
RENDICONTI
DEL SEMINARIO
MATEMATICO

Università e Politecnico di Torino

Forty years of Analysis in Turin
A conference in honour of Angelo Negro

Edited by M. Badiale, P. Caldiroli, A. Capietto, E. Priola

CONTENTS

F. Alessio, Periodic and Heteroclinic type solutions for systems of Allen-Cahn
equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

V. Chiadò Piat, Homogenization of spectral problems
and localization effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

M. Codegone, Compensated Compactness in Homogenization Theory . . . . . 21
P. Colli - G. Gilardi - P. Podio-Guidugli - J. Sprekels, Continuous dependence

for a nonstandard Cahn-Hilliard system with nonlinear atom mobility . . 27
F. Flandoli - M. Gubinelli - E. Priola, Remarks on the stochastic transport equa-

tion with Hölder drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B. Franchi - M.C. Tesi, A Qualitative Model for Aggregation-Fragmentation and

Diffusion of β-Amyloid in Alzheimer’s disease . . . . . . . . . . . . . . . 75
E. Serra, On a conjecture of De Giorgi concerning nonlinear wave equations . 85
G. Zampieri, Weak instability of Hamiltonian equilibria . . . . . . . . . . . . . 93

Volume 70, N. 1 2012



RENDICONTI DEL SEMINARIO MATEMATICO 2012

EXECUTIVE EDITOR

Marino Badiale

EDITORIAL COMMITTEE

Alessandro Andretta, Anna Capietto, Alberto Collino, Catterina Dagnino, Carla
Massanza, Jacobo Pejsachowicz, Franco Pellerey, Paolo Tilli, Ezio Venturino

CONSULTING EDITORS

Laurent Desvillettes, Anthony V. Geramita, Michael Ruzhansky

MANAGING COMMITTEE

Paolo Caldiroli, Sandro Coriasco, Antonio Di Scala, Margherita Fochi, Guido Rossi

Proprietà letteraria riservata
Autorizzazione del Tribunale di Torino N. 2962 del 6.VI.1980

DIRETTORE RESPONSABILE

Alberto Collino

QUESTO FASCICOLO È STAMPATO CON IL CONTRIBUTO DI:
UNIVERSITÀ DEGLI STUDI DI TORINO

POLITECNICO DI TORINO



Rend. Sem. Mat. Univ. Politec. Torino
Vol. 70, 1 (2012), 1 – 9
Forty years of Analysis in Turin
A conference in honour of Angelo Negro

F. Alessio∗

PERIODIC AND HETEROCLINIC TYPE SOLUTIONS FOR
SYSTEMS OF ALLEN-CAHN EQUATIONS

Abstract. We consider a class of semilinear elliptic system of the form

(1) −Δu(x,y)+∇W (u(x,y)) = 0, (x,y) ∈ R2,

where W : R2 → R is a double well non negative symmetric potential. We show, via varia-
tional methods, that if the set of solutions to the one dimensional system −q̈(x)+∇W (q(x))=
0, x ∈ R, which connect the two minima of W as x→ ±∞ has a discrete structure, then (1)
has infinitely many layered solutions with prescribed energy.

1. Introduction

We consider semilinear elliptic system of the form

(2) −Δu(x,y)+∇W (u(x,y)) = 0, (x,y) ∈ R2,

whereW ∈C2(R2,R) satisfies

(W1) there exist a± ∈R2 such thatW (a±) = 0,W (ξ)> 0 for every ξ∈R2 \{a±} and
D2W (a±) are definite positive;

(W2) liminf
|ξ|→+∞

W ′(ξ) ·ξ> 0;

(W3) W (−x1,x2) =W (x1,x2) for all (x1,x2) ∈ R2;

The system (2) is the rescaled stationary system associated to the reaction-
diffusion system

(3) ∂tu(t,x,y)− ε2Δu(t,x,y)+∇W (u(t,x,y)) = 0, (x,y) ∈Ω⊂ R2, t > 0

which describes two phase physical systems or grain boundaries in alloys. As ε →
0+, solutions to (3) tends almost everywhere to global minima of W and sharp phase
interfaces appear (see e.g. [10], [18] and [21]). Then, the expansion of such solutions
in a point on the interface presents, as first term, the system (2). From this point of
view, two layered transition solutions correspond to solutions u of (2) satisfying the
asympotic conditions

(4) lim
x→±∞

u(x,y) = a± uniformly with respect to y ∈ R.

S. Alama, L. Bronsard and C. Gui in [1] studied the existence of solutions to
(2) which satisfy the asymptotic condition (4) for x→ ±∞ while as y→ ±∞ tends to
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2 F. Alessio

two different one dimensional trajectories, precisely, solutions to the one dimensional
associated problem

(5)

{
−q̈(x)+∇W (q(x)) = 0, x ∈ R

lim
t→±∞

q(t) = a±.

which are furthermore minima of the action

V (q) =
∫
R

1
2 |q̇|

2 +W (q)dx

over the class of trajectories connecting a± as x → ±∞. Such solutions are found
under conditions (W1) and (W3), requiring a fast growth at infinity and assuming that
there exist a finite number k ≥ 2 of geometrically distinct one dimensional minimal
heteroclinic connections. In [20] M. Schatzman proves the same result, considering
a non symmetric potential, assuming that there exists two geometrically distinct one
dimensional heteroclinic connections which are supposed to be non degenerate, i.e.
the kernel of the corresponding linearized operators are one dimensional.

If u is scalar valued, much is known about the corresponding heteroclinic prob-
lem (2)-(4). In this scalar setting, E. De Giorgi in [15] has conjectured that any entire
bounded solution of −Δu+u3 −u= 0 with ∂x1u(x)> 0 in Rn for n≤ 8 is in fact one-
dimensional, i.e., modulo space roto-traslations, it coincides with the unique solution
of the one dimensional heteroclinic problem

(6)

{
−q̈(x)+q(x)3 −q(x) = 0, x ∈ R,

q(0) = 0 and lim
x→±∞

q(x) =±1,

The conjecture has been proved for n = 2 by N. Ghoussoub and C. Gui in [14] and
then by L. Ambrosio and X. Cabrè in [7] for n= 3 (see also [2]), even for more general
double well potentials W . A further step in the proof of the De Giorgi conjecture has
been done by O. Savin in [19] where, for n ≤ 8, the same one dimensional structure
is proved for solutions u such that ∂x1u(x) > 0 on Rn and limx1→±∞ u(x) = ±1 for
all (x2,x3, ...,xn) ∈ Rn−1 (see [8], [9] and [13] for related problems). That result is
completed in [11] where the existence of entire solutions without any one dimensional
symmetry which are increasing and asymptotic to ±1 with respect to the first variable
is proved in dimension n> 8.

Here we want to discuss some results obtained in [3] for the problem (2)-(4),
where, using a global variational procedure, it is proved that if the minimal set of one
dimensional heteroclinic connections satisfies a suitable discreteness assumption then
there exist infinitely many solutions to the problem with prescribed energy, which can
be classified as homoclinic, heteroclinic or periodic solutions.
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2. Statement of the main Theorem and outline of the proof

To explain precisely the result and to give an idea of the procedure, let us begin con-
sidering the problem already considered in [1] and [20]. So let us define

Γ= {q− z0 ∈ H1(R)2 | q(x)1 =−q(−x)1, q(x)2 = q(−x)2},

where q(x) = (q(x)1,q(x)2) and z0 ∈ C∞(R,R2) is fixed in such a way that z0(x)1 =
−z0(−x)1, z0(x)2 = z0(−x)2 and z0(x) = a+ for x> 1, be the space of one dimensional
symmetric trajectories connecting a± as x→±∞. Setting m= infΓV (q), let

M = {q ∈ Γ |V (q) = m}

be the minimal set of one dimensional symmetric heteroclinic connections. As it is
well known, M is compact, not empty and consists of solutions to (5) in Γ.
Assuming that M satisfies the discreteness assumption

(∗) M =M +∪M − with distL2(M +,M −)> 0,

we will look for bidimensional solution u with prescribed different asymptotes as y→
±∞ and precisely

(7) distL2(u(·,y),M ±)→ 0 as y→±∞.

Note that condition (∗) (as the discreteness assumption made in [1] and [20]) does not
hold in the scalar case, where the minimal set of one dimensional symmetric solutions
M is in fact constituted by the unique heteroclinic solution of (6).

Under assumption (∗), bidimensional solutions satisfying (7) can be obtained
using a global variational approach (instead of the approximating procedure used in [1]
and [20]), considering a renormalized action functional over a suitable space.

As in [16] and [17] for Hamiltonian ODE systems and in [4] for scalar Allen-
Cahn equations, we consider the renormalized action functional

ϕ(u) =
∫
R

1
2‖∂yu(·,y)‖

2
L2(R)2 +(V (u(·,y))−m) dy

which is well defined on the space

H = {u ∈ H1
loc(R

2,R2) |u(·,y) ∈ Γ for a.e. y ∈ R}.

Note that ϕ is weakly lower semicontinuous on H and for every u ∈ H , since
V (u(·,y))≥ m for a.e. y ∈ R, there results ϕ(u)≥ 0 while ϕ(q) = 0 for all q ∈M .
We are interested on solutions which satisfies the right asymptotic conditions as
y→±∞. Such solutions can be reached as minima of ϕ over the class

H m = {u ∈H | liminf
y→±∞

distL2(u(·,y),M ±) = 0}.
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In fact, for all u ∈H , for all y1 < y2 we have

‖u(·,y1)−u(·,y2)‖2
L2 ≤ (y2 − y1)

∫ y2

y1
‖∂yu(·,y)‖2

L2 dy

and in particular, if ϕ(u) < +∞ then the map y ∈ R +→ u(·,y) ∈ Γ is continuous with
respect to the L2(R)2 metric. Moreover, if u ∈H and y1 < y2, then

ϕ(u)≥
(

2
y2−y1

∫ y2

y1
(V (u(·,y))−m) dy

)1/2
‖u(·,y1)−u(·,y2)‖L2 .

and in particular, if V (u(·,y))≥ m+ν for all y ∈ (y1,y2) and some ν> 0, then

ϕ(u)≥ 1
2(y2−y1)

‖u(·,y1)−u(·,y2)‖2
L2 +ν(y2 − y1)≥

√
2ν‖u(·,y1)−u(·,y2)‖L2 .

By the previous estimates, if u ∈ H m we have control on the transition time
from M − to M + and so concentration in the y variable. Indeed it can be proved

LEMMA 1. There exists ν ∈ (0,m) such that if u ∈ H m, ϕ(u) < +∞ and for
some y0 ∈ R, V (u(·,y0))< m+ν then, either

(i) distL2(u(·,y),M −)≤ d0 for all y≤ y0; or

(ii) distL2(u(·,y),M +)≤ d0 for all y≥ y0,

where d0 := 1
5 distL2(M +,M −).

Lemma 1, together with the symmetry in the x variable, allows to get compact-
ness of minimizing sequences in H m. Indeed, setting µ := infH ϕ we have

LEMMA 2. Let (un) ⊂ H m be such that ϕ(un) → µ as n → ∞ and such that
distL2(un(·,0),M −) = d0 for all n ∈ N. Then, there exists u ∈ H such that, up to a
subsequence,

(i) un−u→ 0 as n→ ∞ weakly in H1
loc(R

2)2,

(ii) there exists L0 > 0 such that distL2(u(·,y),M −) ≤ d0 for all y ≤ −L0, and
distL2(u(·,y),M +)≤ d0 for all y≥ L0.

By the invariance with respect to the y-translation of ϕ and the definition of
H m, we have that there exists a minimizing sequence (un) which verifies the condition
distL2(un(·,0),M −) = d0 for all n ∈ N. Then, by Lemma 2, such sequence weakly
converge in H1

loc(R
2)2 to a function u ∈H such that

lim
y→±∞

distL2(u(·,y),M ±) = 0.

Then, u ∈ H m and since ϕ is weakly semicontinuous we can conclude that ϕ(u) = µ,
proving the existence of at least one bidimensional solution to (2) in H m, as already
proved in the Theorem by Alama Bronsard and Gui but here in a slightly more general
setting
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THEOREM 1. If (W1)-(W3) and (∗) hold, then there exists u ∈ C 2(R2,R2) solu-
tion to (2) such that u(x,y)→ a± as x→±∞ uniformly with respect to. y ∈ R and

lim
y→±∞

distH1(u(·,y),M ±) = 0.

Now, note that if u ∈H solves the system (2) then

∂2
yu(x,y) =−∂2

xu(x,y)+∇W (u(x,y))︸ ︷︷ ︸
V ′(u(·,y))

In other words u defines a trajectory y ∈R +→ u(·,y) ∈ Γ solution to the infinite dimen-
sional Lagrangian system

d2

dy2 u(·,y) =V ′(u(·,y))

which has as equilibria the one dimensional solutions q ∈ M . From such point of
view, bidimensional solutions in H m are heteroclinic type solutions connecting M ± as
y→±∞.

Note that the energy is conserved, indeed if u ∈ H solves (2) on R× (y1,y2)
then

Eu(y) = 1
2‖∂yu(·,y)‖

2
L2 −V (u(·,y))

is constant on (y1,y2). In particular, for the heteroclinic type solution u ∈H m given in
Theorem 1 we have that Eu(y) =−m for every y ∈ R and that it connects in Γ the two
component M± as y→±∞.

Now, note that if we take c ∈ (m,m+λ) with λ> 0 small enough, by (∗) we get

(∗c) {q ∈ Γ |V (q)≤ c}= V −
c ∪V +

c with distL2(V −
c ,V +

c )> 0.

A natural problem, which generalizes the above one, is to look for a solution u ∈ H
to (2) with energy Eu(y) = −c for every y ∈ R which connects in Γ the sets V ±

c as
y→±∞.
In such a caseV (u(·,y))=−Eu(y)+ 1

2‖∂yu(·,y)‖
2
L2 ≥ c for every y∈R and so solutions

with energy −c can be sought as minima of the new renormalized functional

ϕc(u) =
∫
R

1
2‖∂yu(·,y)‖

2
L2 +(V (u(·,y))− c) dy

on the space

Hc = {u ∈H | liminf
y→±∞

distL2(u(·,y),V ±
c ) = 0 and V (u(·,y))≥ c for a.e. y ∈ R}.

Note that if u ∈ Hc then V (u(·,y)) ≥ c for a.e. y ∈ R and so the functional ϕc is well
defined on Hc with values in [0,+∞].

