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SOME REMARKS ON CONVEX COMBINATIONS OF LOW
EIGENVALUES

Abstract. In this survey we deal with shape optimization problems involving convex combi-
nations of the first two eigenvalues of the Dirichlet Laplacian, mainly recalling and explaining
some recent results. More precisely, we discuss some geometric properties of minimizers,
in particular when they are no longer convex and the optimality of balls. This leads us to
deal with the “attainable set” of the first two eigenvalues, which is a great source of open
problems.

1. Introduction

The aim of this note is to introduce the reader to some shape optimization problems
involving the first two eigenvalues of the Dirichlet Laplacian. In particular we focus on
the minimization of convex combinations of these first two eigenvalues, among open
subsets of the euclidean space with a measure constraint. Although this can seem a
rather easy topic, as it often happens in shape optimization, there are many hidden
difficulties and a lot of open conjectures. This work is mostly based on the papers [19]
and [23], to which we refer for more details.

The topic of spectral optimization has received a lot of attention in the last
years, see the books [8, 16, 18] for a broader introduction. The first issue for this kind
of problems concerns the existence of an optimal shape: a result proved in the 1990s
by Buttazzo and Dal Maso [13] is even now a cornerstone of the matter, and, for a large
class of functionals, it ensures the existence of a solution in the class of quasi-open sets
of fixed measure (a priori contained into a given box, which provides the necessary
compactness to prove existence). Moreover, the regularity of an optimal shape is a
highly difficult problem and a general regularity theory is nowadays not available: even
a proof which guarantees that an optimal shape is open, and not merely quasi-open, is
far from being trivial, see [12]. Another important point consists in proving some
geometric properties of optimal shapes, such as connectedness, convexity, symmetry
with respect to some axis, and this is the main topic of this note. In fact, only for
few special functionals optimal shapes are explicitly known: classical examples are the
lowest eigenvalues of the Dirichlet-Laplacian. We recall that, for a given integer N 2
and an open set Ω RN with finite measure, the first and second eigenvalues of the
Dirichlet-Laplacian can be defined as

λ1 Ω : min
u H1

0 Ω 0

Ω ∇u x 2dx

Ω u x 2dx
, λ2 Ω : min

u H1
0 Ω 0

Ω uu1 0

Ω ∇u x 2dx

Ω u x 2dx
,
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where these minima are attained, respectively, by the first and second eigenfunctions
u1 and u2 (which are unique, up to a multiplicative constant).

The interest in the minimization of the first eigenvalue goes back to a conjecture
due to Lord Rayleigh in 1877, then proved by Faber and Krahn in the 1920s. The
Faber-Krahn inequality asserts that of all open sets of fixed measure, the ball has the
minimum first eigenvalue: in formula, for every open set Ω RN with unit measure

(1) λ1 Ω λ1 B ω2 N
N j2

N 2 1,

where ωN denotes the measure of the ball in RN with unit radius, jn the first positive
zero of the Bessel function Jn, and B the open ball of unit measure in RN . Equality
in (1) holds if and only if Ω is that ball (up to sets of capacity zero). The same issue
for the second eigenvalue is known as the Krahn-Szegö inequality, which asserts that
two disjoint open balls of half measure each are the unique (up to sets of capacity zero)
minimizer, namely for every open set Ω RN with unit measure

(2) λ2 Ω λ2 B B 22 Nλ1 B 2ωN
2 N j2

N 2 1,

where B B is the union of two equal and disjoint open balls of half measure each,
and equality in (2) holds if and only if Ω B B .
Up to our knowledge, the only other functionals of eigenvalues for which an explicit
minimizer is known are λ1 λ2 and λ2 λ3, see [3].

Starting with the important work of Keller and Wolf [21], there was a strong
interest for convex combinations of the first two eigenvalues of the Dirichlet Laplacian,
namely the functional Ft defined, for every t 0,1 , as

(3) Ft Ω : tλ1 Ω 1 t λ2 Ω ,

where Ω RN is an open set of finite measure. Then, the corresponding spectral
optimization problem writes as

(4) min Ft Ω : Ω RN , Ω open, Ω 1 .

