S. Barbero, U. Cerruti, N. Murru

ON POLYNOMIAL SOLUTIONS OF THE DIOPHANTINE
 EQUATION $(X+Y-1)^{2}=W X Y$

Abstract

In this paper we consider a particular class of polynomials arising from the solutions of the Diophantine equation $(x+y-1)^{2}=w x y$. We highlight some interesting aspects, describing their relationship with many iportant integer sequences and pointing out their connection with Dickson and Chebyshev polynomials. We also study their coefficients finding a new identity involving Catalan numbers and proving that they are a Riordan array.

1. A class of polynomials related to integer sequences, Dickson and Chebyshev polynomials

In [1], the authors solved the Diophantine equation

$$
\begin{equation*}
(x+y-1)^{2}=w x y \tag{1}
\end{equation*}
$$

where w is a given positive integer and x, y are unknown numbers, whose values are to be sought in the set of positive integers.
In particular, (x, y) is a solution of the Diophantine equation (II) if and only if $(x, y)=$ $\left(u_{m+1}(w), u_{m}(w)\right)$, for a given $m \in \mathbb{N}$, where $\left(u_{n}(w)\right)_{n=0}^{+\infty}$ is the following linear recurrent sequence:

$$
\left\{\begin{array}{l}
u_{0}(w)=0, \quad u_{1}(w)=1, \quad u_{2}(w)=w \tag{2}\\
u_{n}(w)=(w-1) u_{n-1}(w)-(w-1) u_{n-2}(w)+u_{n-3}(w) \quad \forall n \geq 3 .
\end{array}\right.
$$

This polynomial sequence is very interesting. Indeed, for several values of w, the polynomial sequence $\left(u_{n}(w)\right)$ coincides with some well-known and studied integer sequences. For example, for $w=4,\left(u_{n}(4)\right)=n^{2}$, that is the sequence A000290 in OEIS [7]. When $w=5,\left(u_{n}(5)\right)$ is the sequence of the alternate Lucas numbers minus 2 (see sequence A004146 in OEIS). If $w=9,\left(u_{n}(9)\right)=F_{2 n}^{2}$, where $\left(F_{n}\right)$ is the sequence of the Fibonacci numbers. For $w=4, \ldots, 20$, the sequence $\left(u_{n}(w)\right)$ appears in OEIS [7]. In Table四, we summarize sequences $u_{n}(w)$ for different values of w.

In the following, we prove that polynomials $u_{n}(w)$ are related to some wellknown and studied polynomials like Chebyshev polynomials of the first and second kind, respectively $T_{n}(x)$ and $U_{n}(x)$ (see, e.g., [5]), and Dickson polynomials $D_{n}(x)$ and $E_{n}(x)=U_{n}\left(\frac{x}{2}\right)$ (see, e.g., [3]).
Here we define $T_{n}(x)$ and $U_{n}(x)$ as the n-th element of the linear recurrent sequence $\left(T_{n}(x)\right)_{n=0}^{+\infty}$ and $\left(U_{n}(x)\right)_{n=0}^{+\infty}$ with characteristic polynomial $t^{2}-2 x t+1$ and initial conditions $T_{0}(x)=1, T_{1}(x)=x$ and $U_{0}(x)=1, U_{1}(x)=2 x$, respectively.

w	$\left(u_{n}(w)\right)_{n=0}^{+\infty}$	OEIS reference
4	$0,1,4,9,16,25, \ldots$	$\mathrm{~A} 000290=\left(n^{2}\right)_{n=0}^{+\infty}$,
5	$0,1,5,16,45,121, \ldots$	$\mathrm{~A} 004146=$ Alternate Lucas numbers -2
6	$0,1,6,25,96,361, \ldots$	A 092184
7	$0,1,7,36,175,841, \ldots$	A 054493 (shifted by one)
8	$0,1,8,49,288,1681, \ldots$	A 001108
9	$0,1,9,64,441,3025, \ldots$	$\mathrm{~A} 049684=F_{2 n}^{2}\left(F_{n}\right.$ Fibonacci numbers)
10	$0,1,10,81,640,5041, \ldots$,	A 095004 (shifted by one)
11	$0,1,11,100,891,7921, \ldots$,	A 098296
12	$0,1,12,121,1200,11881, \ldots$	A 098297
13	$0,1,13,144,1573,17161, \ldots$	A 098298
14	$0,1,14,169,2016,24025, \ldots$	A 098299
15	$0,1,15,196,2535,32761, \ldots$	A 098300
16	$0,1,16,225,3136,43681, \ldots$	A 098301
17	$0,1,17,256,3825,57121, \ldots$	A 098302
18	$0,1,18,289,4608,73441, \ldots$	A 098303
19	$0,1,19,324,5491,93025, \ldots$	A 098304
20	$0,1,20,361,6480,116281, \ldots$	$\mathrm{~A} 049683=\left(L_{6 n}-2\right) / 16\left(L_{n}\right.$ Lucas numbers)