The functional ϕc enjoys most of the properties of the functional ϕ and the
above concentration-compacteness results work even in this setting. In particular a
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suitable y-translated minimizing sequences of ϕc in Hc weakly converge in H1
loc(R

2)2

to a function uc ∈ H . However, differently to the case considered above, we do not
know if the limit point uc satisfies the constraint V (uc(·,y))≥ c for a.e. y ∈ R and that
hence uc ∈Hc and ϕc(uc) = µc := infHc ϕc. Anyhow we can prove that such condition
holds true on the interval (sc, tc) where sc and tc are defined as

sc = sup{y ∈ R/distL2(uc(·,y),V −
c )≤ d0 and V (uc(·,y))≤ c}

and
tc = inf{y> sc /V (uc(·,y))≤ c},

where we agree that sc = −∞ whenever V (uc(·,y)) > c for every y ∈ R such that
distL2(uc(·,y),V −

c )≤ d0 and that tc =+∞ whenever V (uc(·,y))> c for all y> sc (note
that this is the case that occurs if c= m). Indeed we have

LEMMA 3. For every [y1,y2] ⊂ (sc, tc) there results infy∈[y1,y2]V (uc(·,y)) > c.
Moreover,

(i) lim
y→s+c

distL2u(·,y),V −
c ) = lim

y→t−c
distL2u(·,y),V +

c ) = 0;

(ii) liminf
y→s+c

V (uc(·,y)) = liminf
y→t−c

V (uc(·,y)) = c;

(iii) ϕc,(sc,tc)(uc) :=
∫ tc
sc

1
2‖∂yu(·,y)‖

2
L2 +(V (u(·,y))− c) dy= µc.

In particular, by Lemmas 3 and the definition of sc and tc, we derive that if sc ∈ R then
uc(·,sc) ∈ V −

c and if tc ∈ R then uc(·, tc) ∈ V +
c . On the other hand, if sc = −∞ then

distL2(uc(·,y),V −
c )→ 0 as y→−∞ while if tc =+∞ then distL2(uc(·,y),V +

c )→ 0 as
y→+∞. Using this properties, by Lemma 3, we get

∫
R2
∇uc∇h+∇W (uc)hdxdy= 0 for all h ∈C∞0 (R× (sc, tc))2

and so that that uc is a weak solution to (2) in R× (sc, tc). Then, it is standard to show
that uc is in fact a classical solution to (2) on R× (sc, tc). Moreover, by Lemma 3, the
minimality property of uc can be used to prove that

Euc(y) = 1
2‖∂yuc(·,y)‖

2
L2 −V (uc(·,y)) =−c for all y ∈ (sc, tc)

and hence, by Lemma 3-(ii), that uc verifies the weak Neumann condition

liminf
y→s+c

‖∂yuc(·,y)‖L2 = liminf
y→t−c

‖∂yuc(·,y)‖L2 = 0.

In particular, if sc, tc ∈ R, we can recover from uc, by reflection, a brake orbit type
entire solution. Precisely, setting Tc = tc− sc, let

vc(x,y) =

{
uc(x,y+ sc) if x ∈ R and y ∈ [0,Tc)
uc(x, tc+Tc− y) if x ∈ R and y ∈ [Tc,2Tc]
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and
vc(x,y) = vc(x,y+2kTc) for every (x,y) ∈ R2, k ∈ Z.

Then we have

PROPOSITION 1. If sc, tc ∈ R, then the function vc ∈ C2(R2,R2) is a solution
of problem (2)-(4). Moreover, ∂yvc(·,0)≡ ∂yvc(·,Tc)≡ 0, vc(·,0) ∈ V −

c and vc(·,Tc) ∈
V +
c .

On the other hand, if sc = −∞ (resp. tc = +∞), we can prove that the α-limit
(resp. ω-limit) of uc is constituted by critical points of V at level c.
Hence, if sc =−∞ and tc =+∞, then uc is an entire solution to (2) such that

lim
y→±∞

distH1(uc(·,y),K ±
c ) = 0

where K ±
c = {q ∈ V ±

c |V ′(q) = 0 and V (q) = c}. That is, vc ≡ uc is an entire solution
to (2) of heteroclinic type. Note that this is the case if c= m.
Finally, if sc =−∞ and tc ∈ R or sc ∈ R and tc =+∞, from uc we can construct, again
by reflection, an homoclinic type solution. Precisely, if sc = −∞ and tc ∈ R, let us
consider the function

vc(x,y) =

{
uc(x,y) if x ∈ R and y≤ tc
uc(x,2tc− y) if x ∈ R and y> tc

while if sc ∈ R and tc =+∞, let

vc((x,y) =

{
uc(x,y) if x ∈ R and y≥ sc
uc(x,2sc− y) if x ∈ R and y< sc

Then we have

PROPOSITION 2. If sc = −∞ and tc ∈ R (or if sc ∈ R and tc = +∞) then vc ∈
C2(R2,R2) is a solution of problem (2). Moreover, vc(·, tc) ∈ V +

c , ∂yvc(·, tc)≡ 0 (resp.
vc(·,sc) ∈ V −

c , ∂yvc(·,sc) ≡ 0) and there exists q0 ∈ K −
c (resp. q0 ∈ K +

c ) such that
liminfy→±∞ ‖vc−q0‖H1 = 0.

Collecting Propositions 1 and 2, we obtain our main result

THEOREM 2. For every c ∈ (m,m+ λ) with λ > 0 small enough, there exists
vc ∈C2(R2,R2) solution to (2)-(4) such that Evc(y) =−c for all y ∈ R. Moreover

(i) if tc =+∞ then distH1(vc(·,y),K +
c )→ 0 as y→+∞,

(ii) if sc =−∞ then distH1(vc(·,y),K −
c )→ 0 as y→−∞,

(iii) if tc ∈ R or sc ∈ R then, respectively, vc(·, tc) ∈ V +
c and ∂yvc(·, tp) ≡ 0 , or

vc(·,sc) ∈ V −
c and ∂yvc(·,sc)≡ 0.
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In particular if c is a regular value for V then tc, sc ∈R and there exists Tc > 0 such that
vc(x,y+ 2Tc) = vc(x,y) for all (x,y) ∈ R2, ∂yvc(·,0) ≡ ∂yvc(·,Tc) ≡ 0, vc(·,0) ∈ V +

c
and vc(·,Tc) ∈ V −

c .

Note that the Theorem guarantees the existence of a brake orbit type solution
at level c whenever c ∈ (m,m+ λ) is a regular value of V . As a consequence of the
Sard Smale Theorem and the local compactness properties of V , it can be proved that
the set of regular values of V is open and dense in [m,m+λ] (see Lemma 2.9 in [6]).
Then, Theorem 2 provides in fact the existence of an uncountable set of geometrically
distinct two dimensional solutions of (2) of brake orbit type.

The variational procedure that we use was already introduced and used in the
framework of scalar non autonomous Allen-Cahn equations in [12] and [5] where the
existence of infinitely many bidimensional solutions is given. Energy prescribed brake
orbit type solution were introduced and found in [6] for the same kind of non au-
tonomous scalar equations.
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HOMOGENIZATION OF SPECTRAL PROBLEMS
AND LOCALIZATION EFFECTS

Abstract. We describe classical and new results concerning the limit behaviour of spectral
problems in a periodically perforated domain, with special attention to some cases where the
eigenfunctions localize.

1. Introduction

My first step into mathematical research was the study of the theory of homogenization,
applied to linear e non linear elliptic equations. The subject was suggested to me by
professor Angelo Negro, to whom I am deeply grateful for having introduced me to
several beautiful topics in mathematical analysis.

The study of spectral problems in periodically perforated domains is developed,
since long time, by many authors (see, for example, [15], [13], [11]) and has a number
of motivations and applications. One important example is the field of optimal design
(see [3], [1], [4]). Starting from the simplest case of the Laplace operator, it is known
that the knowledge of its spectrum depends on the boundary conditions and on the ge-
ometry of the domain under consideration. An alternative point of view is to say that
the knowledge of the spectrum of a boundary value problem gives information about
the geometry of the domain. This aspect is particularly important in shape optimization
problems, where the shape of the domain is an unknown, and the goal is to choose it
in a way to obtain, for example, certain desired modes of vibration. There are several
techniques to study the effect of variations of a domain on the corresponding solu-
tions, or eigenvalues and eigenfunctions. Classical methods date back to Hadamard
([10]), and are based on smooth variations of the boundary of a given initial domain,
in the normal direction. This approach excludes non smooth boundary, and variations
that change the topology, as, for example, create holes. More recent topological opti-
mization methods are able to include topological variations and take into account the
knowledge of homogenization of boundary value problems and of spectral problems in
perforated domains.

In Section 2 of this paper we present some of the results obtained in collabora-
tion with I. Pankratova and A. Piatnitski. Details and proofs are contained in [6], where
we deal with a spectral problem for an elliptic operator in divergence form, comple-
mented by Fourier-type boundary conditions on the surface of the holes. The presence
of a non periodic coefficient in the boundary conditions causes a number of interest-
ing effects. First of all, under the assumption that the non periodic coefficient has a
unique minimum point, a localization phenomenon holds: namely, for any k ∈ N the
k-th eigenfunction of the problem is asymptotically localized, in a small neighbour-
hood of the minimum point, as the periodicity size vanishes. In particular, the principal

11
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Σε

Ωε

Figure 1: Domain Ωε

eigenfunction converges to a δ-function supported at the minimum point. Moreover,
the localization process takes place in the scale ε1/4, and it is possible to construct
asymptotic expansions which are in integer powers of ε1/4. In this scale the leading
term of the asymptotic expansion for the k-th eigenfunction can be proved to be the
k-th eigenfunction of an auxiliary harmonic oscillator operator.

Different results for spectral problems of Steklov type are contained in [5],
while a study nonlinear variational problems with Fourier boundary conditions can
be found in [7].

In Section 3 we address some related papers where other localization phenom-
ena are found out.

2. A problem with Fourier boundary conditions

Ωε =Ω\
⋃
i∈Iε

T iε , Iε = {i ∈ Zd : T iε ⊂Ω},

where T iε = ε(T + i), and T ⊂⊂ (0,1)d is a compact subset of the unit cube, with
non empty interior. We denote by ω = (0,1)d \ T the open unit cell and by Σ = ∂T
the boundary of the perforation. In the “periodically perforated” domain Ωε ⊂ Rd we
consider the following spectral problem:

(1)






−div(aε∇uε) = λεuε, in Ωε,

aε∇uε ·n=−q(x)uε, on Σε,

uε = 0, x ∈ ∂Ω,

where aε(x) = a
( x
ε

)
. Notice that Ωε remains connected, the perforation does not inter-

sect the boundary ∂Ω, and

∂Ωε = ∂Ω
⋃
Σε, Σε =

⋃
i∈Iε

Σiε, Σiε = ε(Σ+ i).
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The boundary conditions are known as Fourier, or Robin conditions. We make the
following assumptions:

(H0) ∂Ωε = ∂Ω∩Σε, where Ω⊂ Rd is a bounded and regular open set;

(H1) a(y) is a symmetric, uniformly elliptic d×d-matrix in Rd ;

(H2) the coefficients ai j(y) ∈ L∞(Rd) are 1-periodic in all variables;

(H3) the function q(x) ∈C3(Rd) is non negative;

(H4) the function q(x) attains its global minimum at x= 0∈Ω, and as x→ 0 it satisfies

q(x) = q(0)+
1
2
xT H(q)x+o(|x|2),

with positive definite Hessian matrix H(q).

One interesting feature of this problem is the presence of the ‘slow’ variable x in the
coefficient q, in the boundary condition. This fact causes a number of interesting ef-
fects, among which the localization of eigenfunctions. The eigenvalue problem (1) has
the following weak formulation:

find (λε,uε) ∈ C×H1(Ωε), uε = 0 on ∂Ω and uε 0= 0, such that

(2)
∫

Ωε

aε∇uε ·∇vdx+
∫

Σε

quε vdσ= λε
∫

Ωε

uε vdx, v ∈ H1
0 (Ω).

Under the above assumptions (H0)-(H4), it is easy to prove the following result.

LEMMA 1. The spectrum of problem (2) is real and discrete

0 < λε1 < λε2 ≤ · · ·≤ λεj ≤ · · ·→+∞.

Each eigenvalue has finite multiplicity. The corresponding normalized eigenfunctions
∫

Ωε

uεi uεj dx= δi j,

form an orthonormal basis of L2(Ωε). Moreover, the following variational characteri-
zation for λε1 holds true:

(3) λε1 = inf
v∈H1

0 (Ωε,∂Ω)
‖v‖L2(Ωε)

=1

∫

Ωε

aε∇v ·∇vdx+
∫

Σε

q(v)2 dσ.
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The main object of our study is the limit behaviour of (λε,uε) as ε→ 0. Using
q(x)≥ 0 from below, and H1

0 (Ωε)⊂H1
0 (Ωε,∂Ω) from above in the variational formula

(3) for λε1, we immediately see that

λε1,N ≤ λε1 ≤ λε1,D.

The two constants λε1,N , λε1,D are, respectively, the eigenvalues of the homogeneous
Neumann problem and of the homogeneous Dirichlet problem, i.e.,

(4)






−div(aε∇uε) = λεNuε, in Ωε,

aε∇uε ·n= 0 on Σε,

uε = 0, x ∈ ∂Ω,

and

(5)

{
−div(aε∇uε) = λεDuε, in Ωε,

uε = 0 on ∂Ωε.

The asymptotic behaviour of both problems has been investigated long ago by Vanni-
nathan in [15], together with the closely related Steklov problem. According to [15],
in the Neumann case (4), as ε→ 0 we have

λεN = λ0
N+ ελ1

N+O(ε2)

and
uε = u0(x)+ εN

(x
ε

)
·Du0(x)+ . . . ,

with (λ0
N ,u0(x)) solutions of the homogenized spectral problem

(6)

{
−div(aN∇u) = λu, in Ω,

u= 0, x ∈ ∂Ω.

Here aN is the homogenized matrix of the boundary value problem with Neumann
condition on the boundary of the perforation studied by Cioranescu and Saint Jean
Paulin in [8]. The vector-valued function N is the first order corrector, defined by the
auxiliary boundary-value problem in the perforated periodicity cell

(7)






−div(a(y)(∇N j+ e j)) = 0 in ω,

a(y)∇N j ·n= 0 on Σ,

N j = N j(y) periodic ,
∫
ωN j(y)dy= 0,

and

(8) aN =
1
|ω|

∫
ω
a(y)(∇Ni+ ei)(∇N j+ e j)dy.
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In the Dirichlet case (5), instead,

λεD = ε−2λ0
D+O(ε2),

where λ0
D is the first eigenvalue of the Dirichlet spectral problem in the periodicity cell

ω

(9)






−div(a(y)∇v) = λv in ω,

v= 0 on Σ,

v= v(y) periodic .

In this case, the eigenfunctions, upon extension to zero out of Ωε, tend strongly to 0 in
H1

0 (Ω).
The Fourier spectral problem with periodic cefficients has been studied by Pas-

tukhova in [13], in the case

(10)






−div(aε∇uε) = λεuε, in Ωε,

aε∇uε ·n+b
(x
ε

)
uε = 0, on Σε,

uε = 0, x ∈ ∂Ω.

Also the comparison with this problem brings useful information to the solution of our
initial spectral problem (1), where the periodically oscillating term b

( x
ε

)
is replaced by

the function q(x) which depends on the ‘slow’ variable x. Indeed, for our problem the
following lemma holds true.

LEMMA 2. The first eigenvalue of problem (1) satisfies the estimate

1
ε
|Σ|d−1
|ω|d

q(0)+O(1) ≤ λε1 ≤
1
ε
|Σ|d−1
|ω|d

q(0)+O(ε−1/2), ε→ 0,

where |ω|d e |Σ|d−1 indicate, respectively, the d and (d− 1) dimensional measures of
the perforated cell ω and of the boundary of the perforation Σ.