The existence of a minimizer for this problem is now well understood and is guaranteed
by a general theory recently developed in the works [7, 12, 22], all based on the above
mentioned result [13], but with the new difficulty of working in the entire space RN .
Notice that, all these results guarantee the existence of an optimal shape in the larger
class of quasi-open sets, and only a posteriori one proves that a minimizer of problem
(1.1) is in fact open, and so problem (1.1) is well-posed. Moreover, in [19] it was
proved that, for every t 0,1 , minimizers of (1.1) are connected (more generally,
this topological property was studied for minimizers of convex combinations of the
first three eigenvalues). The main idea in order to prove connectedness of minimizers
is to characterize the optimal disconnected configuration and then to find an explicit
connected competitor, which is often either the ball or a perturbation of balls. In two
dimensions (N 2), some numerical computations on the shape of these minimizers
appeared in [20]. We sum up all these results in the following theorem.
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THEOREM 1. For every t 0,1 we consider the shape optimization problem:

(5) min Ft Ω : Ω RN , Ω 1 .

The following facts hold true for (5).

1. There exists an optimal shape in the class of quasi-open sets (Buttazzo-Dal
Maso [13], Bucur [7], Mazzoleni-Pratelli [22]),

2. Every optimal set is open and each of its first k eigenfunctions can be extended in
RN to a Lipschitz continuous function (Bucur-Mazzoleni-Pratelli-Velichkov [12]),

3. Every optimal set is bounded and has finite perimeter (Bucur [7]),

4. Every optimal set is connected (Iversen-Mazzoleni [19]).

Notice that, if t 1 the convex combination (3) is minimized by the ball with
unit measure (because of the Faber-Krahn inequality (1)), while if t 0, by two equal
balls of half measure each (because of the Krahn-Szegö inequality (2)). Therefore,
as t moves from 1 to 0, one expects the shape of a minimizer Ωt deforming from a
ball of unit measure to two balls of half measure each; in particular, it is natural to
conjecture that at some value of t the convexity of all the minimizers in (1.1) is lost (as
was numerically observed in [20], in two dimensions, the critical value for t is expected
to be 1 2). We give a first answer to this question, though non-optimal. All the results
presented in this note, unless otherwise specified, will hold in every dimension N 2.

THEOREM 2. There exists a threshold T 0 such that, for all t 0,T , every
minimizer in (1.1) is no longer convex.

We provide a quantitative proof of this theorem, namely we explicitly construct
the threshold T via the eigenvalues of the Dirichlet-Laplacian. Moreover, in two di-
mensions, it is possible to find a numerical lower bound on T using a quantitative
Krahn-Szegö inequality involving the so-called Fraenkel 2-asymmetry, for this topic
we refer the reader to [23], where it is studied an auxiliary purely geometrical problem:
the minimization of the Fraenkel 2-asymmetry among convex sets of given area. It is
possible to show that the mobile, i.e., the intersection of the convex hull of two tan-
gent balls with a strip is the unique minimizer satisfying an isoperimetric inequality for
the Fraenkel 2-asymmetry (16). An explicit value for the constant in the quantitative
Krahn-Szegö inequality will be also needed. This opens a new area of application for
quantitative inequalities, which can be found in [23, Appendix].

A second question to address is the optimality of a special convex set: the ball,
and we present a generalization of a result from [21].

THEOREM 3. For all t 0,1 the ball B is never a minimizer in (1.1).

The proof of this result follows from a more general proposition, i.e., that the
second eigenvalue of a minimizer in (1.1) has to be simple and, as a consequence of
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the multiplicity of the second eigenvalue over balls, so we immediately get the result in
Theorem 3. The proof of the simplicity of the second eigenvalue relies on some ideas
developed in [16] and [10], with the help of a classical symmetry result due to Serrin
[25] (see also [15]).

As an application of these results, we show how to get informations on the shape
of the attainable set, namely the subset of the plane described by the range of the first
two eigenvalues of the Dirichlet-Laplacian

(6) E : x,y R2 : x λ1 Ω , y λ2 Ω , Ω RN , Ω open, Ω 1 .

This set was introduced in [21], and then deeply studied in [9] (see also [1, 2, 5]), where
several geometrical properties of E were discussed.