Table 1.1: Sequence $u_{n}(w)$ for different values of w

We recall that Dickson polynomials are defined as follows:

$$
D_{n}(x)=\sum_{i=0}^{\lfloor n / 2\rfloor} \frac{n}{n-i}\binom{n-i}{i}(-1)^{i} x^{n-2 i}
$$

and

$$
E_{n}(x)=\sum_{i=0}^{\lfloor n / 2\rfloor}\binom{n-i}{i}(-1)^{i} x^{n-2 i}
$$

We also recall that for Dickson polynomials the following identities hold

$$
\begin{equation*}
D_{n}\left(x+x^{-1}\right)=x^{n}+x^{-n}, \quad E_{n}\left(x+x^{-1}\right)=\frac{x^{n+1}-x^{-(n+1)}}{x-x^{-1}} \tag{3}
\end{equation*}
$$

Theorem 1. We have

$$
\begin{equation*}
u_{n}(w)=\frac{D_{n}(w-2)-2}{w-4}=2 \frac{T_{n}\left(\frac{w-2}{2}\right)-1}{w-4}, \quad \forall n \geq 0 \tag{4}
\end{equation*}
$$

and in particular for all $n \geq 1$

$$
\begin{align*}
& u_{2 n}(w)=w E_{n-1}^{2}(w-2)=w U_{n-1}^{2}\left(\frac{w-2}{2}\right) \tag{5}\\
& u_{2 n-1}(w)=\left(E_{n-1}(w-2)+E_{n-2}(w-2)\right)^{2}=
\end{align*}
$$

(6)

$$
=\left(U_{n-1}\left(\frac{w-2}{2}\right)+U_{n-2}\left(\frac{w-2}{2}\right)\right)^{2}
$$

Proof. The recurrence relation described in (D) clearly shows that the characteristic polynomial of $\left(u_{n}(w)\right)$ is

$$
x^{3}-(w-1) x^{2}+(w-1) x-1=(x-1)\left(x^{2}-(w-2) x+1\right)
$$

whose zeros are $x_{1}=1$ and $x_{2,3}=\frac{w-2 \pm \sqrt{w^{2}-4 w}}{2}$. If we set $x_{2}=\zeta$ we easily observe that $x_{3}=\zeta^{-1}$ so that $\zeta+\zeta^{-1}=w-2$ and $\zeta-\zeta^{-1}=\sqrt{w^{2}-4 w}$. Moreover, using the initial conditions in (2) , with standard tecniques we find the following closed form for every element of $\left(u_{n}(w)\right)$

$$
\begin{equation*}
u_{n}(w)=\frac{\zeta^{n}+\zeta^{-n}-2}{w-4}=\frac{\zeta^{n}+\zeta^{-n}-2}{\zeta+\zeta^{-1}-2} \tag{7}
\end{equation*}
$$

. Thanks to the first identity in (3) it is straightforward to observe that

$$
\begin{equation*}
u_{n}(w)=\frac{D_{n}\left(\zeta+\zeta^{-1}\right)-2}{w-4}=\frac{D_{n}(w-2)-2}{w-4} . \tag{8}
\end{equation*}
$$

Since $x^{2}-(w-2) x+1$ is the characteristic polynomial of the sequence $\left(T_{n}\left(\frac{w-2}{2}\right)\right)$, with roots $x_{2}=\zeta$ and $x_{3}=\zeta^{-1}$, and the initial conditions are $T_{0}\left(\frac{w-2}{2}\right)=1, T_{1}\left(\frac{w-2}{2}\right)=$ $\frac{w-2}{2}$ we obtain

$$
\begin{equation*}
T_{n}\left(\frac{w-2}{2}\right)=\frac{\zeta^{n}+\zeta^{-n}}{2}=\frac{D_{n}\left(\zeta+\zeta^{-1}\right)}{2}=\frac{D_{n}(w-2)}{2} \tag{9}
\end{equation*}
$$