To clarify the result, we note that, since q(x)≥ q(0), then

λε1 ≥ inf
v∈H1

0 (Ωε,∂Ω)
‖v‖L2(Ωε)

=1

{∫

Ωε

aε∇v ·∇vdx+q(0)
∫

Σε

(v)2 dσ
}
= νε1.

But νε1 coincides with the first eigenvalue of del Pastukhova’s problem (10), in the case
b( xε ) = q(0) 





−div(aε∇wε) = νεwε, in Ωε,

aε∇wε ·n=−q(0)wε, on Σε,
wε = 0, x ∈ ∂Ω.



16 V. Chiadò Piat

In [13] it is proved that

νε1 =
1
ε
|Σ|d−1
|ω|d

q(0)+O(1), ε→ 0.

Hence, the left-hand side inequality in Lemma 2 follows:

λε1 ≥
1
ε
|Σ|d−1
|ω|d

q(0)+O(1), ε→ 0.

Let us now examine the right-hand side inequality in Lemma 2. Choosing any v ∈
C∞0 (Ω) as test function in the variational characterizazion (3), one gets easily that

λε1 ≤C ε−1,

with a constantC independent of ε. But to get the same constant from above and below
requires a different choice of the test function. Choosing v(x/εα) with v ∈ C∞0 (Ω),
‖v‖L2(Rd) = 1 in the variational characterization (3) one can prove that the optimal
estimate is attained when α= 1/4 and obtains that

λε1 ≤
1
ε
|Σ|d−1
|ω|d

q(0)+O(ε−1/2), ε→ 0.

One can note that the optimal test functions concentrate at x = 0, the minimum point
of q(x), as ε→ 0. To be more precise, we can state the following definition and propo-
sition.

DEFINITION 1. We say that a family {wε(x)}ε>0 with

0 < c1 ≤ ‖wε‖L2(Ωε) ≤ c2

is concentrated at x0, as ε→ 0, if for any γ> 0 there is ε0 > 0 such that
∫

Ωε\Bγ(x0)

|wε|2 dx< γ, for all ε ∈ (0,ε0).

Here Bγ(x0) is a ball of radius γ centered at x0.

PROPOSITION 1. The first eigenfunction uε1 of problem (1) is concentrated in
the sense of Definition 1 at the minimum point of q(x), that is at x= 0.

The asymptotic behaviour of the eigenpairs of problem (1) is described in details
by the following theorem.

THEOREM 1. The following representation holds true

λεj =
1
ε
|Σ|d−1
|ω|d

q(0)+
µεj√
ε
, uεj(x) = vεj

( x
ε1/4

)
,
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where (µεj,vεj(z)) are such that µεj → µj, as ε→ 0, and µj is eigenvalue of the homoge-
nized problem

−div(aN∇v)+
1
2
|Σ|d−1
|ω|d

(zTH(q)z)v= µv, v ∈ L2(Rd),

where v= v(z), and aN is given by (8). Moreover, if µj is simple, then

‖vεj− v j‖L2(Rd) → 0, ε→ 0.

The proof of the above result is based on the following technique. Subtracting
1
ε
|Σ|
|ω|q(0) to both sides of the initial equation, and performing the change of variables

z= ε−1/4x, standard manipulations transform the original problem (1) into the follow-
ing rescaled problem






−div(aε(z)∇vε(z))−
1√
ε
|∂Y |d−1
|Y |d

q(0)vε = µε vε(x), in ε−1/4Ωε,

aε(z)∇vε(z) ·n=−ε1/4 q(ε1/4z)vε(z), on ε−1/4Σε,

vε(z) = 0, on ε−1/4∂Ω.

where
vε(z) = uε

(
x
ε1/4

)
, µε =

√
ε
(
λε−

1
ε
|∂Y |d−1
|Y |d

q(0)
)
.

The first step in the proof of Theorem 1 is to show an priori estimates for the
eigenvalues µεj

c≤ µε1 ≤C.

Then, the proof of the convergence of eigenvalues and eigenfunctions to those of the
limit problem in Rd follows, using various variational and compactness arguments, and
scaled trace and Poincaré-type inequalities.

3. Other problems with localization effects

The localization phenomenon in spectral problems should be well-know to physicists,
since a long time, and it has been observed in several mathematical works.

In the context of singular perturbation problems, paper [14] deals with the limit
behaviour of the first eigenvalue of a singularly perturbed non self-adjoint elliptic op-
erator, with smooth coefficients, defined on a compact Riemannian manifold. Self-
adjoint operators on a bounded subset of Rd are treated as a special case. Here, in
particular, the first normalized eigenfunction localises around the mimimum point of
the given potential.

In the field of homogenization problems, [2] deals with an operator with a large
locally periodic potential has been considered. The localization appears due to the
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presence of a large factor in the potential and the fact that the operator coefficients
depend on slow variable.

In a different context, in [9] the Dirichlet spectral problem for the Laplacian in
a thin 2d strip of slowly varying thickness is studied. Here the localization is observed
in the vicinity of the point of maximum thickness. The large parameter is the first
eigenvalue of 1d Laplacian in the cross-section.

Both in [2] and [9], under natural non-degeneracy conditions, the asymptotics
of the eigenpairs are described in terms of the spectrum of an appropriate harmonic
oscillator operator. However, the localization scale is of order

√
ε with ε being the

microscopic length scale.
Localization effect for the negative part of the spectrum are also found in [12]

where a spectral problem for locally periodic elliptic operators with sign-changing den-
sity function is considered.
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COMPENSATED COMPACTNESS IN HOMOGENIZATION
THEORY

Abstract. Homogenization theory studies the macroscopic behavior of a non-homogeneous
medium with a fine periodic structure. If the size of the period goes to zero the solution
of the problem, with some suitable hypotheses, converges to the solution of a so-called ho-
mogenized problem. The limit problem is achieved through a limit process of a product of
weakly convergent function sequences. In order to identify the limit product one can some-
times make use of appropriate test functions, but in general the right tool is compensated
compactness. This tool makes it possible to pass to the limit in a product of weakly conver-
gent functions under hypotheses where the curl of one factor is bounded and the divergence
of the other is compact. In this way homogenization theory becomes an interesting example
where compensated compactness has an important role.

1. Introduction

In the paper [7] A. Negro presents a time periodic boundary value problem for quasi-
stationary Maxwell equations in a non-homogeneous multiply connected domain Ω
(see figure 1). In this formulation some links are linear, but the characteristic relating
the magnetic field H to the magnetic induction B is non-linear. The non-homogeneity
of the medium has a natural approximation with a periodic fine structure of period εY
and discloses homogenization theory as a worthwhile tool. In the papers [4] and [3]
conductivity σ(y) is linear, strictly positive and bounded in the simply connected region
Y1 ⊆Y and is zero in Y2 ⊆Y , where Y =Y1

⋃
Y2 is the reference period, see, in figure 2,

the two-dimensional section of the reference period Y and of the periodical reproduc-
tion of εY . The non-linear magnetic characteristic χε(x,H) = χ( xε ,H) is supposed be
measurable, Lipschitz continuous and strictly monotone in H.

Figure 1: The domain Ω

The problem formulation then presents a linear part related to conductivity σε
and a non-linear part related to the magnetic characteristic χε. The parameter εY is the

21
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Figure 2: Two-dimensional section of the reference period Y and of the periodical
reproduction of εY .

period of the non-homogeneity of the medium and then the limit, when ε goes to zero,
is taken in the linear part σε and in the non-linear part χε. In order to emphasize the
use of compensated compactness, we simplify the problem taking into account only
the non linear characteristic in a more simple contest.

2. Variational formulation

We denote by
χ : R3 ×R3 → R3

a function such that, for every H ∈R3, χ(·,H) is Lebesgue measurable and εY -periodic
and there exist two constants l and L with 0 < l ≤ L<+∞ such that

(χ(x,H)−χ(x,H ′),H−H ′)≥ l|H−H ′|2

|χ(x,H)−χ(x,H ′)|≤ L |H−H ′|

for a.e. x ∈ Rn and for every H,H ′ ∈ Rn and χ(x,0) = 0 for a.e. x ∈ Rn.
Let us consider the following Dirichlet boundary value problem on the bounded

open subset Ω of Rn

(1)
{

−div
(
χ( xε ,∇u

ε)
)
= fε on Ω

uε ∈ H1
0 (Ω)

with fε strongly converging in H−1(Ω) to f . We can see that

(2)






∀ϕ ∈C∞0 (Ω) e ϕ≥ 0∫
Ω

(
(χ(x/ε,H)−χ(x/ε,H ′)) · (H−H ′)

)
ϕ(x)dx≥ 0

Now we recall some results in homogenization theory.
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3. Homogenization results

In order to obtain the limit process (see [8], [9] and [1]) of equation (1) we have to
solve a problem in the reference period Y . Find a function wλ(y) such that

(3)
{

−div
(
χ(y,λ+∇wλ(y))

)
= 0 in D′(Rn)

wλ(y) ∈ H1(Y ),Y −periodic and with mean value zero.

In homogenization theory it is proved that the problem (3) admits a unique solution.
We note

(4) wλε (x) = λ · x+ εwλ
(x
ε

)

then, replacing H and H ′ by ∇uε and ∇wλε , in equation (2), we get

(5)
∫
Ω

(
(χ(x/ε,∇uε)−χ(x/ε,∇wλε )) · (∇uε−∇wλε )

)
ϕ(x)dx≥ 0.

We remark that any term in the equation 5 weakly converges:

(6)






χ(x/ε,∇uε) ⇀ χ0

χ(x/ε,∇wλε ) ⇀ 1
|Y |

∫
Y
χ(y,λ+∇wλ(y))dy

∇uε ⇀ ∇u0

∇wλε ⇀ λ

and then any factor weakly converges:

(7)

{ (
χ(x/ε,∇uε)−χ(x/ε,∇wλε )

)
⇀

(
χ0 − 1

|Y |
∫
Y
χ(y,λ+∇wλ(y))dy

)

(
∇uε−∇wλε

)
⇀

(
∇u0 −λ

)
.

In order to pass to the limit in (5) we need the result of compensated compactness.

4. Compensated compactness

The product of the two brackets in (5) is only weakly convergent and it is known that
the product of two weakly convergent sequences does not converge, in general, to the
product of the limits, and this is the main difficulty to characterize χ0 in terms of u0.
Compensated compactness (see [6], [10]) shows that under some additional assump-
tions, the product of the two weak convergent sequences converges in the sense of
distribution to the product of the limits. We present a general lemma and a particular
version of the result which interests the problem of homogenization.

LEMMA 1. Let V ε and Uε be two sequences converging weakly in L2(Ω) to V 0

and U0 respectively. Moreover suppose that:
{

divV ε converges strongly in H−1(Ω)

curlUε is bounded in L2(Ω)
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then one has ∫
Ω
(V εUε) ϕdx −→

∫
Ω

(
V 0U0) ϕdx

for every ϕ ∈C∞0 (Ω).

It is possible to see a proof of the Lemma 1 in [5] and [2].

PROPOSITION 1. In the hypothesis of equations (1) and (3) we obtain that ex-
pression (5) converges:

(8)

∫
Ω

(
(χ(x/ε,∇uε)−χ(x/ε,∇wλε )) · (∇uε−∇wλε )

)
ϕ(x)dx−→

−→
∫
Ω

((
χ0 −

1
|Y |

∫
Y
χ(y,λ+∇wλ(y))dy

)
·
(
∇u0 −λ

))
ϕ(x)dx.

Proof. Taking into account equations (1) and (3), we have
{

−div(χ(x/ε,∇uε)−χ(x/ε,∇wλε )) = fε
curl(∇uε−∇wλε ) = 0

and, in order to apply the Lemma 1, we put
{

V ε = (χ(x/ε,∇uε)−χ(x/ε,∇wλε ))
Uε = (∇uε−∇wλε )

and the result is achieved. We can add another proof of this Proposition. We observe
that the limit (8) has a direct development by integration by parts

(9)

∫
Ω

(
(χ(x/ε,∇uε)−χ(x/ε,∇wλε )) · (∇uε−∇wλε )

)
ϕ(x)dx=

=H−1
〈
−div(χ(x/ε,∇uε)−χ(x/ε,wλε )),(uε−wλε )ϕ

〉
H1

0
+

−
∫
Ω

(
(χ(x/ε,∇uε)−χ(x/ε,∇wλε )) ·∇ϕ(x)

)
(uε−wλε )dx

for every ϕ∈C∞0 . At the left-hand side of equation (9) there is product of two sequences
which converge only in the weak topology, but at the right-hand side the convergence
of uε−wλε is weakly in H1 and strongly in L2:

(10) uε−wλε −→ u0 − (λ · x).

The strong convergence (10) permits to pass to the limit and the statement is achieved.

COROLLARY 1. Let uε, u0, wλε , wλ, χ and χ
0 be defined as in section 2, 3 and

let B(λ) be defined by

B(λ) =
1
|Y |

∫
Y
χ(y,λ+∇wλ(y))
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for every λ ∈ R3. Then

(11) χ0 = B(∇u0)

and

(12)
{

−div
(
B(∇u0)

)
= f on Ω

u0 ∈ H1
0 (Ω).

Proof. From (5) and (8) we get

(13)
∫
Ω

((
χ0 −B(λ)

)
·
(
∇u0 −λ

))
ϕ(x)dx≥ 0.

By taking into account that B is maximal monotone the last inequality (13) ensures
identity (11) and then, taking the limit, in the problem (1) we get the homogenized
problem (12).
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CONTINUOUS DEPENDENCE
FOR A NONSTANDARD CAHN-HILLIARD SYSTEM

WITH NONLINEAR ATOMMOBILITY

Abstract. This note is concerned with a nonlinear diffusion problem of phase-field type,
consisting of a parabolic system of two partial differential equations, complemented by Neu-
mann homogeneous boundary conditions and initial conditions. The system arises from a
model of two-species phase segregation on an atomic lattice [22]; it consists of the balance
equations of microforces and microenergy; the two unknowns are the order parameter ρ and
the chemical potential µ. Some recent results obtained for this class of problems are reviewed
and, in the case of a nonconstant and nonlinear atom mobility, uniqueness and continuous de-
pendence on the initial data are shown with the help of a new line of argumentation developed
in [13].

1. About the model and the mathematical problem

This paper deals with a phase field system that is addressed and investigated in a rather
general framework. A special situation has been studied in [9, 12] from the viewpoint
of well-posedness and long time behavior. The two papers [10] and [14] are devoted
to the optimal control problems for distributed and boundary controls, respectively.
The recent contributions [13] and [11] are related to what we are going to discuss and
review in this note. As to modeling issues, two directly relevant antecedents have been
the papers by Fried & Gurtin [17] and Gurtin [19], while [22], the paper that inspired
our research cooperation, led us to begin by studying a system of Allen-Cahn type for
phase segregation processes without diffusion [7, 8].

