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ON WEAKLY-NOETHERIAN RINGS

Abstract. In this paper, we introduce a weak version of Noetherianity that we call weakly-
Noetherian property and we study the transfer of weakly-Noetherian property to the trivial
ring extensions, to the direct product of rings, and to the amalgamated duplication of a ring
along an ideal. We also exhibit several examples of rings which are weakly-Noetherian and
are not Noetherian.

1. Introduction

Throughout this paper, all rings are commutative with identity element, and all mod-
ules are unital. Recall that a ring R is Noetherian if all ideals of R are finitely generated.
So we are lead to ask the following question: Is R Noetherian if all finitely generated
ideals of R are Noetherian R-modules? In view of this we introduce the concept of
“weakly-Noetherian ring". A ring R is called weakly-Noetherian if all finitely gener-
ated ideals of R are Noetherian R-modules. Equivalently, a ring is weakly-Noetherian
if for any pair of ideals I and J such that I ⊆ J and J is a finitely generated proper ideal,
then I is finitely generated. A Noetherian ring is naturally a weakly-Noetherian ring.
Observe that the definition of weakly Noetherian ring by Hinohara in [7] is different
from the one given in this paper.

Our aim in this paper is to prove that weakly-Noetherian rings are not Noethe-
rian, in general.

Let A be a ring, E be an A−module and R := A ∝ E be the set of pairs (a,e) with
pairwise addition and multiplication given by (a,e)(a′,e′) = (aa′,ae′+a′e). R is called
the trivial ring extension of A by E. An ideal of R of the form I ∝ IE, where I is an
ideal of A, is finitely generated if and only if I is finitely generated ([5], page 141).
Trivial ring extensions have been studied extensively; the basic properties of the trivial
ring extensions are summarized in Glaz’s book [5] and Huckaba’s book [8]. These
extensions have been useful for solving many open problems and conjectures in both
commutative and non-commutative ring theory. See for instance [1, 5, 8, 9].

Let R be a ring and I be a proper ideal of R. The amalgamated duplication of a
ring R along an ideal I is a subring of R×R, defined by:

R !" I = {(r,r+ i) | r ∈ R, i ∈ I}.

This extension has been studied, in the general case, and from the different
point of view of pullbacks, by D’Anna and Fontana in [4, 3], they have considered the
case of the amalgamated duplication of a ring, is a non necessarily Noetherian setting,
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along a multiplicative-canonical ideal in the sense Heinzer-Huckaba-Papick [6]. In [2],
D’Anna has studied some properties of R !" I, in order to construct reduced Gorenstein
rings associated to Cohen-Macaulay rings.

In this paper, we investigate the possible transfer of weakly-Noetherian prop-
erty to various trivial extension constructions. Also, we study the direct product of
rings with the weakly-Noetherian property. Finally, we examine the transfer of weakly-
Noetherian property to the amalgamated duplication of ring along an ideal. Using these
results, we construct several classes of examples of non-Noetherian weakly-Noetherian
rings.

2. Main Results

We begin this paper by giving an example of a weakly-Noetherian ring which is not a
Noetherian ring.

Example 1. Let K be a field, E := K∞ be a K-vector space of infinite rank and
let R := K ∝ E be the trivial ring extension of K by E. Then:
(1) R is a local weakly-Noetherian ring.
(2) R is not a Noetherian ring.

Proof. (1) Remark that all proper ideal of R has the form 0∝ E′, where E′ is a K-vector
subspace of E (since (a,e) is invertible in R if and only if a is invertible in K (by [8,
Theorem 25.1]), that is a ! 0).
Let I ⊆ J be two ideals of R such that J is a finitely generated proper ideal. We claim
that I is finitely generated. Indeed, let J = 0 ∝ E′ be a finitely generated proper ideal
of R, where E′ is a finitely generated K-vector subspace of E. Then, I = 0 ∝ E”, where
E” is a K-vector subspace of E′. Hence, E” is a finitely generated K-vector space and
so I := 0 ∝ E” is a finitely generated ideal of R. Therefore, R is a weakly-Noetherian
ring.
(2) R is not Noetherian since its maximal ideal M = 0 ∝ E is not finitely generated
(since E is a K-vector space of infinite rank). !