Thus substituting (II) in (II) we prove equality (II). Now considering the equality (II) and the second identity in (3) we have

$$
u_{2 n}(w)=\frac{\zeta^{2 n}+\zeta^{-2 n}-2}{\zeta+\zeta^{-1}-2}=\frac{\left(\zeta^{n}-\zeta^{-n}\right)^{2}}{\left(\zeta-\zeta^{-1}\right)^{2}} \frac{\left(\zeta-\zeta^{-1}\right)^{2}}{\zeta+\zeta^{-1}-2}=w\left(E_{n-1}(w-2)\right)^{2}
$$

which proves (5), and

$$
\begin{equation*}
u_{2 n-1}(w)=\frac{\zeta^{2 n-1}+\zeta^{-2 n+1}-2}{\zeta+\zeta^{-1}-2}=\frac{\left(\zeta^{2 n-1}+\zeta^{-2 n+1}-2\right)\left(\zeta+\zeta^{-1}+2\right)}{\left(\zeta-\zeta^{-1}\right)^{2}} \tag{10}
\end{equation*}
$$

where we use the identity

$$
\left(\zeta-\zeta^{-1}\right)^{2}=w(w-4)=\left(\zeta+\zeta^{-1}+2\right)\left(\zeta+\zeta^{-1}-2\right)
$$

An easy calculation shows that

$$
\left(\zeta^{2 n-1}+\zeta^{-2 n+1}-2\right)\left(\zeta+\zeta^{-1}+2\right)=\left(\zeta^{n}-\zeta^{-n}+\zeta^{n-1}-\zeta^{-(n-1)}\right)^{2}
$$

and substituting in (Ш10) we find

$$
\begin{aligned}
u_{2 n-1}(w) & =\frac{\left(\zeta^{n}-\zeta^{-n}+\zeta^{n-1}-\zeta^{-(n-1)}\right)^{2}}{\left(\zeta-\zeta^{-1}\right)^{2}}= \\
& =\left(\frac{\zeta^{n}-\zeta^{-n}}{\zeta-\zeta^{-1}}+\frac{\zeta^{n-1}-\zeta^{-(n-1)}}{\zeta-\zeta^{-1}}\right)^{2}= \\
& =\left(E_{n-1}(w-2)+E_{n-2}(w-2)\right)^{2},
\end{aligned}
$$

proving (G).
As a consequence of (4) we highlight the following relation, where we posed $\frac{w-2}{2}=x$

$$
\begin{equation*}
T_{n}(x)=2 D_{n}(2 x)=u_{n}(2 x+2) \cdot(x-1)+1 \tag{11}
\end{equation*}
$$

The coefficients of polynomials $u_{n}(w)$ are particularly interesting and we explicitly determine them in the following

THEOREM 2. For any integer $n \geq 1$, we have

$$
u_{n}(w)=\sum_{k=0}^{n} d_{n}(k) w^{k},
$$

where

$$
d_{n}(k)=\sum_{i=0}^{n-k-1}(-1)^{i}\binom{i+2 k}{2 k}, \quad \forall 0 \leq k<n
$$

and $d_{n}(n)=0$.
Proof. The theorem can be proved by induction. For $n=1$, we have $u_{1}(w)=1$ and $d_{1}(0) w^{0}+d_{1}(1) w=1$. Similarly, it is straightforward to check the theorem when $n=2$ and $n=3$.
Now, let us suppose that the thesis holds for any integer less or equal than n, for a given integer n. We have

$$
\begin{gathered}
u_{n+1}(w)=(w-1) u_{n}(w)-(w-1) u_{n-1}(w)+u_{n-2}(w)= \\
=(w-1) \sum_{k=0}^{n} d_{n}(k) w^{k}-(w-1) \sum_{k=0}^{n-1} d_{n-1}(k) w^{k}+\sum_{k=0}^{n-2} d_{n-2}(k) w^{k} .
\end{gathered}
$$

Observing that

$$
d_{n}(k)=d_{n-1}(k)+(-1)^{n-k-1}\binom{n+k-1}{2 k}
$$

we obtain

$$
\begin{aligned}
u_{n+1}(w)= & (w-1) \sum_{k=0}^{n} d_{n}(k) w^{k}-(w-1) \sum_{k=0}^{n-1}\left(d_{n}(k)-(-1)^{n-k-1}\binom{n+k-1}{2 k}\right) w^{k}+ \\
& +\sum_{k=0}^{n-2} d_{n-2}(k) w^{k}= \\
= & (w-1) \sum_{k=0}^{n-1}(-1)^{n-k-1}\binom{n+k-1}{2 k} w^{k}+\sum_{k=0}^{n-2}\left(d_{n+1}(k)-(-1)^{n-k}\binom{n+k}{2 k}+\right. \\
& \left.-(-1)^{n-k-1}\binom{n+k-1}{2 k}-(-1)^{n-k-2}\binom{n+k-2}{2 k}\right) w^{k} .
\end{aligned}
$$