1.1. The nonstandard phase-field system in a simplified form

The initial and boundary value problem introduced in [9] consists in looking for two
fields, the chemical potential µ and the order parameter ρ, that solve

ε∂tµ+2ρ∂tµ+µ∂tρ−Δµ= 0 in Ω× (0,T ),(1)
δ∂tρ−Δρ+ f ′(ρ) = µ in Ω× (0,T ),(2)

∂nµ= ∂nρ= 0 on Γ× (0,T ),(3)
µ( · ,0) = µ0 and ρ( · ,0) = ρ0 in Ω,(4)

where Ω denotes a bounded domain in R3 with sufficiently smooth boundary Γ and
T > 0; ε and δ stand for two positive parameters. Moreover, the nonlinearity f is a
double-well potential defined in (0,1), whose derivative f ′ is singular at the endpoints
ρ= 0 and ρ= 1: a relevant example is

(5) f (ρ) = α{ρ ln(ρ)+(1−ρ) ln(1−ρ)}+βρ(1−ρ),

27
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with some positive constants α and β; according to whether or not α ≥ β/2, it turns
out that f is convex in the whole of [0,1] or exhibits two wells with a local maximum
at ρ= 1/2.

The nonstandard phase field model (1)–(4) can be regarded as a variant of the
classic Cahn-Hilliard system for diffusion-driven phase segregation by atom rearrange-
ment:

(6) ∂tρ−κΔµ= 0 , µ=−Δρ+ f ′(ρ).

As to differences between (1) and (6)1, we point out that the former equation, in which
the mobility coefficient κ > 0 has been taken equal to 1, contains a group of terms
involving time derivatives, with two nasty nonlinearities. Moreover, (2) differs from
(6)2 due to the presence of the viscous contribution δ∂tρ; as we shall see, positivity
of the coefficient δ is crucial to our analysis. Equations (1)–(2) have the structure of a
phase field system [5, 21], in which the chemical potential µ takes the place of the more
usual temperature variable. Note that, in general, those equations cannot be combined
into one higher-order equation, as is instead customarily done with the equations in (6)
so as to obtain the well-known Cahn-Hilliard equation

(7) ∂tρ= κΔ(−Δρ+ f ′(ρ)).

1.2. Generalization of Cahn-Hilliard equation according to Fried and Gurtin

In [17, 19] a broad generalization of (7) was devised, along three directions:

(i) to regard the second of (6) as a balance of microforces:

(8) divξ+π+ γ= 0,

where the distance microforce per unit volume is split into an internal part π and
an external part γ, and the contact microforce per unit area of a surface oriented
by its normal n is measured by ξ ·n in terms of the microstress vector ξ;∗

(ii) to regard the first equation in (6) as a balance law for the order parameter:

(9) ∂tρ=−divh+σ,

where the pair (h ,σ) is the inflow of ρ;

(iii) to demand that the constitutive choices for π,ξ,h , and the free energy density ψ,
be consistent in the sense of Coleman and Noll [6] with an ad hoc version of the
Second Law of Continuum Thermodynamics:

(10) ∂tψ+(π−µ)∂tρ−ξ ·∇(∂tρ)+h ·∇µ≤ 0,

that is, a postulated “dissipation inequality that accommodates diffusion” (cf.
equation (3.6) in [19]).

∗In [16] the balance of microforces is stated in the form of a principle of virtual powers for microscopic
motions.
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In [19], the following list of constitutive prescriptions was shown to be consistent
with (iii):

(11) ψ= ψ̂(ρ,∇ρ), π̂(ρ,∇ρ,µ) = µ−∂ρψ̂(ρ,∇ρ), ξ̂(ρ,∇ρ) = ∂∇ρψ̂(ρ,∇ρ).

Within this framework, let also

(12) h =−M∇µ, with M = M̂ (ρ,∇ρ,µ,∇µ),

where the tensor-valuedmobility mapping M̂ satisfies the residual dissipation inequal-
ity

∇µ·M̂ (ρ,∇ρ,µ,∇µ)∇µ≥ 0.

With the help of (8), (9), (11), and on taking into account the first of (12), one recovers
a general equation for diffusive phase segregation processes:

∂tρ= div
(
M∇

(
∂ρψ̂(ρ,∇ρ)−div

(
∂∇ρψ̂(ρ,∇ρ)

)
− γ
))

+σ.

Then, the Cahn-Hilliard equation (7) is obtained by taking

(13) ψ̂(ρ,∇ρ) = f (ρ)+
1
2
|∇ρ|2, M = κ1 ,

and letting the external distance microforce γ and the order-parameter source term σ be
identically null.

1.3. An alternative generalization of Cahn-Hilliard equation

In [22], a modification of the Fried-Gurtin approach to phase-segregation modeling was
proposed. While the crucial step (i) was retained, both the order parameter balance (9)
and the dissipation inequality (10) were dropped and replaced, respectively, by the
microenergy balance

(14) ∂tε= e+w, e :=−divh +σ, w :=−π∂tρ+ξ ·∇(∂tρ),

and the microentropy imbalance

(15) ∂tη≥−divh+σ, h := µh , σ := µσ.

As a new feature in this approach, the microentropy inflow (h ,σ) was deemed pro-
portional to the microenergy inflow (h ,σ) through the chemical potential µ, a positive
field; consistently, the free energy was defined to be

(16) ψ := ε−µ−1η,

with the chemical potential playing the same role as coldness in the deduction of the
heat equation.†

†As much as absolute temperature is a macroscopic measure of microscopic agitation, its inverse - the
coldness - measures microscopic quiet; likewise, as argued in [22], the chemical potential can be seen as a
macroscopic measure of microscopic organization.
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Combining (14)-(16) yields

(17) ∂tψ≤−η∂t(µ−1)+µ−1
h ·∇µ−π∂tρ+ξ ·∇(∂tρ),

an inequality that replaces (10) in restricting à la Coleman-Noll the possible consti-
tutive choices. On taking all of the constitutive mappings delivering π,ξ,η, and h ,
dependent in principle on ρ,∇ρ,µ,∇µ, and on choosing

(18) ψ= ψ̂(ρ,∇ρ,µ) =−µρ+ f (ρ)+
1
2
|∇ρ|2,

compatibility with (17) implies that we must have:

(19)






π̂(ρ,∇ρ,µ) =−∂ρψ̂(ρ,∇ρ,µ) = µ− f ′(ρ),

ξ̂(ρ,∇ρ,µ) = ∂∇ρψ̂(ρ,∇ρ,µ) = ∇ρ,

η̂(ρ,∇ρ,µ) = µ2∂µψ̂(ρ,∇ρ,µ)=−µ2ρ






together with

ĥ(ρ,∇ρ,µ,∇µ) = Ĥ (ρ,∇ρ,µ,∇µ)∇µ, ∇µ· Ĥ (ρ,∇ρ,µ,∇µ)∇µ≥ 0.

We now choose for Ĥ the simplest expression H = κ1 , implying a constant and
isotropic mobility, and once again we assume that the external distance microforce
γ and the source σ are null. Then, with the use of (19) and (16), the microforce balance
(8) and the energy balance (14) become, respectively,

(20) Δρ+µ− f ′(ρ) = 0

and

(21) 2ρ∂tµ+µ∂tρ−div(κ∇µ) = 0,

a nonlinear system for the unknowns ρ and µ.

1.4. Insertion of the two parameters ε and δ

Compare now the systems (20)–(21) and (6): needless to say, (20) is the same ‘static’
relation between µ and ρ as (6)2. However, (21) is rather different from (6)1, for more
than one reason:

(R1) (21) is a nonlinear equation, while ∂tρ−κΔµ= 0 is linear;

(R2) the time derivatives of both ρ and µ are present in (21);

(R3) in front of both ∂tµ and ∂tρ there are nonconstant factors that should remain
nonnegative during the evolution.
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Thus, the system (20)–(21) deserves a careful analysis. We must confess that at the
beginning we boldly attacked this problem as it was, prompted to optimism by the
previous successful outcome of the joint cooperation for the papers [7, 8], where we had
tackled the system of Allen-Cahn type derived via the approach in [22] for no-diffusion
phase segregation processes. However, the evolution problem ruled by (20)–(21) turned
out to be too difficult for us. Therefore, we decided to study its regularized version
(1)–(4) (note that κ has been taken equal to unity in (1)): in fact, this initial-boundary
value problem is arrived at by introducing the extra terms ε∂tµ in (21) and δ∂tρ in
(20), and by supplementing the so-obtained equations (1) and (2) with homogeneous
Neumann conditions (3) at the body’s boundary (where ∂n denotes the outward normal
derivative), and with the initial conditions (4).

Of course, the positive coefficients ε and δ are intended to be small. The intro-
duction of the ε−term is motivated by the desire to have a strictly positive coefficient
as a factor of ∂tµ in (21), in order to guarantee the parabolic structure of equation
(1). As to the δ−term, we can say that it transforms (20) into an Allen-Cahn equation
with source µ; in fact, it is a sort of regularization already employed in various proce-
dures involving the so-called viscous Cahn-Hilliard equation (examples can be found
in [2, 3, 18, 20, 23] and references therein).

On the one hand, the presence of the term δ∂tρ with a positive δ is very im-
portant for our analysis; on the other hand, nonuniqueness may occur if δ = 0. For
instance, take ρ0 = 1/2, µ0 constant, and look for a space-independent solution (which
is in agreement with homogeneous Neumann boundary conditions (3)). Then, we have
that

d
dt

(
(ε+2ρ)1/2µ

)
= 0 and f ′(ρ) = µ.

Hence, the solution has the form

µ= z0 (ε+2ρ)−1/2 and f ′(ρ) = z0 (ε+2ρ)−1/2,

for some given constant z0. Now, choose the potential f such that

f ′(r) = z0 (ε+2r)−1/2 for r ∈ [1/3,2/3],

and pick any smooth/irregular ρ : [0,T ] → [1/3,2/3] with ρ(0) = 1/2. We then get
infinitely many smooth/irregular solutions! This of course means that uniqueness is
out of question; and that, moreover, there is no control on the regularity of solutions in
time.

We point out that such a modified system, with positive ε and δ, turns out to
be a phase field model with a nonstandard equation (1) for the chemical potential µ,
while quite often phase field systems use temperature (in place of chemical potential)
and order parameter as variables.

Concerning a physical interpretation of the regularizing perturbations we intro-
duced, to motivate the presence of δ∂tρ is relatively easy. All we need to do in order to
let this term appear in the microforce balance is to add ∂tρ to the list of state variables
we considered to analyze the constitutive consequences of (17). This measure brings in
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the typical dissipation mechanism of Allen-Cahn nondiffusional segregation processes,
where dissipation depends essentially on (∂tρ)2, in addition to Cahn-Hilliard’s |∇µ|2−
dissipation (cf. [22]), thus opening the way to split the distance microforce additively
into an equilibrium and a nonequilibrium part, with πeq =−∂ρψ̂(ρ,∇ρ,µ) = µ− f ′(ρ)
the equilibrium part, just as in (19)1, and with πneq =−δ∂tρ the nonequilibrium part.

As far as the the introduction of ε∂tµ is concerned, we can say that (formally)
the desired term can be made to appear in (1) by modifying the choice of the free
energy in (18) as follows:

(22) ψ=−µ
(
ρ+

ε
2

)
+ f (ρ)+

1
2
|∇ρ|2.

By the way, in [9] we could prove existence and uniqueness of the solution to the initial
boundary value problem (1)–(4) with ε > 0 and in [12] we discussed the asymptotic
behavior of such solutions as ε↘ 0 by showing a suitable convergence to a (weaker)
solution of the limiting problem with ε= 0. Thus, in some respect, we can avoid the use
of the parameter ε, an issue we expand and make precise in the following subsection.

1.5. Various generalizations

In the first place, we are interested in generalizing the free energy (22). We do this in
two ways.

We extend f (ρ) by allowing f to be the sum of a convex and lower semicon-
tinuous function, with proper domain D( f1)⊂ R, and of a smooth function f2 with no
convexity properties (to allow for a double or multi-well potential f ). We point out that
in this case f1 need not be differentiable in its domain and, in place of f ′1, one should
take the subdifferential β := ∂ f1 in the order parameter equation. In general, β := ∂ f1
is only a graph, not necessarily a function, and may include vertical (and horizontal)
lines as in the example β= ∂I[0,1], i.e.,

(23) η ∈ ∂I[0,1](u) if and only if η






≤ 0 if u= 0
= 0 if 0 < u< 1
≥ 0 if u= 1

,

which corresponds to the potential

(24) f1(u) = I[0,1](u) =

{
0 if 0 ≤ u≤ 1
+∞ elsewhere

.

Therefore, f1 is not required to be smooth so that its subdifferential β might be multi-
valued.

The other important modification we make in the free energy (22) is that of
allowing in the first coupling term a general smooth function, say h(ρ), as factor of
−µ in (22), with the only restriction that h(ρ) be bounded from below by a positive
constant. Then, it could be

(25) h(ρ)≥
ε
2
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to maintain the same notation, and this lower bound should hold at least for the sig-
nificant values of ρ belonging to the domain of f1; actually, this was the case for
h(ρ) = ρ+

ε
2

in the interval [0,1], which is the effective domain of the potential f
in (5) (the same domain as in (24)). When one of us was lecturing on our results, an
interesting remark by Alexander Mielke was that the behavior of

h(ρ) = ρ+ small parameter

in a right neighbourhood of 0 (h(ρ)≈ 0) differs from that in a left neighbourhood of 1
(h(ρ)≈ 1). Instead, assuming only a boundedness from below for h allows many other
instances like, e.g., a specular behavior around the extremal points of the domain of f .
On the other hand, we stress the fact that f1 is just supposed to be proper, convex and
lower semicontinuous; hence, any form of double-well or multi-well potential, possibly
defined on the whole of R, may result from the free energy

(26) ψ= ψ̂(ρ,∇ρ,µ) =−µh(ρ)+ f1(ρ)+ f2(ρ)+
1
2
|∇ρ|2.

In this respect, we also cover the case of a free energy ψ which is convex or not with
respect to ρ according to whether or not the chemical potential µ is greater or less than
a critical value µc; e.g., this is the case with f1 given as in (24) and

h(ρ) = ρ(1−ρ), f2(ρ) = +µcρ(1−ρ).

There is also a third novelty in our approach. Indeed, the mobility factor κ
appearing in (21) (cf. also the choice for Ĥ prior to (21)) is no longer assumed to be
constant, but rather to be a nonnegative, continuous and bounded, nonlinear function
of µ. In particular, to prove existence of solutions we may let κ(µ) degenerate at µ= 0:
indeed, in our model the chemical potential µ is required to take nonnegative values,
so that 0 remains critical for µ. The details of such an existence proof are developed in
[13], a paper to which we refer frequently in the present note. Let us also mention that
in the recent paper [11] an existence theory is presented for a variation of the problem
(27)–(30) below, where the conductivity κ in (27) may depend on both variables µ and
ρ.

1.6. Aim of this contribution

In this paper, we recall the existence result of [13] and sketch the basic steps of the
proof; moreover, in the case when the function µ +→ κ(µ) is Lipschitz continuous and
bounded from below by a positive constant, we prove uniqueness and continuous de-
pendence on initial data. This result is new and follows the line of argumentation
devised in [13] for the case of κ constant.