Now, we give a sufficient condition to have the equivalence between weakly-
Noetherian and Noetherian properties.

Theorem 1. Let R be a ring. Then:
(1) If R is a Noetherian ring, then it is a weakly-Noetherian ring.
(2) Assume that R contains a regular element (i.e., neither a unit nor a zerodivisor).
Then, R is a Noetherian ring if and only if R is a weakly-Noetherian ring.
(3) Assume that (R,M) is a local ring, where M is its maximal ideal. Then, R is a
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Noetherian ring if and only if R is a weakly-Noetherian ring and M is a finitely gener-
ated ideal.

Proof. (1) Straightforward.

(2) If R is a Noetherian ring, then it is a weakly-Noetherian ring by (1). Con-
versely, assume that R is a weakly-Noetherian ring and let I be a proper ideal of R. We
claim that I is finitely generated. Indeed, let a be a regular element of R. Then aI ⊆ aR,
where aR is a finitely generated principal proper ideal of R, and so aI is a finitely gen-
erated ideal of R (since R is a weakly-Noetherian ring). It follows that, I is a finitely
generated ideal of R since aI " I (since a is a regular element of R). Therefore, R is a
Noetherian ring.

(3) By (1), only the sufficiency has to be proved. Assume that R is weakly-
Noetherian and let J be a proper ideal of A. Hence, J ⊆ M (since A is a local ring) and
so J is finitely generated (since M is a finitely generated proper ideal of A and A is a
weakly-Noetherian ring). Therefore, A is a Noetherian ring. !

Next, we examine the transfer of weakly-Noetherian property to trivial ring ex-
tensions.

Theorem 2. Let A be a ring, E be an A-module, and R := A ∝ E be the trivial
ring extension of A by E. Then:
(1) (a) If R is a weakly-Noetherian ring, then so is A.
(b) Assume that E is a Noetherian A-module. Then R is a weakly-Noetherian ring if
and only if so is A .
(2) R is Noetherian if and only if A is Noetherian and E is a finitely generated A-
module.

Before proving the previous Theorem, we need some Lemmas.

Lemma 1. Let A be a ring and let I be an ideal of A. Then:
(1) If A is a weakly-Noetherian ring and I is a finitely generated ideal, then A

I is a
weakly-Noetherian ring.
(2) If A

I is a weakly-Noetherian ring and I is a Noetherian A-module, then A is a
weakly-Noetherian ring.

Proof. (1) Assume that A is weakly-Noetherian and I is a finitely generated ideal. Let
J1
I ⊆

J2
I be two ideals of A/I such that J2/I is a finitely generated proper ideal of A/I,

where I ⊆ J1 ⊆ J2 are ideals of A. Hence, J2 is finitely generated since I is finitely
generated. Then, J1 is finitely generated since J1 ⊆ J2 and A is weakly-Noetherian.
Therefore, J1I is a finitely generated ideal of A/I and A/I is weakly-Noetherian.
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(2) Assume that AI is weakly-Noetherian and I is a Noetherian A-module. Let
I1 ⊆ I2 be two ideals of A such that I2 is a finitely generated proper ideal of A. We
claim that I1 is finitely generated. Set J1 = I1 + I and J2 = I2 + I be two ideals of A
which contain I. Hence, J2I is a finitely generated ideal since

J2
I "

I2
I2∩I and I2 is finitely

generated. Then, J1I is finitely generated since
J1
I ⊆

J2
I and

A
I is weakly-Noetherian. But

I1∩ I is finitely generated since I1∩ I ⊆ I and I is a Noetherian A-module. Therefore, I1
is a finitely generated ideal since J1

I "
I1
I1∩I ). Hence, A is a weakly-Noetherian ring. !

Lemma 2. [10, Theorem 8, p. 5]
Let R be a ring, then R is a Noetherian ring if and only if every prime ideal in R is
finitely generated.