Thus we have to prove that
(12) $(w-1) \sum_{k=0}^{n-1}(-1)^{n-k-1}\binom{n+k-1}{2 k} w^{k}$

$$
\begin{array}{r}
+\sum_{k=0}^{n-2}\left((-1)^{n-k-1}\binom{n+k}{2 k}-(-1)^{n-k-1}\binom{n+k-1}{2 k}-(-1)^{n-k-2}\binom{n+k-2}{2 k}\right) w^{k} \\
-w^{n}+2(n-1) w^{n-1}=0
\end{array}
$$

in order to prove that

$$
u_{n+1}(w)=\sum_{k=0}^{n+1} d_{n+1}(k) w^{k}
$$

The left member of equation ([12) is equal to

$$
\begin{gathered}
\sum_{k=0}^{n-3}(-1)^{n-k-1}\binom{n+k-1}{2 k} w^{k+1}-\sum_{k=0}^{n-2}(-1)^{n-k-1}\binom{n+k-1}{2 k} w^{k}+ \\
+\sum_{k=0}^{n-2}\left((-1)^{n-k-1}\binom{n+k}{2 k}-(-1)^{n-k-1}\binom{n+k-1}{2 k}-(-1)^{n-k-2}\binom{n+k-2}{2 k}\right) w^{k}= \\
=\sum_{k=1}^{n-2}(-1)^{n-k}\left(\binom{n+k-2}{2 k-2}+2\binom{n+k-1}{2 k}-\binom{n+k}{2 k}-\binom{n+k-2}{2 k}\right) w^{k}
\end{gathered}
$$

and using the property of binomial coefficients

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

it is easy to check that

$$
\binom{n+k-2}{2 k-2}+2\binom{n+k-1}{2 k}-\binom{n+k}{2 k}-\binom{n+k-2}{2 k}=0 .
$$

Thanks to previous theorems and relation (II) we find the following expression for Chebyshev polynomials

$$
T_{n}(x)=1+(x-1) \sum_{k=0}^{n} d_{n}(k)(2 x+2)^{k}, \quad \forall n \geq 1
$$

and an analogous one for Dickson polynomials

$$
D_{n}(x)=\frac{1}{4}\left(2+(x-2) \sum_{k=0}^{n} d_{n}(k)(x+2)^{k}\right), \quad \forall n \geq 1
$$

In the following section, we see that coefficients $d_{n}(k)$ allow us to determine a new identity for Catalan numbers and they can be used to obtain a Riordan array.

2. Catalan numbers and Riordan array

Catalan numbers are very famous and interesting, deeply studied for their significance in combinatorics. In the beautiful book of Stanley [8] many combinatorial interpretations and identities involving Catalan numbers can be found. We whish to point out another new identity involving Catalan numbers and the coefficients $d_{n}(k)$ studied in the previous section.

Theorem 3. For any positive integer n, we have

$$
\sum_{k=0}^{n} d_{n}(k) C_{k}=1
$$

where $\left(C_{k}\right)_{k=0}^{+\infty}$ is the sequence of the Catalan numbers (A000108 in OEIS)
Proof. Since

$$
\int_{-1}^{1} \frac{T_{n}(x)}{\sqrt{1-x^{2}}} d x=0
$$

by Theorem [I, we have

$$
\int_{-1}^{1} \frac{u_{n}(2 x+2)(x-1)+1}{\sqrt{1-x^{2}}} d x=0 .
$$

Posing $y=2 x+2$, we obtain

$$
\int_{0}^{4}\left(\frac{u_{n}(y)(y-4)+1}{2}\right) \frac{1}{\sqrt{y(4-y)}} d y=0
$$

and consequenlty

$$
\begin{gathered}
\int_{0}^{4} \frac{u_{n}(y)(y-4)}{2 \sqrt{y(4-y)}} d y=-\pi, \\
\sum_{k=0}^{n} \int_{0}^{4} \frac{d_{n}(k) y^{k}(4-y)}{\sqrt{y(4-y)}} d y=2 \pi .
\end{gathered}
$$