We set (cf. (25))

g(u) := h(u)−
ε
2
≥ 0 for all u ∈ D( f1),



34 P. Colli - G. Gilardi - P. Podio-Guidugli - J. Sprekels

and take ε= δ= 1 for the sake of simplicity. The problem we deal with is:
(
1+2g(ρ)

)
∂tµ+µg′(ρ)∂tρ−div

(
κ(µ)∇µ

)
= 0 in Ω× (0,T ),(27)

∂tρ−Δρ+ξ+ f ′2(ρ) = µg′(ρ) , with ξ ∈ β(ρ), in Ω× (0,T ),(28)

(κ(µ)∇µ) ·n |Γ = ∂nρ|Γ = 0 on Γ× (0,T ),(29)

µ( · ,0) = µ0 and ρ( · ,0) = ρ0 in Ω.(30)

Clearly, how to select ξ in β(ρ) is part of the problem. For (27)–(30) we can prove
a well-posedness result. In particular, we think that our continuous dependence proof
is a nice piece of work, since it can handle the presence of a multivalued graph β
(with vertical segments as, e.g., in (23)) and only exploits the monotonicity property
of β. This was not the case for the uniqueness technique used in [9], since there the
difference of two equations (1) was tested by the time derivative of the difference of
the two ρ components, a procedure that strongly conflicts with nonsmooth potentials.

The longtime behavior of the system (1)–(4) and the structure of the ω-limit
set have been analyzed in [9] and in [12]; the latter paper also deals with the ε = 0
problem, as already mentioned. The two papers [10] and [14] are concerned with the
study of two optimal control problems for systems similar to (1)–(4); precisely, in [10]
a distributed control problem is investigated, while [14] focuses on a boundary control
problem.

In this paper, we concentrate on existence and uniqueness. In the next section,
we state our assumptions and our results. The existence of a solution to problem (27)–
(30) is proved in the Section 3. In Section 4, we show some regularity properties of the
solutions. The last section is devoted to proving continuous dependence of the solution
on the initial data.

2. Main results

Let Ω be a bounded connected open set in R3 with smooth boundary Γ (lower-dimen-
sional cases can be treated with minor changes). We introduce a final time T ∈ (0,+∞)
and set Q :=Ω× (0,T ). Moreover, we set

(31) V := H1(Ω), H := L2(Ω), W := {v ∈ H2(Ω) : ∂nv= 0 on Γ},

and endow these spaces with their standard norms, for which we use a self-explanatory
notation like ‖ ·‖V . For p ∈ [1,+∞], we write ‖ ·‖p both for the usual norm in Lp(Ω)
and for the norm in Lp(Q), since no confusion can arise. Moreover, any of the above
symbols for norms is used even for any power of these spaces. We remark that the
embeddings W ⊂ V ⊂ H are compact, since Ω is bounded and smooth. As V is dense
in H, we can identify H with a subspace of V ∗ in the usual way.

We now introduce the structural assumptions on our system. Firstly, since the
chemical potential is expected to be at least nonnegative, we assume that the function
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κ is defined just for nonnegative arguments; moreover, we require that

κ : [0,+∞)→ R is locally Lipschitz continuous,(32)

κ∗,κ∗ ∈ (0,+∞) and µ∗ ∈ [0,+∞),(33)

κ(r)≤ κ∗ for every r ≥ 0 and κ(r)≥ κ∗ for every r ≥ µ∗,(34)

K(r) :=
∫ r

0
κ(s)ds for r ≥ 0; K is strictly increasing.(35)

As to the other data, we assume that f = f1 + f2 and that

f1 : R→ [0,+∞] is convex, proper, lower semicontinuous,(36)

f2 : R→ Rand g : R→ [0,+∞)areC2 functions,(37)

f ′2, g, and g′ are Lipschitz continuous,(38)

β := ∂ f1 and π := f ′2 ,(39)

µ0 ∈V, ρ0 ∈W, µ0 ≥ 0 and ρ0 ∈ D(β) a.e. in Ω,(40)

there exists some ξ0 ∈ H such that ξ0 ∈ β(ρ0) a.e. in Ω,(41)

whereD( f1) andD(β)(⊆ D( f1)) denote the effective domains of f1 and β, respectively.
It is known that any proper, convex and lower semicontinuous function is bounded
from below by an affine function (see, e.g., [1, Prop. 2.1, p. 51]). Hence, assuming
f1 ≥ 0 looks reasonable, because one can suitably modify the smooth perturbation f2
by adding a straight line to it. Another positivity condition, g ≥ 0, is needed on the
set D(β), while g can take negative values outside of D(β). Finally, since f1 obeys (36)
and f2 is smooth, assumptions (40)–(41) imply that f (ρ0) ∈ L1(Ω).

Let us discuss the a priori regularity we ask for any solution (µ,ρ,ξ) to our
problem. As (28) reduces for any given µ to a rather standard phase-field equation, it is
natural to look for pairs (ρ,ξ) that satisfy

ρ ∈W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W ),(42)

ξ ∈ L∞(0,T ;H),(43)

and solve the strong form of the relative subproblem, namely,

∂tρ−Δρ+ξ+π(ρ) = µg′(ρ) and ξ ∈ β(ρ) a.e. in Q,(44)
ρ(0) = ρ0 a.e. in Ω.(45)

We note that (42) also incorporates the Neumann boundary condition for ρ (see (31)
for the definition ofW ).

The situation is different for the component µ: in case of uniform parabolicity,
i.e., if µ∗ = 0, the coefficient κ(µ) is bounded away from zero, and we require that

µ∈ H1(0,T ;H)∩L∞(0,T ;V ), µ≥ 0 a.e. in Q,(46)
div
(
κ(µ)∇µ

)
∈ L2(0,T ;H),(47)
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so that µ satisfies
∫
Ω

(
1+2g(ρ(t))

)
∂tµ(t)v+

∫
Ω
µ(t)g′(ρ(t))∂tρ(t)v(48)

+
∫
Ω
κ(µ(t))∇µ(t) ·∇v= 0 for every v ∈V and for a.a. t ∈ (0,T ),

µ(0) = µ0 a.e. in Ω.(49)

Thus, equation (27) holds in a strong sense:

(50)
(
1+2g(ρ)

)
∂tµ+µg′(ρ)∂tρ−div

(
κ(µ)∇µ

)
= 0 a.e. in Q,

whereas the related Neumann boundary condition in (29) continues to be understood in
the usual weak sense. Furthermore, we observe that (46)–(48) imply further regularity
for µ whenever κ is smoother, thanks to the regularity theory of quasilinear elliptic
equations.

Such a formulation is too strong when µ∗ is allowed to be positive, because suf-
ficient information cannot be obtained on the gradient ∇µ and the time derivative ∂tµ.
In this case, we rewrite equation (50) as

(51) ∂t
(
1+2g(ρ)µ

)
−µg′(µ)∂tρ−ΔK(µ) = 0,

and require lower regularity:

µ∈ L∞(0,T ;H), µ≥ 0 a.e. in Q, K(µ) ∈ H1(0,T ;H)∩L∞(0,T ;V ),(52)

(1+2g(ρ))µ∈ H1(0,T ;V ∗).(53)

On accounting for the initial and Neumann boundary conditions, we replace (48)–
(49) by

〈∂t
(
(1+2g(ρ))µ

)
(t),v〉−

∫
Ω

(
µg′(ρ)∂tρ

)
(t)v+

∫
Ω
∇K(µ(t)) ·∇v= 0(54)

for every v ∈V and for a.a. t ∈ (0,T ),
(
(1+2g(ρ))µ

)
(0) =

(
1+2g(ρ0)

)
µ0.(55)

Note that the middle term of (54) is meaningful: let us explain why. First, we have that
g′(ρ) ∈C0(Q), because the continuity of ρ,

(56) ρ ∈C0([0,T ];C0(Ω)) =C0(Q),

follows directly from (42) and the compact embedding W ⊂ C0(Ω) (see, e.g., [24,
Sect. 8, Cor. 4]). Next, (52) and the embedding V ⊂ L4(Ω) imply that

K(µ) ∈ L∞(0,T ;L4(Ω));

consequently, µ∈ L∞(0,T ;L4(Ω)), as K(r) behaves like r for large |r| (see (34)). Fi-
nally, (42) ensures that ∂tρ ∈ L∞(0,T ;H), whence µg′(ρ)∂tρ ∈ L∞(0,T ;L4/3(Ω)), and
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v is in L4(Ω) whenever v ∈V . We remark that in this framework (51) is only satisfied
in a distributional sense.

Here are our results. The first establishes the existence of a weak solution in the
general case and the equivalence of strong and weak formulations in the case µ∗ = 0;
the proof will be outlined in Section 3.

THEOREM 1. Assume (32)–(39) and (40)–(41). Then, there exists at least one
triplet (µ,ρ,ξ) such that

(µ,ρ,ξ) satisfies (42)–(43), (52)–(53)(57)
and solves problem (44)–(45), (54)–(55).

Moreover, if µ∗ = 0 then any triplet(µ,ρ,ξ) as in (57) fulfills also (46)–(49).

Notice that, due to (56), no further assumption is needed to ensure the bound-
edness of ρ. As to the first component, we have the following boundedness result.

THEOREM 2. Assume (32)–(39), (40)–(41), and let

(58) µ0 ∈ L∞(Ω).

Then, the component µof any triplet (µ,ρ,ξ) complying with (57) is essentially bounded.

The next result holds if we assume that µ∗ = 0.

THEOREM 3. Assume (32)–(39), (40)–(41), µ∗ = 0, and

(59) K(µ0) ∈W.

Then,

(60) K(µ) ∈W 1,p(0,T ;H)∩Lp(0,T ;W ) for every p ∈ [1,+∞),

where µ is the first component of any triplet (µ,ρ,ξ) being as in (57).

Observe that (59) implies (58), due to the three-dimensional embedding W ⊂
L∞(Ω) and the strict monotonicity of K−1 (see (35)). Uniqueness is a consequence of
the following continuous dependence result.

THEOREM 4. Assume (32)–(39) and µ∗ = 0. Let (µ0,i,ρ0,i), i = 1,2, be two
sets of initial data satisfying (40)–(41) and (59), and let (µi,ρi,ξi), i = 1,2, be two
corresponding triplets fulfilling (57) (with the obvious modifications of initial condi-
tions). Then, there exists a constant C, depending on the data through the structural
assumptions, such that

‖µ1 −µ2‖L∞(0,T ;H)∩L2(0,T ;V ) +‖ρ1 −ρ2‖L∞(0,T ;H)∩L2(0,T ;V )(61)
≤C{‖µ0,1 −µ0,2‖H +‖ρ0,1 −ρ0,2‖H} .
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Henceforth, we make repeated use of the notation

(62) Qt :=Ω× (0, t) for t ∈ [0,T ].

Moreover, we account for the well-known embedding V ⊂ Lp(Ω) for 1 ≤ p ≤ 6 and
the related Sobolev inequality:

(63) ‖v‖p ≤CΩ‖v‖V for every v ∈V and 1 ≤ p≤ 6,

whereC depends on Ω only; Hölder inequality and the elementary Young inequality

(64) ab≤ εa2 +
1
4ε
b2 for every a,b≥ 0 and ε> 0

are also frequently employed. Finally, throughout the paper we use a small-case italic
c for different constants that may only depend on Ω, the final time T , the shape of the
nonlinearities f and g, and the properties of the data involved in the statements; the
symbol cε denotes a constant that depends also on the parameter ε. The meaning of
c and cε might change from line to line and even in the same chain of inequalities,
whereas those constants that we need to refer to are always denoted by capital letters,
just like CΩ in (63).

3. Existence

In this section we sketch the proof of Theorem 1, referring to [13] for details.

Approximation. The approximating problem is based on a time delay in the right-
hand side of equation (44). A translation operator Tτ : L1(0,T ;H) → L1(0,T ;H) is
considered, depending on a time step τ> 0: for v ∈ L1(0,T ;H) and for a.a. t ∈ (0,T ),
we set:

(65) (Tτv)(t) := v(t− τ) if t > τ and (Tτv)(t) := µ0 if t < τ;

and we replace µ by Tτµ in (44). At the same time, we modify the equation for µ.
Precisely, we force uniform parabolicity and allow the solution to take negative values.
Accordingly, we define κτ : R→ R and the related function Kτ to be

(66) κτ(r) := κ(|r|)+ τ and Kτ(r) :=
∫ r

0
κτ(s)ds for r ∈ R.

Then, the approximating problem involves the following equations:
(
1+2g(ρτ)

)
∂tµτ+µτ g′(ρτ)∂tρτ−div

(
κτ(µτ)∇µτ

)
= 0 a.e. in Q,(67)

∂tρτ−Δρτ+ξτ+π(ρτ) = (Tτµτ)g′(ρτ) and ξτ ∈ β(ρτ) a.e. in Q,(68)

supplemented by homogeneous Neumann boundary conditions for both µτ and ρτ, and
by the initial conditions µτ(0) = µ0 and ρτ(0) = ρ0. It can be easily shown (cf. [13,
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Lemma 3.1]) that such an initial and boundary value problem has a unique solution
(µτ,ρτ,ξτ), which satisfies the analogues of (42)–(43) and (46)–(47).

Our aim is now to let τ tend to zero in order to obtain a limit triplet (µ,ρ,ξ)
complying with (57). Our proof uses compactness arguments and relies on a number
of uniform-in-τ a priori estimates. In performing the estimates, τ can be taken as small
as desired; it will be convenient to assume τ≤ κ∗. In order to make the formulas more
readable, we omit the index τ in the calculations, and write µτ and ρτ only when each
estimate is established.

First a priori estimate. We test (67) by µ and observe that

[(
1+2g(ρ)

)
∂tµ+µg′(ρ)∂tρ

]
µ=

1
2
∂t
[
(1+2g(ρ))µ2].

Thus, by integrating over (0, t), where t ∈ [0,T ] is arbitrary, we obtain:
∫
Ω

(
1+2g(ρ(t))

)
|µ(t)|2 +2

∫
Qt
κτ(µ)|∇µ|2 =

∫
Ω
(1+2g(ρ0))µ2

0 .

Hence, on recalling that g ≥ 0 and that, in view of (34), κ2
τ(r) ≤ 2κ∗κτ(r) for every

r ∈ R, we are led to

(69) ‖µτ‖L∞(0,T ;H) +‖Kτ(µτ)‖L2(0,T ;V ) ≤ c.

An analogous test by −µ− =min{µ,0}, and the nonnegativity of µ0, allow us to deduce
that µ− = 0, whence

µτ ≥ 0 a.e. in Q.

Moreover, as K has a linear growth and thanks to (65) and (40), it follows from (69)
that

(70) ‖Kτ(µτ)‖L∞(0,T ;H) +‖Tτµτ‖L∞(0,T ;H) +‖TτKτ(µτ)‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c.

The Sobolev inequality (63) and estimate (69) entail ‖Kτ(µτ)‖L2(0,T ;L6(Ω)) ≤ c; conse-
quently,

(71) ‖µτ‖L2(0,T ;L6(Ω)) ≤ c,

for (34) implies that Kτ(r)≥ κ∗r− c for every r ≥ 0.