The link between problem (1.1) and the set E is the following: for a fixed
t 0,1 a minimizer Ωt in (1.1) corresponds to the first point of E of coordinates
λ1 Ωt ,λ2 Ωt that we reach with a line tx 1 t y a increasing the value a, that

is PΩt : λ1 Ωt ,λ2 Ωt is one of the intersection points of the tangent line to E with
slope t t 1 . In particular, if t 1 the tangent line x λ1 B has a unique intersection
point corresponding to the ball B (because of the Faber-Krahn inequality (1)), while if
t 0, the tangent line y λ2 Θ has a unique intersection point corresponding to the
two balls B B (because of the Krahn-Szegö inequality (2)).

Therefore, in Theorem 4, we will present a new strategy for studying the asymp-
totic behavior of the boundary of E near the points corresponding to B and B B ,
extending to all dimensions a result proved in [21] only in two dimensions, and recov-
ering the result proved in [5].

We suspect that to properly understand the boundary behavior of the attainable
set, one has to carefully analyze problem (1.1). For this reason we restate the long-
standing conjecture about the convexity of the attainable set in the language of the
minimizers of convex combinations of the lowest Dirichlet eigenvalues.

The paper, which is mainly a review of a talk given by the author at the “BruTo
PDE’s Conference” held in Torino on May 2nd–5th, 2016, is organized as follows. In
Section 2 we discuss Theorem 2, while in Section 3 we deal with Theorem 3 and with
the attainable set (6).

2. Non-convexity of minimizers for problem (1.1)

In order to study the non-convexity of minimizers for problem (1.1) we first need to
deal briefly with the study of optimal sets for λ2 among convex bodies, which was the
topic of an important paper by Henrot and Oudet [17]. Finding an explicit minimizer
in this class seems a very difficult problem: a possible candidate to be the optimum is
the stadium (i.e., the convex hull of two tangent balls), but this conjecture was refuted
in [17]. Indeed any set which contains on the boundary some pieces of balls can not be
a minimizer. Nevertheless, in [17] it was proved the existence of a convex minimizer
ΩHO so that, for every open and convex set Ω RN with unit measure,

(7) λ2 Ω λ2 ΩHO ,
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(cf. (7) with the Krahn-Szegö inequality, where no-convexity constraint is required).
Notice that, since ΩHO has no pieces of balls on its boundary, in particular ΩHO B and

ω2 N
N j2

N 2 λ2 B λ2 ΩHO .

In two dimensions, Oudet in [24] and, more recently, Antunes and Henrot in [2], made
some numerical computations, showing the shape of the optimal set ΩHO and highlight-
ing that ΩHO is very close to the stadium, both from a geometrical and a numerical point
of view; in particular

(8) λ2 B B 2π j2
0 36.336, λ2 ΩHO 37.987, λ2 Ωstadium 38.002,

where Ωstadium is the stadium with Ωstadium 1, i.e., a contracted version of the set
hull Θ . Note that we approximate all the numerically computed values only to the
third decimal digit, for sake of simplicity.
Before proving Theorem 2 we need to set some notation. We say that Ωt is a minimizer
in (1.1) if for every admissible competitor Ω

(9) tλ1 Ωt 1 t λ2 Ωt tλ1 Ω 1 t λ2 Ω ,

and equivalently, rearranging the terms

(10) λ1 Ωt λ1 Ω λ2 Ω λ2 Ωt
1
t

λ2 Ω λ2 Ωt .

Proof of Theorem 2. From the Krahn-Szegö inequality (2) and the connectedness of
Ωt it follows that

(11) λ2 B B λ2 Ωt ,

which plugged into (9) with Ω B B yields

(12) λ1 Ωt λ1 B B .

Taking Ω B B also in (10) and dividing therein by the negative quantity λ2 B
B λ2 Ωt (recall (11)) we get to

(13)
λ1 B B λ1 Ωt

λ2 Ωt λ2 B B
1

1
t
.

From (11) and (12), the ratio on the left-hand side of this inequality turns out to be
a positive number; therefore, we can use the Faber-Krahn inequality (1) to estimate
λ1 Ωt at the numerator of this ratio. Moreover, if Ωt would be a convex set, we could
also use (7) to estimate λ2 Ωt at the denominator of this ratio, obtaining the following
uniform bound on t:

(14) t
1

λ1 B B λ1 B
λ2 ΩHO λ2 B B 1

.