Moreover, it is well-known that

$$
\int_{0}^{4} \frac{y^{k}(4-y)}{\sqrt{y(4-y)}}=2 \pi C_{k}
$$

thus

$$
\sum_{k=0}^{n} d_{n}(k) C_{k}=1
$$

Catalan numbers can be arranged in order to define a Riordan array. We recall that a Riordan array is an infinite lower triangular matrix, where the k-th column is a sequence having ordinary generating function of the form $f(x) g(x)^{k}$, see [6]. Catalan numbers are used to generate a particular Riordan array defined by $f(x)=\frac{1-\sqrt{1-4 x}}{2 x}$ and $g(x)=\frac{1-\sqrt{1-4 x}}{2}$, see [4]. Thus, considering the previous relation between Catalan numbers and the coefficients of polynomials $u_{n}(w)$, we can suppose that also $d_{n}(k)$ may generate a Riordan array. Indeed, in the following theorem, we prove that the sequence $\left(d_{n}(k)\right)_{n=0}^{+\infty}$ define a Riordan array where $f(x)=\frac{x}{1-x^{2}}$ and $g(x)=\frac{x}{(1+x)^{2}}$.

THEOREM 4. Given an integer k the ordinary generating function of the sequence $\left(d_{n}(k)\right)_{n=0}^{+\infty}$ is

$$
\frac{x}{1-x^{2}} \cdot \frac{x^{k}}{(1+x)^{2 k}}
$$

Proof. The ordinary generating function of the sequence $\left(d_{n}(k)\right)_{n=0}^{+\infty}$ is

$$
\sum_{n=0}^{+\infty} d_{n}(k) x^{n}=\sum_{n=k+1}^{+\infty} \sum_{i=0}^{n-k-1}(-1)^{i}\binom{i+2 k}{2 k} x^{n}
$$

where in the right member the first sum starts from $k+1$, since for $n<k+1$ the coefficients $d_{n}(k)$ are not defined. If we pose $n-k-1=m$, the ordinary generating function becomes

$$
\begin{aligned}
& \sum_{m=0}^{+\infty} \sum_{i=0}^{m}(-1)^{i}\binom{i+2 k}{2 k} x^{m+k+1}=x^{k+1} \sum_{m=0}^{+\infty} \sum_{i=0}^{m}(-1)^{i}\binom{i+2 k}{2 k} x^{m}= \\
= & x^{k+1} \sum_{i=0}^{+\infty}(-1)^{i}\binom{i+2 k}{2 k} x^{i} \sum_{m=i}^{+\infty} x^{m-i}=x^{k+1} \sum_{i=0}^{+\infty}\binom{i+2 k}{2 k}(-x)^{i} \sum_{h=0}^{+\infty} x^{h} .
\end{aligned}
$$

Considering that

$$
\frac{1}{(1-z)^{n+1}}=\sum_{i=0}^{+\infty}\binom{i+n}{n} z^{i}
$$

(see, e.g., [2] pag. 199) we finally have that the ordinary generating function is

$$
\frac{x^{k+1}}{1-x} \cdot \frac{1}{(1-(-x))^{2 k+1}}=\frac{x}{1-x^{2}} \cdot \frac{x^{k}}{(1+x)^{2 k}}
$$

Thus the following matrix is a Riordan array

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 0 & \cdots \\
1 & -2 & 1 & 0 & 0 & \cdots \\
0 & 4 & -4 & 1 & 0 & \cdots \\
1 & -6 & 11 & -6 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

where the k-th column is the sequence $\left(d_{n}(k)\right)$.

References

[1] M. Abrate, S. Barbero, U. Cerruti, N. Murru, Polynomial sequences on quadratic curves, Submitted to Integers: The Electronic Journal of Combinatorial Number Theory, 2014.
[2] R. Graham, D. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Reading, Massachusetts: Addison-Wesley, 1994
[3] R. Lidl, G. L. Mullen, G. Turnwald, Dickson polynomals, Harlow, Essex, England : Longman Scientific and Technical; New York: Copublished in the United States with John Wiley and Sons, 1993.
[4] A. Luzon, D. Merlini, M. A. Moron, R. Sprugnoli, Identities induced by Riordan arrays, Linear Algebra and its Applications, Vol. 436, 631-647, 2012.
[5] T. J. Rivlin, The Chebyshev polynomials, John Wiley and Sons, 1974.
[6] L. W. Shapiro, S. Getu, W. J. Woan, L. Woodson, The Riordan group, Discrete Applied Mathematics, Vol. 34, 229-239, 1991
[7] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Published electronically at http://www.research.att.com/njas/sequences (2010).
[8] R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1997.

AMS Subject Classification: 11D09, 11B83

S. Barbero, U. Cerruti, N. Murru

Lavoro pervenuto in redazione il 09.06.2019.