Proof of Theorem 2. (1) (a) Assume that R is a weakly-Noetherian ring. Let I1 ⊆ I2 be
two ideals of A such that I2 is a finitely generated proper ideal of A. Our aim is to show
that I1 is a finitely generated ideal of A. Hence, I2 ∝ I2E is a finitely generated ideal of
R and so I1 ∝ I1E is a finitely generated ideal of R (since I1 ∝ I1E ⊆ I2 ∝ I2E and R is
a weakly-Noetherian ring). Therefore, I1 is a finitely generated ideal of A and so A is a
weakly-Noetherian ring.
(b) If R is weakly-Noetherian, then so is A by (1). Conversely, assume that A is weakly-
Noetherian and E is an A-module Noetherian. Then 0 ∝ E is an R-module Noetherian
and so R is weakly-Noetherian by Lemma 1 (2) (since R

0∝E " A), as desired.
(2) Assume that R is Noetherian and let I be an ideal of A. Then, J = I ∝ E is a finitely
generated ideal of R since R is Noetherian. Set J :=

∑n
i=1R(ai,ei) where ai ∈ I and ei ∈ E

for all i. Then, I =
∑n
i=1 Aai is a finitely generated ideal of A and so A is a Noetherian

ring.
Now, we show that E is a finitely generated A-module. The ideal J := 0 ∝ E of R is
finitely generated. So, there exists (0,ei) ∈ J such that J =

∑n
i=1R(0,ei) = 0 ∝

∑n
i=1 Aei.

Then, E =
∑n
i=1 Aei is a finitely generated A-module, as desired.

Conversely, assume that A is a Noetherian ring and E is a finitely generated A-module.
We wish to show that R is a Noetherian ring. For that, let us consider a prime ideal
J of R and prove that J is finitely generated. By ([8],Theorem 25.1.3), there exists
a prime ideal I of A such that J := I ∝ E. Let I =

∑n
i=1 Aai for some ai ∈ I since A

is a Noetherian ring and let E :=
∑n
i=1 Aei for some ei ∈ E as it is a finitely generated

A-module. Therefore, it is clear that J =
∑n
i=1R(ai,0)+

∑n
i=1R(0,ei) and this completes

the proof of Theorem 2. !

The following Corollary is an immediate consequence of Theorem 2.

Corollary 1. Let D be a domain, K := q f (D), E be a K-vector space, and
R := D ∝ E be the trivial ring extension of D by E. Then:
(1) R is a weakly-Noetherian ring if and only if D is a field.
(2) R is Noetherian if and only if D is a field and E is a K-vector space with finite rank.

Proof. Let R be a weakly-Noetherian ring. We claim that D is a field. Deny. Let d be



On weakly-Noetherian Rings 293

a regular element of D. Then (d,0) is a regular element of R and so R is Noetherian
by Theorem 1 (2) since it is weakly-Noetherian, a contradiction with [6, Theorem 2.8
(1)]. Hence, D is a field, as desired.
(2) Straightforward. !

Proposition 1. Let (A,M) be a local ring where M is its maximal ideal, E be a
finitely generated A-module with ME = 0, and R := A ∝ E be the trivial ring extension
of A by E. Then R is a weakly-Noetherian ring if and only if A is a weakly-Noetherian
ring.

Before proving Proposition 1, we need the following Lemma.

Lemma 3. Let (A,M) be a local ring where M is its maximal ideal, and E be a
finitely generated A-module with ME = 0. Then, E is an A-module Noetherian.

Proof. Let F be an A-submodule of E. We claim that F is a finitely generated A-
module. Indeed, F is an (A/M)-vector subspace of E since MF ⊆ ME = 0. Hence, F is
a finitely generated (A/M)-vector space as E and so F is a finitely generated A-module.
Therefore, E is an A-module Noetherian, as desired. !

Proof of Proposition 1. If R is weakly-Noetherian, then so is A by Theorem 1 (1). Con-
versely, if A is weakly-Noetherian, then so is R by Theorem 2 (1) (b) and Lemma 3. !

Proposition 1 enriches the literature with new examples of non-Noetherian
weakly-Noetherian rings, as shown below.

Example 2. Let K be a field and R = (K ∝ K∞) ∝ (K∝K∞0∝K∞ ). Then:
(1) R is a weakly-Noetherian ring by Proposition 1 since K ∝ K∞ is weakly-Noetherian.
(2) R is not Noetherian by Theorem 2 (2) since K ∝ K∞ is not Noetherian.

We know that a Noetherian ring is weakly-Noetherian and coherent ring too.
The following examples show that there is no relationship between weakly-Noetherian
and coherent properties.