Second a priori estimate. Add ρ to both sides of (68) and test by ∂tρ, so as to obtain
that

∫
Qt
|∂tρ|2 +

1
2
‖ρ(t)‖2

V +
∫
Ω
f1(ρ(t))

=
1
2
‖ρ0‖2

V +
∫
Ω
f (ρ0)+

1
2

∫
Ω

(
ρ2(t)−2 f2(ρ(t))

)
+

∫
Qt
g′(ρ)(Tτµ)∂tρ

≤ c+ c
∫
Ω
|ρ(t)|2 +

1
4

∫
Qt
|∂tρ|2 + c‖Tτµ‖2

L∞(0,T ;H),
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for every t ∈ [0,T ]. In view of the chain rule and Young’s inequality (64), we have that

c
∫
Ω
|ρ(t)|2 ≤ c

∫
Ω
|ρ0|2 +

1
4

∫
Qt
|∂tρ|2 + c

∫ t

0
‖ρ(s)‖2

H ds.

Hence, as f1 is nonnegative, from (70) and the Gronwall lemma we infer that

(72) ‖ρτ‖H1(0,T ;H)∩L∞(0,T ;V ) +‖ f1(ρτ)‖L∞(0,T ;L1(Ω)) ≤ c.

Third a priori estimate. Rewrite (68) as

−Δρ+β(ρ) 7 −∂tρ−π(ρ)+(Tτµ)g′(ρ)

and note that the right-hand side is bounded in L2(0,T ;H), thanks to (38)–(39) and
to the previous estimates. By a standard argument, that consists in testing formally
by either −Δρ or β(ρ) and using the regularity theory for elliptic equations, we first
recover that

(73) ‖Δρ(s)‖2
H +‖ξ(s)‖2

H ≤ 2‖−∂tρ(s)−π(ρ(s))+((Tτµ)g′(ρ))(s)‖2
H

for a.a. s ∈ (0,T ); finally, we conclude that

(74) ‖ρτ‖L2(0,T ;W ) ≤ c and ‖ξτ‖L2(0,T ;H) ≤ c.

Fourth a priori estimate. As this estimate is rather long and technical, let us just
describe how it can be obtained, referring to [13, Section 4] for details. The aim is
improving estimates (72) and (74). By proceeding formally, in particular, by writing
β(ρ) in place of ξ and treating β like a smooth function, one can differentiate (68) with
respect to time and test the resulting equation by ∂tρ:

1
2

∫
Ω
|∂tρ(t)|2 +

∫
Qt
|∇∂tρ|2 +

∫
Qt
β′(ρ)|∂tρ|2(75)

=
1
2

∫
Ω
|(∂tρ)(0)|2 −

∫
Qt

(
π′(ρ)−g′′(ρ)(Tτµ)

)
|∂tρ|2 +

∫
Qt
g′(ρ)∂t(Tτµ)∂tρ

≤
1
2

∫
Ω
|(∂tρ)(0)|2 + c

∫
Qt
(1+Tτµ)|∂tρ|2 +

∫
Qt
g′(ρ)∂t(Tτµ)∂tρ.

Now, the term difficult to control is the last one on the right-hand side. We compute ∂tµ
from (67), then integrate by parts and repeatedly use the Hölder, Sobolev, and Young
inequalities, so as to obtain:

∫
Qt
g′(ρ)∂t(Tτµ)∂tρ=

∫ t−τ

0

∫
Ω
∂tµ(s)g′(ρ(s+ τ))∂tρ(s+ τ)ds(76)

=−
∫ t−τ

0

∫
Ω
κτ(µ)(s)∇µ(s) ·∇

∂tg(ρ(s+ τ))
1+2g(ρ(s))

ds

−
∫ t−τ

0

∫
Ω

g′(ρ(s))g′(ρ(s+ τ))
1+2g(ρ(s))

µ(s)∂tρ(s)∂tρ(s+ τ)ds;
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the last two integrals are treated separately, taking the structural assumptions into ac-
count. In the subsequent computations, one takes advantage of the compact embedding
V ⊂ L4(Ω) and of the regularity theory for linear elliptic equations. In particular, ex-
ploiting (73) entails that

‖∇ρ(s)‖2
V ≤ c

(
‖ρ(s)‖2

V +‖Δρ(s)‖2
H
)
≤ c
(
‖∂tρ(s)‖2

H +1
)
,

an inequality that turns out to be helpful in the control of one of the terms. At the end,
we arrive at

∫
Ω
|∂tρ(t)|2 +

∫
Qt
|∇∂tρ|2 ≤ c

∫ t

0
φ(s)‖∂tρ(s)‖2

H ds+ c,

where φ(s) := ‖µ(s)‖2
4 +‖∇Kτ(µ)(s)‖2

H +‖∇(TτKτ(µ))(s)‖2
H ;

hence, as φ ∈ L1(0,T ) by (69)–(71), we can apply the Gronwall lemma and con-
clude that

(77) ‖∂tρτ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c.

As a consequence, note that −Δρ+ξ=−∂tρ−π(ρ)+g′(ρ)Tτµ belongs to L∞(0,T ;H)
due to (69) and (77). Therefore, by (73), both −Δρ and ξ are in L∞(0,T ;H). Thanks
to elliptic regularity, we conclude that

(78) ‖ρτ‖L∞(0,T ;W ) ≤ c and ‖ξτ‖L∞(0,T ;H) ≤ c.

Fifth a priori estimate. Test (67) by ∂tKτ(µ) = κτ(µ)∂tµ and obtain
∫
Qt
(1+2g(ρ))κτ(µ)|∂tµ|2 +

1
2

∫
Ω
|∇Kτ(µ(t))|2(79)

=
1
2

∫
Ω
|∇Kτ(µ0)|2 −

∫
Qt
g′(ρ)∂tρµ∂tKτ(µ)

for every t ∈ (0,T ). The first term on the left-hand side can be estimated from below,
as follows:

(80)
∫
Qt
(1+2g(ρ))κτ(µ)|∂tµ|2 ≥

∫
Qt

κ2
τ(µ)
2κ∗

|∂tµ|2 =
1

2κ∗
∫
Qt
|∂tKτ(µ)|2.

On the right-hand side, the first term is trivial due to (40)1; as to the second one, by the
Young, Hölder, and Sobolev inequalities we have that

−
∫
Qt
g′(ρ)∂tρµ∂tKτ(µ)≤

1
4κ∗

∫
Qt
|∂tKτ(µ)|2 + c

∫ t

0
‖µ(s)‖2

4‖∂tρ(s)‖2
4 ds(81)

≤
1

4κ∗
∫
Qt
|∂tKτ(µ)|2 + c

∫ t

0
‖µ(s)‖2

4‖∂tρ(s)‖2
V ds.
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Next, observe that (34) yields Kτ(r)≥ κ∗r−c∗ for every r ≥ 0, where c∗ depends only
on the structural assumptions. Hence, on recalling (70), we deduce that

‖µ(s)‖2
4 ≤ c

(
‖Kτ(µ)(s)‖2

4 +1
)
≤ c
(
‖Kτ(µ)(s)‖2

V +1
)

(82)

≤ c‖∇Kτ(µ)(s)‖2
H + c‖Kτ(µ)(s)‖2

H + c≤ c‖∇Kτ(µ)(s)‖2
H + c

for a.a. s ∈ (0,T ). By combining (80)–(82) with (79), we obtain that

1
4κ∗

∫
Qt
|∂tKτ(µ)|2 +

1
2

∫
Ω
|∇Kτ(µ(t))|2 ≤ c+ c

∫ t

0
‖∂tρ(s)‖2

V
(
‖∇Kτ(µ)(s)‖2

H +1
)
ds.

In view of (77), we can apply the Gronwall lemma and conclude that

(83) ‖Kτ(µτ)‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c.

Moreover, arguing as for (71) and (70), we derive that

(84) ‖µτ‖L∞(0,T ;L6(Ω)) +‖Tτµτ‖L∞(0,T ;L6(Ω)) ≤ c.

Sixth a priori estimate. Writing (67) as ∂t
(
(1+2g(ρ))µ

)
= ΔKτ(µ)+g′(ρ)µ∂tρ and

then testing by v ∈ L1(0,T ;V ) leads to
∣∣∣∣
∫
Q
∂t
(
(1+2g(ρ))µ

)
v
∣∣∣∣=
∣∣∣∣−

∫
Q
∇Kτ(µ) ·∇v+

∫
Q
g′(ρ)µ∂tρv

∣∣∣∣

≤ ‖Kτ(µ)‖L∞(0,T ;V )‖v‖L1(0,T ;V ) +‖∂tρ‖L∞(0,T ;H)‖µ‖L∞(0,T ;L4(Ω))‖v‖L1(0,T ;L4(Ω))

≤
(
‖Kτ(µ)‖L∞(0,T ;V ) + c‖∂tρ‖L∞(0,T ;H)‖µ‖L∞(0,T ;L4(Ω))

)
‖v‖L1(0,T ;V ).

Hence, (77) and (83)–(84) enable us to infer that

(85) ‖∂t
(
(1+2g(ρτ))µτ

)
‖L∞(0,T ;V ∗) ≤ c.

Passage to the limit. On setting ζτ := (1+2g(ρτ))µτ and recalling the a priori esti-
mates, it turns out that there exist a triplet (µ,ρ,ξ), with µ≥ 0 a.e. in Q, and functions
k and ζ such that

µτ → µ weakly star in L∞(0,T ;L6(Ω)),(86)
ρτ → ρ weakly star inW 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W ),(87)
ξτ → ξ weakly star in L∞(0,T ;H),(88)

Kτ(µτ)→ k weakly star in H1(0,T ;H)∩L∞(0,T ;V ),(89)
ζτ → ζ weakly star inW 1,∞(0,T ;V ∗)∩L∞(0,T ;L6(Ω)),(90)

at least for a subsequence τ = τi↘0. By (87), (89), and the compact embeddings W ⊂
C0(Ω) and V ⊂ H, we can apply well-known results (see, e.g., [24, Sect. 8, Cor. 4])
and infer that

ρτ → ρ strongly in C0(Q),(91)
Kτ(µτ)→ k strongly in C0([0,T ];H) and a.e. in Q.(92)
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Now, convergences (88) and (91) imply that ξ ∈ β(ρ) a.e. in Q, as is well known (see,
e.g., [4, Prop. 2.5, p. 27]). By (91), we also recover the Cauchy condition (45) and the
fact that φ(ρτ)→ φ(ρ) strongly in C0(Q) for every continuous function φ : R→ R; of
course, this property can be applied to g, g′, and π (see (38)). From (86) and (84), it is
not difficult to check that Tτµτ → µweakly star in L∞(0,T ;L6(Ω)); hence, the product
Tτµτg′(ρτ) has the weak star limit µg′(ρ) in L∞(0,T ;L6(Ω)) and (44) can follow from
(68).

Next, we check that µτ converges to µ a.e. in Q. Note that K−1
τ converges to K−1

uniformly on [0,R] for every R > 0. Hence, (92) implies µτ → K−1(k) a.e. in Q, and
a comparison with (86) enables us to deduce that K−1(k) = µ (whence k = K(µ)) and

(93) µτ → µ strongly in Lp(0,T ;Lq(Ω)), for every p<+∞ and q< 6,

and a.e. in Q (the Egorov theorem is used here). Then, we can also infer that ζτ con-
verges to (1+2g(ρ))µ a.e. in Q, whence ζ= (1+2g(ρ))µ by comparing with (90). On
the other hand, (90) implies that ζτ → ζ strongly in C0([0,T ];V ∗), thus, ζτ(0)→ ζ(0)
strongly in V ∗, so that the Cauchy condition (55) is verified.

It remains for us to identify the limit of µτg′(ρτ)∂tρτ: we show that it weakly
converges to µg′(ρ)∂tρ in some Lp-type space. By choosing, e.g., p = 2, q = 4 in
(93) and exploiting the weak star convergence of ∂tρτ in L∞(0,T ;H) (see (87)) and
the uniform convergence of g′(ρτ), we deduce that µτg′(ρτ)∂tρτ → µg′(ρ)∂tρ weakly
in L2(0,T ;L4/3(Ω)). At this point, it is straightforward to derive (54) in an integrated
form, namely,

(94)
∫ T

0
〈∂t
(
(1+2g(ρ))µ

)
(t),v(t)〉dt−

∫
Q
µg′(ρ)∂tρv+

∫
Q
∇K(µ) ·∇v= 0

for any v ∈ L2(0,T ;V )⊂ L2(0,T ;L4(Ω)), whence the time-pointwise version (54).

End of the proof of Theorem 1. Here, we check the last part of the statement of
Theorem 1. In the case µ∗ = 0, we have κ(r)≥ κ∗ for every r≥ 0. This implies that the
inverse function K−1 : [0,+∞)→ [0,+∞) is Lipschitz continuous. Hence, (52) yields

µ= K−1(K(µ)) ∈ H1(0,T ;H)∩L∞(0,T ;V ),

i.e., (46) holds. In particular, we can write

∇K(µ) = κ(µ)∇µ and ∂t
(
(1+2g(ρ))µ

)
= µ∂t(1+2g(ρ))+(1+2g(ρ))∂tµ

and thus replace the weak formulation by the strong one. Next, we point out that (48)
implies that (50) holds in the sense of distributions, whence (47) follows by compari-
son. Finally, (49) is a consequence of (55) and the continuity of µ from [0,T ] to H.

4. Regularity properties

In this section, we prove Theorems 2 and 3 and make some remarks on the regularity
of solutions. To achieve the first result, we adapt the arguments used in [9, 13].
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Proof of Theorem 2. Set µ∗0 := max{1,‖u0‖∞}. We would like to test (54) by
(µ− k)+, for some constant k greater than µ∗0. We have to check that (µ− k)+ is an
admissible test function, which is not obvious since ∇µ might not exist in the usual
sense.

Now, thanks to (34)–(35), K is a strictly increasing mapping from [0,+∞)
onto itself and K−1 is Lipschitz continuous on the interval [s∗,+∞), where s∗ :=
K(µ∗). Therefore, we can choose a strictly increasing map K∗ : [0,+∞) → [0,+∞)
that is globally Lipschitz continuous and coincides with K−1 on [s∗,+∞). Hence, we
have K∗(K(r)) = r for every r ≥ µ∗ and K∗(K(r)) < µ∗ for r < µ∗. It follows that
(r− k)+ = (K∗(K(r))− k)+ for every r ≥ 0 if k ≥ µ∗. On the other hand, K∗(K(µ)) ∈
H1(0,T ;H)∩L2(0,T ;V ) by (52). Hence, (µ−k)+ enjoys the same regularity and is an
admissible test function in (54) provided that k ≥ µ∗. Thus, from now on we assume
k ≥ max{µ∗0,µ∗}. We have from (54) that

∫ t

0
〈∂t
[
(1+2g(ρ))µ

]
(s),(µ(s)− k)+〉ds+

∫
Qt
∇K(µ) ·∇(µ− k)+

=
∫
Qt
µ∂tg(ρ)(µ− k)+

for every t ∈ [0,T ]. A simple rearrangement yields:
∫ t

0
〈∂t
[
(1+2g(ρ))(µ− k)

]
(s),(µ(s)− k)+〉ds+

∫
Qt
∇K(µ) ·∇(µ− k)+(95)

=
∫
Qt
∂tg(ρ) |(µ− k)+|2 − k

∫
Qt
∂tg(ρ)(µ− k)+.