Calling T the quantity on the right-hand side of this inequality, the Krahn-Szegö in-
equality for convex sets gives λ2 ΩHO λ2 B B 0, thus T 0. Therefore, if
t T , Ωt can not be convex.
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The proof of Theorem 2 is constructive and reveals an explicit expression for
the threshold T in terms of the eigenvalues of the Dirichlet-Laplacian. In particular, the
threshold T in Theorem 2 has the following expression:

(15) T 1
22 N 1 λ1 B

λ2 ΩHO λ1 B
,

where ΩHO is a minimizer in (7). As it is often the case, in the two dimensional case
one can expect to be able to provide some explicit estimate for the constant T . This
was done in [23] and we recall here only the result, with the needed explanations. First
of all we have to define the Fraenkel 2-asymmetry of an open set Ω RN with unit
measure, that is,
(16)

A2 Ω : min Ω△ B B : B ,B disjoint open balls, B B 1 2 .

Then we can state the quantitative Krahn–Szegö inequality (see, for example [4, 6]):

(17)
λ2 Ω

λ2 B B
1 βKSA2 Ω α,

for some constant βKS 0 and an exponent α 0. At last, we consider the following
shape optimization problem,

(18) inf A2 Ω : Ω RN , Ω open and convex, Ω 1 .

In [23] it is showed that the set M (see [23, Definition 2.2]) defined as the intersection
of the convex hull of two tangent balls with a strip is the unique minimizer satisfying
an isoperimetric inequality for the Fraenkel 2-asymmetry (18).

Then it is possible to see, in two dimensions, that

(19) T 1
1

1 2βKSA2 M 9 2 1.192 10 14,

where the constants βKS and A2 M are as in (17) and (16) respectively. What is im-
portant to highlight of this bound is that it does not depend on the eigenvalues of the
Dirichlet Laplacian.

REMARK 1. The explicit value for the lower bound to the threshold T is not
very accurate, mostly due to the fact that the constant βKS is not the optimal one, but
we believe it is important to show that a numerical value can actually be provided.
Moreover, if N 2, plugging the numerical computation of λ2 ΩHO recalled in (8)
into (15) and using λ1 B π j2

0 18.168, reveals a numerical approximation for the
threshold defined by (15):

T 0.083.

3. Optimality of the ball and attainable set

In order to deal with Theorem 3, the key point is to show the following, stronger Propo-
sition. The main idea of the proof is to make careful perturbations of the boundary of
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an optimal set (provided it is regular enough) and then reduce the problem to an overde-
termined PDE, which can be treated with techniques first developed by Serrin [25].

PROPOSITION 1. For a fixed t 0,1 , let Ωt be a minimizer of problem (1.1).
If the boundary of Ωt is of class C2 and connected, then λ2 Ωt is simple, namely
λ1 Ωt λ2 Ωt λ3 Ωt . Moreover, on the boundary of Ωt , the following optimality
condition holds:

(20) t ∇u1 x 2 1 t ∇u2 x 2 2Ft Ωt

N
, x Ωt .

For a proof of the above Proposition we refer to [23], but then Theorem 3 fol-
lows easily.

Proof of Theorem 3. The proof is a straightforward consequence of Proposition 1: in
every dimension, the second eigenvalue λ2 B is not simple, therefore the ball B can
not be a minimizer for any t 0,1 .

REMARK 2. In two dimensions, the fact that balls are never minimizers was
implicitly contained in the work [21]. For an arbitrary ε 0 small enough, in [21] the
authors constructed a nearly spherical competitor Bε, with Bε 1, such that

λ1 Bε λ1 B d1ε2, while λ2 Bε λ2 B d2ε,

for some positive constants d1,d2. Therefore, for every t 0,1 , it is possible to find
ε 0 so small so that

tλ1 Bε 1 t λ2 Bε tλ1 B 1 t λ2 B .

The last thing that we want to treat is the relation between problem (1.1) and
Theorem 3 with the so called attainable set, defined in (6). We start listing the most
important properties that are known on the attainable set E defined in (6) (for figures
representing the set E we refer to [21, 9, 23]):

1. lies above the bisector y x (since by definition λ2 Ω λ1 Ω for every Ω
RN).

2. lies on the right of the line x λ1 B (for the Faber-Krahn inequality (1)).

