generate a Riordan array. Indeed, in the following theorem, we prove that the

sequence (dn(k))+∞
n=0 define a Riordan array where f (x) =

x
1− x2 and g(x) =

x
(1+ x)2.

THEOREM 4. Given an integer k the ordinary generating function of the se-
quence (dn(k))+∞

n=0 is

x
1− x2 ·

xk

(1+ x)2k

Proof. The ordinary generating function of the sequence (dn(k))+∞
n=0 is

+∞

∑
n=0

dn(k)xn =
+∞

∑
n=k+1

n−k−1

∑
i=0

(−1)i
$

i+2k
2k

%
xn,

where in the right member the first sum starts from k + 1, since for n < k + 1 the
coefficients dn(k) are not defined. If we pose n− k− 1 = m, the ordinary generating
function becomes

+∞

∑
m=0

m

∑
i=0

(−1)i
$

i+2k
2k

%
xm+k+1 = xk+1

+∞

∑
m=0

m

∑
i=0

(−1)i
$

i+2k
2k

%
xm =

= xk+1
+∞

∑
i=0

(−1)i
$

i+2k
2k

%
xi

+∞

∑
m=i

xm−i = xk+1
+∞

∑
i=0

$
i+2k

2k

%
(−x)i

+∞

∑
h=0

xh.

Considering that

1
(1− z)n+1 =

+∞

∑
i=0

$
i+n

n

%
zi,

(see, e.g., [2] pag. 199) we finally have that the ordinary generating function is

xk+1

1− x
· 1
(1− (−x))2k+1 =

x
1− x2 ·

xk

(1+ x)2k.

()
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Thus the following matrix is a Riordan array



1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
1 −2 1 0 0 · · ·
0 4 −4 1 0 · · ·
1 −6 11 −6 1 · · ·
...

...
...

...
...

. . .




where the k–th column is the sequence (dn(k)).
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