Note that 1/(1+ 2g(ρ)) ∈ H1(0,T ;V )∩ L∞(0,T ;W ), in view of (42) and our
assumptions on g (cf. (37)–(38)). Then, we can apply the ‘chain-rule’ Lemma 5.1 in
[13] to deduce that
∫ t

0
〈∂t
[
(1+2g(ρ))(µ− k)

]
(s),(µ(s)− k)+〉ds=

∫
Qt
(µ− k)∂t

[
(1+2g(ρ))(µ− k)+

]

=
∫
Qt

2∂tg(ρ) |(µ− k)+|2 +
∫
Qt
(µ− k)(1+2g(ρ))∂t(µ− k)+

=
1
2

∫
Qt
∂t
[
(1+2g(ρ))|(µ− k)+|2

]
+

∫
Qt
∂tg(ρ) |(µ− k)+|2.

On the other hand, we have that

∇(µ− k)+ = ∇µ= ∇K−1(K(µ)) = (K−1)′(K(µ))∇K(µ) =
1

κ(µ)
∇K(µ)

almost everywhere in the set where µ≥ k. Furthermore, we observe that (µ(0)−k)+ =
0 a.e. in Ω on account of k ≥ µ∗0. Hence, (95) yields

1
2

∫
Ω
(1+2g(ρ(t)))|(µ(t)− k)+|2 +

∫
Qt
κ(µ)|∇(µ− k)+|2 =−k

∫
Qt
∂tg(ρ)(µ− k)+.
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As g is nonnegative and κ(r)≥ κ∗ for r ≥ k (because k ≥ κ∗), it follows that

1
2

∫
Ω
|(µ(t)− k)+|2 +κ∗

∫
Qt
|∇(µ− k)+|2 ≤ k

∫
Qt
|∂tg(ρ)|(µ− k)+.

At this point, we can repeat the argument used in [9]: indeed, the analog of
(44) is never used there, and the whole proof is based just on the regularity ∂tρ ∈
L∞(0,T ;H)∩L2(0,T ;V ). In the present case, we have to exploit the same regularity
for ∂tg(ρ), an easy consequence of (42) and (38).

REMARK 1. The property µ∈ L∞(Q) may lead to additional regularitity for ρ,
of course under suitable assumptions on the initial data. Indeed, note that (44) yields:

∂tρ−Δρ+ξ= µg′(ρ)−π(ρ) ∈ L∞(Q).

So, if we let infρ0 and supρ0 belong to the interior of D(β) (assuming that it is not
empty, the significant case), one can easily derive that ξ ∈ L∞(Q). Indeed, one can
formally multiply by |ξ|p−1signξ and estimate ‖ξ‖p uniformly with respect to p, if the
assumption on ρ0 is satisfied. This implies that

ρ ∈W 1,p(0,T ;Lp(Ω))∩Lp(0,T ;W 2,p(Ω)) for every p<+∞,

provided that ρ0 is smooth enough. However, no further regularity can be proved, in
general, since (44) cannot be differentiated.‡

Proof of Theorem 3. By virtue of (56), it turns out that g(ρ) is continuous and
g′(ρ) is bounded. Moreover, thanks to Theorem 2, µ is bounded too, because µ0 =
K−1(K(µ0)) fulfills (58) by virtue of (59).

We point out that (50) can be seen as a uniformly parabolic linear equation for
w= K(µ), with continuous coefficients and a right-hand side belonging to L∞(0,T ;H).
Indeed, as ∂tµ= (κ(µ))−1∂t(K(µ)), we have that

∂tw −
κ(µ)

1+2g(ρ)
Δw =−

µg′(ρ)∂tρ
1+2g(ρ)

.

Therefore, recalling that w0 := K(µ0) ∈W and applying the optimal Lp-Lq-regularity
results (see, e.g., [15, Thm. 2.3]), we infer (60) and Theorem 3 is proved.

Let us remark that (60) holds under an assumption on w0 that is actually weaker
than w0 ∈W . The optimal condition involves a proper Besov space and gives a similar
result for a fixed p. We are going to exploit (60) just with p = 4 in the proof of our
continuous dependence result. As µ∗ = 0 and

κ∗|∇µ|≤ κ(µ)|∇µ|= |∇K(µ)| a.e. in Q,
‡Unless β has a special form, for instance (compute the derivative of the convex part of (5)) ,

β(ρ) = ln
ρ

1−ρ
,

like in [9]. By the way, in this case the condition ξ ∈ L∞(Q) is equivalent to inf ρ> 0 and sup ρ< 1.
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(60) implies that

(96) |∇µ| ∈ L4(0,T ;L6(Ω));

this regularity is used for |∇µi|, i= 1,2 in the proof of Theorem 4 here below.

5. Continuous dependence

In this section, we prove Theorem 4. We point out that, under the assumptions of
this theorem, both solutions (µ1,ρ1,ξ1) and (µ2,ρ2,ξ2) satisfy the regularity properties
stated in Theorems 2 and 3. In particular, the following estimate holds true (cf. (96)
and (42)):

(97)
2

∑
i=1

{
‖µi‖L4(0,T ;W 1,6(Ω)) +‖ρi‖L4(0,T ;W 1,6(Ω))

}
≤ c,

for some constant c depending only on the data of the problems, including the initial
values (µ0,i,ρ0,i), i= 1,2.

As a general strategy for both solutions, we rewrite equation (50) in the form

(98) ∂t
(
µ/α(ρ)

)
−α(ρ)div

(
κ(µ)∇µ

)
= 0,

where the function α : R→ (0,+∞) is defined by

(99) α(r) :=
(
1+2g(r)

)−1/2 for r ∈ R.

More precisely, let us consider the variational formulation of (98) that accounts for the
homogeneous Neumann boundary condition and involves a related unknown function,
namely,

z :=
µ

α(ρ)
,

with
∫
Ω
∂t z(t)v+

∫
Ω
κ
(
α(ρ(t))z(t)

)
∇
(
α(ρ(t))z(t)

)
·∇
(
α(ρ(t))v

)
= 0(100)

for a.a. t ∈ (0,T ) and for every v ∈V .

We point out that, for i = 1,2, the functions zi := µi/α(ρi) are bounded, since both µi
and ρi are. Indeed, (56) holds and Theorem 2 can be applied (recall (59) and (58)).
Moreover, from (97) we can easily deduce that

(101)
2

∑
i=1

‖zi‖L4(0,T ;W 1,6(Ω)) ≤ c

as well. For the sake of convenience, for i= 1,2 we set

ai := α(ρi), κi := κ(µi)
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and observe that (zi,ρi) satisfy (100). In order to simplify formulas and make the proof
more readable, let us adopt the notation:

µ := µ1 −µ2, ρ := ρ1 −ρ2, ξ := ξ1 −ξ2, z := z1 − z2 , a := a1 −a2,

µ0 := µ0,1 −µ0,2, ρ0 := ρ0,1 −ρ0,2, and z0 :=
µ0,1

α(ρ0,1)
−

µ0,2
α(ρ0,2)

.

Note that z0 is the initial value of the difference z1 − z2.
It is our intention to prove the preliminary estimate

(102)
∫
Ω
|z(t)|2 +

∫
Qt
|∇(a1z)|2 +

∫
Ω
|ρ(t)|2 +

∫
Qt
|∇ρ|2 ≤ c

{∫
Ω
|z0|2 +

∫
Ω
|ρ0|2

}
,

and then to explain how to derive (61) from (102). Here, c depends on the structure
and on an upper bound of the norms of the initial data involved in our assumptions.
Indeed, in the subsequent estimates, the (varying) value of the constant c depends on
some norms of the considered solutions, e.g., through ‖zi‖∞. However, such norms can
be estimated in terms of an upper bound of the quantities that appear in (40)–(41), (58)
and (59).

We proceed as follows. Having written (100) for both solutions and chosen v=
z1−z2 in the difference, we integrate over (0, t), for an arbitrary t ∈ (0,T ). At the same
time, we consider (44) for both solutions and test the difference by ρ1 −ρ2, integrating
over Qt . Finally, we take a suitable linear combination of the resulting equalities and
perform a number of estimates that lead us to apply the Gronwall lemma. However,
before starting, we recall a list of inequalities that follow from the boundedness and the
Lipschitz continuity of α, α′, and 1/α (cf. (37)–(38)) and from the Lipschitz continuity
of κ. Indeed, in spite of (32), here we may assume κ globally Lipschitz continuous, as
both µ1 and µ2 are bounded. We easily infer that

|a|= |α(ρ1)−α(ρ2)|≤ c|ρ|,

|∇a|= |α′(ρ1)∇ρ+
(
α′(ρ1)−α′(ρ2)

)
∇ρ2|≤ c|∇ρ|+ c|∇ρ2| |ρ|,

|∇ai|+ |∇a−1
i |≤ c|∇ρi|,

|κ1 −κ2|≤ c|µ|,

|µ|≤ |a| |z1|+a2|z|≤ c|a|+ c|z|≤ c|ρ|+ c|z|,

|∇z|= |∇
(
a1z/a1

)
|≤ c|∇(a1z)|+ c|∇ρ1| |z|.

In what follows, we will repeatedly use these inequalities without alerting the reader.
Let us state a lemma that we proved in [13, Section 6].

LEMMA 1. For each ϕ ∈ L4(0,T ;L6(Ω)), we have that
∫
Qt
ϕ2(|z|2 + |ρ|2)≤ ε

∫
Qt

(
|∇(a1z)|2 + |∇ρ|2

)

+ cε
∫ t

0

(
1+‖∇ρ1(s)‖4

6 +‖ϕ(s)‖4
6
)(
‖z(s)‖2

2 +‖ρ(s)‖2
2
)
ds,(103)
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for every ε> 0 and every t ∈ [0,T ].

Let us start our program and, in order to make the argument more transparent,
let us deal just with the first equation, if only for a while. We have that

1
2

∫
Ω
|z(t)|2 +

∫
Qt

(
κ1∇(a1z1) ·∇(a1z)−κ2∇(a2z2) ·∇(a2z)

)
=

1
2

∫
Ω
|z0|2.

It is convenient to transform the last integrand on the left-hand side as follows:

κ1∇(a1z1) ·∇(a1z)−κ2∇(a2z2) ·∇(a2z)
= κ1|∇(a1z)|2 +κ1∇(a1z2) ·∇(a1z)−κ2∇(a2z2) ·∇(a2z)
= κ1|∇(a1z)|2 +κ1∇(az2) ·∇(a1z)+κ1∇µ2 ·∇(a1z)−κ2∇µ2 ·∇(a2z).
= κ1|∇(a1z)|2 +κ1∇(az2) ·∇(a1z)+κ1∇µ2 ·∇(az)+(κ1 −κ2)∇µ2 ·∇(a2z).

Then, thanks to assumption (34) with µ∗ = 0, the above equality yields:

1
2

∫
Ω
|z(t)|2 +κ∗

∫
Qt
|∇(a1z)|2 −

1
2

∫
Ω
|z0|2(104)

≤−
∫
Qt
κ1∇(az2) ·∇(a1z)−

∫
Qt
κ1∇µ2 ·∇(az)

−
∫
Qt
(κ1 −κ2)∇µ2 ·∇(a2z),

where each term on the right-hand side has to be estimated separately. First, it is
straightforward to obtain

−
∫
Qt
κ1∇(az2) ·∇(a1z)≤

κ∗
4

∫
Qt
|∇(a1z)|2 + c

∫
Qt

(
z2

2 |∇a|2 +a2|∇z2|2
)

(105)

≤
κ∗
4

∫
Qt
|∇(a1z)|2 + c

∫
Qt

(
|∇ρ|2 + |∇ρ2|2 |ρ|2

)
+ c

∫
Qt
|∇z2|2 |ρ|2

≤
κ∗
4

∫
Qt
|∇(a1z)|2 +C1

∫
Qt
|∇ρ|2 + c

∫
Qt

(
|∇ρ2|2 + |∇z2|2

)
|ρ|2,

where we have denoted by C1 the constant we want to refer to. As to the second term,
we deduce that

−
∫
Qt
κ1∇µ2 ·∇(az)≤ κ∗

∫
Qt
|∇µ2|

(
|a| |∇z|+ |z| |∇a|

)
(106)

≤ c
∫
Qt
|∇µ2|

(
|∇(a1z)| |ρ|+ |z| |∇ρ1| |ρ|+ |z| |∇ρ|+ |z| |∇ρ2| |ρ|

)

≤
κ∗
4

∫
Qt
|∇(a1z)|2 + c

∫
Qt
|∇µ2|2 |ρ|2 +

∫
Qt
|∇ρ|2

+ c
∫
Qt
|∇µ2|2 |z|2 + c

∫
Qt

(
|∇ρ1|2 + |∇ρ2|2

)
|ρ|2.
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For the third and last term, we argue as follows:

−
∫
Qt
(κ1 −κ2)∇µ2 ·∇(a2z)

≤ c
∫
Qt
|µ| |∇µ2| |∇(a2z)|≤ c

∫
Qt

(
|ρ|+ |z|

)
|∇µ2|

(
|a2| |∇z|+ |z| |∇ρ2|

)

≤ c
∫
Qt

(
|ρ|+ |z|

)
|∇µ2|

(
|∇(a1z)|+ |∇ρ1| |z|+ |z| |∇ρ2|

)

≤
κ∗
4

∫
Qt
|∇(a1z)|2 + c

∫
Qt
|∇µ2|2

(
|ρ|2 + |z|2

)

+ c
∫
Qt
|∇µ2|

(
|∇ρ1|+ |∇ρ2|

)
|z|
(
|ρ|+ |z|

)

≤
κ∗
4

∫
Qt
|∇(a1z)|2 + c

∫
Qt

(
|∇µ2|2 + |∇ρ1|2 + |∇ρ2|2

)(
|ρ|2 + |z|2

)
.

Next, we deal with the second equation. Testing the difference of (44) by ρ
yields:

1
2

∫
Ω
|ρ(t)|2 +

∫
Qt
|∇ρ|2 +

∫
Qt
ξρ(107)

=
∫
Qt

(
µ1g′(ρ1)−µ2g′(ρ2)−π(ρ1)+π(ρ2)

)
ρ+

1
2

∫
Ω
|ρ0|2.

We note that the product ξρ in the left-hand side is nonnegative by monotonicity, while
the first integrand on the right-hand side can be estimated as follows:

(
µ1g′(ρ1)−µ2g′(ρ2)−π(ρ1)+π(ρ2)

)
ρ

≤
(
|µ| |g′(ρ1)|+ |µ2| |g′(ρ1)−g′(ρ2)|+ |π(ρ1)−π(ρ2)|

)
|ρ|

≤ |g′(ρ1)| |µ| |ρ|+ c|µ2| |ρ|2 + c|ρ|2 ≤ c
(
|µ|2 + |ρ|2

)
≤ c
(
|z|2 + |ρ|2

)
.

Now, on inspecting the coefficients of the integral
∫
Qt |∇ρ|

2 in the right-hand sides of
(105) and (106), it appears convenient to multiply (107) by C1 + 2 and then add it
to (104). Having done this, it is straightforward to deduce that∫

Ω
|z(t)|2 +

∫
Qt
|∇(a1z)|2 +

∫
Ω
|ρ(t)|2 +

∫
Qt
|∇ρ|2

≤ c
∫
Qt

(
|∇µ2|+ |∇ρ1|+ |∇ρ2|+ |∇z2|+1

)2 (|z|2 + |ρ|2
)
+ c

∫
Ω
|z0|2 + c

∫
Ω
|ρ0|2.