Example 3. Let K be a field, X1,X2, ..... be an indeterminates over K, and R :=
K[[X1,X2,X3...Xn, ...]] be the ring of power series in X1,X2, ... over K. Then:
(1) R is coherent.
(2) R is not weakly-Noetherian.

Proof. (1) R is a coherent domain by [[5], Corollary 2.3.4, p.48].
(2) By Theorem 1 (2) since R is a non-Noetherian domain. !

Example 4. Let K be a field and R := K ∝ K∞. Then:
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(1) R is weakly-Noetherian by Example 2.1.
(2) R is not coherent by [11, Theorem 3.4].

In the polynomial ring, we have:

Proposition 2. Let R be a ring and X be an indeterminate over R. Then R[X] is
weakly-Noetherian if and only if R is Noetherian.

Proof. Assume that R[X] is weakly-Noetherian. Then, R[X] is Noetherian since X is a
regular element of R[X] and so R is Noetherian. The converse is clear. !

Next, we study the transfer of the weakly-Noetherain propery to direct products.

Proposition 3. Let (Ri)i=1,..,n be a family of ring. Then,
∏n

i=1Ri is weakly-
Noetherian if and only if Ri is Noetherian for each i= 1, . . . ,n (i.e., if and only if

∏n
i=1Ri

is Noetherian).

Proof. By induction on n, it suffices to prove the assertion for n = 2.
If R1 and R2 are Noetherian, then R1×R2 is Noetherian and so weakly-Noetherian.
Conversely, assume that R1×R2 is weakly-Noetherian. We claim that R1 is Noetherian
(the same proof holds for R2). Indeed, let I be a proper ideal of R1. Then, I×0 ⊆ R1×0
are two proper ideals of R1 ×R2. Hence, I × 0 is a finitely generated ideal of R1 ×R2
since R1 ×R2 is weakly-Noetherian and R1 ×0 is a finitely generated ideal of R1 ×R2.
Therefore, I is a finitely generated ideal of R1 and this completes the proof of Theorem
2.13.

!

Let R be a ring and I be a proper ideal of R. The amalgamated duplication of a
ring R along an ideal I is a subring of R×R, defined by R !" I := {(r,r+ i)/r ∈ R, i ∈ I}.
It is easy to see that, if Πi (i = 1,2) are the projection of R×R on R, then Πi(R !" I) = R.
Hence, if Oi = ker(Πi|R!"I), then (R !" I)/Oi " R. Moreover, O1 = {(0, i)/i ∈ I}, O2 =
{(i,0)/i ∈ I} and O1∩O2 = (0).
As consequence of the previous fact we have the following result.

Theorem 3. Let R be a ring, I be a proper ideal of R, and R !" I the amalgamated
duplication of a ring R along I. Then:
(1) If R !" I is a weakly-Noetherian ring and I is a finitely generated ideal of R, then R
is a weakly-Noetherian ring.
(2) If R is a weakly-Noetherian ring and I is a Noetherian R-module, then R !" I is
weakly-Noetherian.
(3) Assume that R contains a regular element. Then R is weakly-Noetherian if and only
if R !" I is Noetherian.
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Proof. (1) Assume that R !" I is weakly-Noetherian. Then R is weakly-Noetherian by
Lemma 2.4(1) since O1 (or since O2) is finitely generated ideal of R !" I (since I is
finitely generated ideal of R) and (R !" I)/Oi " R for i = 1,2 .
(2) Suppose R is weakly-Noetherian. Then R !" I is weakly-Noetherian by Lemma 1
(2) since O1 (or since O2) is Noetherian (R !" I)-modules (because I is a Noetherian
R-module) and (R !" I)/Oi " R for i = 1,2.
(3) Assume that R is weakly-Noetherian. Then, R is Noetherian since it contains a
regular element and so R !" I is Noetherian. The converse is clear. !

Theorem 3 enriches the literature with new examples of non-Noetherian weakly-
Noetherian rings, as shown below.

Example 5. Let K be a field, R = K ∝ K∞, and let I := 0 ∝ K∞. Then:
(1) R !" I is a weakly-Noetherian ring by Theorem 3 (2) since K ∝ K∞ is weakly-
Noetherian and I is a Noetherian R-module.
(2) R !" I is not Noetherian since R is not Noetherian.
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