3. lies above the line y λ2 B B (for the Krahn-Szegö inequality (2)).

4. lies below the line y λ2 B
λ1 B x (for the Ashbaugh-Benguria inequality [3]).

5. is conical with respect to the origin.

The numerical picture provided by Keller and Wolff suggests the following con-
jecture, which is still unsolved up to our knowledge.

Conjecture A. The attainable set E is convex.
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The most important result in the direction of this conjecture was proposed by
Bucur, Buttazzo and Figuereido in [9]. These authors proved that the attainable set
(6), constructed through quasi-open sets instead of open sets, is convex in the vertical
and in the horizontal direction and, as a consequence, that it is closed. Nevertheless
the vertical and horizontal convexity do not imply convexity (think, for example to an
L-shaped set).

From the properties of the set E listed above it is clear that the unique unknown
part of the boundary of E is the curve C connecting the points PB λ1 B ,λ2 B
and PB B λ1 B B ,λ2 B B . The convexity of E is then guaranteed
as soon as C can be parametrized by a convex function. For this reason it is important
to have more informations on the curve C . In two dimensions, Keller and Wolf in [21]
showed that the tangent of C at the point PB corresponding to a ball B is vertical. They
constructed a nearly spherical perturbation of B, as recalled in Remark 2, and then they
computed the slope of the tangent to C as ε 0. Moreover, in all dimensions, Brasco,
Nitsch and Pratelli showed that the tangent of C at the point PB B corresponding
to two balls B B is horizontal. In this case the limit as ε 0 was computed by
overlapping the two balls B and B of a quantity measured in terms of the parameter
ε. In the following proposition we recover these limits relying on the minimality con-
dition of the minimizers of convex combinations (9) without any explicit construction.
Notice that the strategy that we adopt holds in all dimensions.

THEOREM 4. For every dimension N 2 and t 0,1 , let Ωt be a minimizer
of problem (1.1). Then we have:

i) the tangent of C at the point PB corresponding to one ball is vertical, namely

(21) lim
t 1

λ2 Ωt λ2 B
λ1 Ωt λ1 B

ii) the tangent of C at the point PB B corresponding to two identical balls is
horizontal, namely

(22) lim
t 0

λ2 Ωt λ2 B B
λ1 Ωt λ1 B B

0.

Moreover, the following limits holds

(23) lim
t 0

λ2 Ωt λ2 B B and lim
t 1

λ1 Ωt λ1 B .

Proof. From the Faber-Krahn inequality (1) and Theorem 3 we find that

(24) λ1 B λ1 Ωt ,

which plugged into (9) with Ω B yields

(25) λ2 Ωt λ2 B .
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Taking Ω B in (10) and dividing therein by λ2 B λ2 Ωt (which from (25) is a
strictly positive value) yields

λ1 Ωt λ1 B
λ2 B λ2 Ωt

1
1
t
.

From (24) and (25) one can see that the ratio on the left-hand side of this inequality is a
positive number, therefore, letting t 1, necessarily, it holds the limit in (21). Moreover,
repeating the computations made in the proof of Theorem 2 and letting t 0 in (13), it
follows the limit in (22).

Finally, the limits in (23) are a consequence of (21), (22) and of the boundedness
of the denominator in (22) (because of (12)) and of the numerator in (21) (because of
(25)).

We finish this discussion formulating an isospectral conjecture on the minimiz-
ers of problem (1.1), which could be used to prove the convexity of the attainable set
E .

Conjecture B. Let t 0,1 and assume X ,Y RN to be minimizers of problem
(1.1) with Ft X Ft Y . Then, the lowest eigenvalues of X and Y coincide, namely

λ1 X λ1 Y and λ2 X λ2 Y .

PROPOSITION 2. The validity of Conjecture B implies that Conjecture A holds
true.

Proof. If E is not convex, then we can find two points PX ,PY C , corresponding,
respectively, to X ,Y , and a straight line l passing through these points such that the
curve C lies above l. Therefore, it is clear that l will be of the form tx 1 t y a for
some fixed t 0,1 and a real number a. Hence the sets X ,Y are minimizers in (1.1) for
such a t, but λ1 X λ1 Y and λ2 X λ2 Y , a contradiction with Conjecture A.
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