At this point, we observe that (97) and (101) allow us to apply Lemma 1 with ϕ =
|∇µ2|+ |∇ρ1|+ |∇ρ2|+ |∇z2|+ 1. After such an application, we choose ε > 0 small
enough and use the Gronwall lemma. Thus, we obtain (102). Now, we easily check
that

|µ|≤ c|ρ|+ c|z|,

|∇µ|= |∇(a1 z+ z2 a)|≤ c|∇(a1z)|+ c|∇z2| |ρ|+ z2|∇a|
≤ c|∇(a1z)|+ c(|∇z2|+ |∇ρ2|) |ρ|+ c|∇ρ|
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almost everywhere in Q and

|z0|≤ c(1/a1)|µ0|+ cz0,2|a|≤ c(|µ0|+ |ρ0|)

in Ω. By combining these inequalities with (102), we obtain the estimate
∫
Ω
|µ(t)|2 +

∫
Qt
|∇µ|2 +

∫
Ω
|ρ(t)|2 +

∫
Qt
|∇ρ|2

≤ c
∫
Qt

(
|∇z2|+ |∇ρ2|

)2 |ρ|2 + c
∫
Ω
|µ0|2 + c

∫
Ω
|ρ0|2.

Hence, we can apply once more Lemma 1 with ϕ= |∇z2|+ |∇ρ2|, choose ε> 0 small
enough, and use again (102), to obtain the following bound:

ε
∫
Qt
|∇(a1z)|2 ≤ c

{∫
Ω
|z0|2 +

∫
Ω
|ρ0|2

}
.

Eventually, we take once more advantage of the Gronwall lemma and plainly conclude
that (61) holds true.
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REMARKS ON THE STOCHASTIC TRANSPORT EQUATION
WITH HÖLDER DRIFT

Abstract. We consider a stochastic linear transport equation with a globally Hölder contin-
uous and bounded vector field. Opposite to what happens in the deterministic case where
shocks may appear, we show that the unique solution starting with a C1-initial condition
remains of class C1 in space. We also improve some results of [10] about well-posedness.
Moreover, we prove a stability property for the solution with respect to the initial datum.

1. Introduction

The aim of this paper is twofold. On one side, we review ideas and recent results
about the regularization by noise in ODEs and PDEs (Section 1). On the other, we
give detailed proof of two new results of regularization by noise, for linear trasport
equations, related to those of the paper [10] (Theorem 4 and the results of section 4).

1.1. The ODE case

A well known but still always surprising fact is the regularization produced by noise
on ordinary differential equations (ODEs). Consider the ODE in Rd

d
dt
X (t) = b(t,X (t)) , X (0) = x0 ∈ Rd

with b : [0,T ]×Rd →Rd . If b is Lipschitz continuous and has linear growth, uniformly
in t, then there exists a unique solution X ∈ C

(
[0,T ];Rd). But when b is less regu-

lar there are well-known counterexamples, like the case d = 1, b(x) = 2sign(x)
√
|x|,

x0 = 0 where the Cauchy problem has infinitely many solutions: X (t) = 0, X (t) = t2,
X (t) =−t2, and others. The function b of this example is Hölder continuous.

Consider now the stochastic differential equation (SDE)

(1) dX (t) = b(t,X (t))dt+σdW (t) , X (0) = x0 ∈ Rd

with σ ∈ R and {W (t)}t≥0 a d-dimensional Brownian motion on a probability space
(Ω,F ,P). We say that a continuous stochastic process X (t,ω), t ≥ 0, ω ∈ Ω, adapted
to the filtration {F W

t }t≥0 of the Brownian motion, is a solution if it satisfies the identity

X (t,ω) = x0 +
∫ t

0
b(s,X (s,ω))ds+σW (t,ω) , t ≥ 0,

∗Dipartimento di Matematica, Università di Pisa, Italia.
†CEREMADE & CNRS UMR 7534, Université Paris Dauphine, France.
‡Dipartimento di Matematica, Università di Torino, Italia.
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for P-a.e. ω ∈ Ω. In the Lipschitz case we have again existence and uniqueness
of solutions. But now, we have more: if σ 0= 0 and b ∈ L∞

(
[0,T ]×Rd ;Rd) then

there is existence and uniqueness of solutions, [19]. The result is true even when
b ∈ Lq

(
0,T ;Lp

(
Rd ;Rd)) with d

p +
2
q < 1, p,q≥ 2 [14] (the assumptions can be prop-

erly localized). Recently, we have proved in [10] the following additional result, which
will be used below (the function spaces are defined in Section 1.4).

THEOREM 1. If σ 0= 0 and b ∈ L∞
(
0,T ;Cαb

(
Rd ;Rd)), α ∈ (0,1), then there

exists a stochastic flow of diffeomorphisms φt = φ(t,ω) associated to the SDE, with
Dφ(t,ω) and Dφ−1 (t,ω) of class Cα′ for every α′ ∈ (0,α).

By stochastic flow of diffeomorphisms we mean a family of maps φ(t,ω) :
Rd → Rd such that:

i) φ(t,ω)(x0) is the unique solution of the SDE for every x0 ∈ Rd ;

ii) φ(t,ω) is a diffeomorphisms of Rd .

For several results on stochastic flows under more regular conditions on b see [15].
Let us give an idea of the proof assuming σ = 1. Introduce the vector valued non
homogeneous backward parabolic equation

∂U
∂t

+b ·∇U+
1
2
ΔU =−b+λU on [0,T ]

U (T,x) = 0

with λ ≥ 0. By parabolic regularity theory we have the following result (cf. Theorem
2 in [10]):

THEOREM 2. If b∈ L∞
(
0,T ;Cαb

(
Rd ;Rd)), α∈ (0,1), then there exists a unique

bounded and locally Lipschitz solution U with the property

∂U
∂t

∈ L∞
(

0,T ;Cαb (R
d ;Rd)

)
, D2U ∈ L∞

(
0,T ;Cαb

(
Rd ;Rd⊗Rd⊗Rd

))
.

Moreover, for large λ one has, for any (t,x) ∈ [0,T ]×Rd,

|∇U (t,x)|≤
1
2
.

If X (t) is a solution of the SDE, we apply Itô formula toU (t,X (t)) and get

U (t,X (t)) =U (0,x0)+
∫ t

0
LU (s,X (s))ds+

∫ t

0
∇U (s,X (s))dW (s)

where LU = ∂U
∂t +b ·∇U+ 1

2ΔU . Hence, being LU =−b+λU ,

U (t,X (t)) =U (0,x0)+
∫ t

0
(−b+λU)(s,X (s))ds+

∫ t

0
∇U (s,X (s))dW (s)
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and thus
∫ t

0
b(s,X (s))ds=U (0,x0)−U (t,X (t))+

∫ t

0
λU (s,X (s))ds

+
∫ t

0
∇U (s,X (s))dW (s) .

In other words, we may rewrite the SDE as

X (t) = x0 +U (0,x0)−U (t,X (t))+
∫ t

0
λU (s,X (s))ds

+
∫ t

0
∇U (s,X (s))dW (s)+W (t) .

The advantage is thatU is twice more regular than b and ∇U is once more regular. All
terms in this equation are at least Lipschitz continuous.

From the new equation satisfied by X (t) it is easy to prove uniqueness, for
instance. But, arguing a little bit formally, it is also clear that we have differentiability
of X (t) with respect to the initial condition x0. Indeed, ifDhX (t) denotes the derivative
in the direction h, we (formally) have

DhX (t) = h+DhU (0,x0)−∇U (t,X (t))DhX (t)

+
∫ t

0
λ∇U (s,X (s))DhX (s)ds

+
∫ t

0
D2U (s,X (s))DhX (s)dW (s) .

All terms are meaningful (for instance the tensor valued coefficient D2U (s,X (s)) is
bounded continuous),∇U (t,X (t)) has norm less than 1/2 (hence the term∇U (t,X (t))
DhX (t) contracts) and one can prove that this equation has a solution DhX (s). Along
these lines one can build a rigorous proof of differentiability. We do not discuss the
other properties.

REMARK 1. A main open problem is the case when b is random:b= b(ω, t,x).
In this case, strong uniqueness statements of the previous form are unknown (when b is
not regular).

1.2. The PDE case

We have seen that noise improves the theory of ODEs. Is it the same for PDEs? We
have several more possibilities, several dichotomies:

linear
↗

equations:
↘

non linear
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uniqueness (weak solutions)
↗

problems:
↘

blow-up (regular solutions)

additive (like for ODEs)
↗

noise:
↘

bilinear multiplicative.
Let us deal with two of the simplest but not trivial combinations: linear transport
equations, both the problem of uniqueness of weak L∞ solutions and of no blow-up
of C1-solutions, the improvements of the deterministic theory produced by a bilinear
multiplicative noise.

The linear deterministic transport equation is the first order PDE in Rd

∂u
∂t

+b ·∇u= 0, u|t=0 = u0

where b : [0,T ]×Rd → Rd is given and we look for a solution u : [0,T ]×Rd → R.

DEFINITION 1. Assume b,divb ∈ L1
loc = L1

loc([0,T ]×Rd), u0 ∈ L∞
(
Rd). We

say that u is a weak L∞-solution if:

i) u ∈ L∞
(
[0,T ]×Rd)

ii) for all ϑ ∈C∞0
(
Rd) one has

∫
Rd
u(t,x)ϑ(x)dx=

∫
Rd
u0 (x)ϑ(x)dx+

∫ t

0

∫
Rd
u(s,x)div(b(s,x)ϑ(x))dxds

Existence of weak L∞-solutions is a general fact, obtained by weak-star com-
pactness methods. When b ∈ L∞

(
0,T ;Lipb

(
Rd ;Rd)), uniqueness can be proved, and

also existence of smoother solutions when u0 is smoother. Moreover, one has the trans-
port relation

u(t,φ(t,x)) = u0 (x)
where φ(t,x) is the deterministic flow associated to the equation of characteristics

d
dt
φ(t,x) = b(φ(t,x)) , φ(0,x) = x.

When b is less than Lipschitz continuous, there are counterexamples. For instance, for

d = 1, b(x) = 2sign(x)
√

|x|

the PDE has infinitely many solutions from any initial condition u0. These solutions
coincide for |x| > t2, where the flow is uniquely defined, but they can be prolonged
almost arbitrarily for |x|< t2, for instance setting

u(t,x) =C for |x|< t2
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with arbitraryC. Remarkable is the result of [5] which states that the solution is unique
when (we do not stress the generality of the behavior at infinity)

(2) ∇b ∈ L1
loc

(
[0,T ]×Rd ;Rd

)
,

(3) divb ∈ L1
(

0,T ;L∞
(
Rd ,Rd

))
.

There are generalizations of this result (for instance [1]), but not so far from it. In
these cases the flow exists and is unique but only in a proper generalized sense. The
assumption (3) is the quantitative one used to prove the estimate (for simplicity we
omit the cut-of needed to localize)

∫
Rd
u2 (t,x)dx=

∫
Rd
u2

0 (x)dx+
∫ t

0
ds

∫
Rd
u2 (s,x)divb(s,x)dx

≤
∫
Rd
u2

0 (x)dx+
∫ t

0
‖divb(s, ·)‖∞ ds

∫
Rd
u2 (s,x)dx

which implies, by Gronwall lemma,
∫
Rd u2 (t,x)dx = 0 when u0 = 0 (this implies

uniqueness, since the equation is linear). The assumption (2) apparently has no role
but it is essential to perform these computations rigorously. One has to prove that a
weak L∞-solution u satisfies the previous identity. In order to apply differential calcu-
lus to u, one can mollify u but then a remainder, a commutator, appears in the equation.
The convergence to zero of this commutator (established by the so called commutator
lemma of [5]) requires assumption (2). We have recalled these facts since they are a
main motiv below.

The problem of no blow-up of C1 or W 1,p solution is open for the determinis-
tic equation, under essentially weaker conditions than Lipschitz continuity of b. The
equation satisfied by first derivatives vk = ∂u

∂xk
involves derivatives of b as a potential

term
∂vk
∂t

+b ·∇vk+∑
i

∂b
∂xi

vi = 0, vk|t=0 =
∂u0
∂xk

and L∞ bounds on ∂b
∂xi seem necessary to control vk. Again there are simple counterex-

amples: in the case
d = 1, b(x) =−2sign(x)

√
|x|,

the equation of characteristics has coalescing trajectories (the solutions from ±x0 meet
at x = 0 at time

√
|x0|) and thus, if we start with a smooth initial condition u0 such

that at some point x0 satisfies u0 (x0) 0= u0 (−x0), then at time t0 =
√

|x0| the solution is
discontinuous (unless u0 is special, the discontinuity appears immediately, for t > 0).

Consider the following stochastic version of the linear transport equation:

∂u
∂t

+b ·∇u+σ∇u◦
dW
dt

= 0, u|t=0 = u0.
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The noise W is a d-dimensional Brownian motion, σ ∈ R, the operation ∇u ◦ dW
dt has

simultaneously two features: it is a scalar product between the vectors ∇u and dW
dt , and

has to be interpreted in the Stratonovich sense. The noise has a transport structure as
the deterministic part of the equation. It is like to add the fast oscillating term σ dW

dt to
the drift b:

b(x)−→ b(x)+σ
dW
dt

(t) .

Concerning Stratonovich calculus and its relation with Itô calculus, see [15].
We recall the so called Wong-Zakai principle (proved as a rigorous theorem in several
cases): when one takes a differential equations with a smooth approximation of Brow-
nian motion, and then takes the limit towards true Brownian motion, the correct limit
equation involves Stratonovich integrals. Thus equations with Stratonovich integrals
are more physically based.

DEFINITION 2. Assume b,divb ∈ L1
loc, u0 ∈ L∞

(
Rd). We say that a stochastic

process u is a weak L∞-solution of the SPDE if:

i) u ∈ L∞
(
Ω× [0,T ]×Rd)

ii) for all ϑ ∈C∞0
(
Rd),

∫
Rd u(t,x)ϑ(x)dx is a continuous adapted semimartingale

iii) for all ϑ ∈C∞0
(
Rd), one has

∫
Rd
u(t,x)ϑ(x)dx=

∫
Rd
u0 (x)ϑ(x)dx+

∫ t

0

∫
Rd
u(s,x)div(b(s,x)ϑ(x))dxds

+σ
∫ t

0

(∫
Rd
u(s,x)∇ϑ(x)dx

)
◦dW (s) .

The following theorem is due to [10].

THEOREM 3. If σ 0= 0 and

b ∈ L∞
(

0,T ;Cαb
(
Rd ;Rd

))
, divb ∈ Lp([0,T ]×Rd),(4)

for some α ∈ (0,1) and p > d ∧ 2, then there exists a unique weak L∞-solution of the
SPDE. If α ∈ (1/2,1) then we have uniqueness only assuming divb ∈ L1

loc. Moreover,
it holds

u(t,φ(t,x)) = u0 (x)

where φ(t,x) is the stochastic flow of diffeomorphisms associated to the equation

dφ(t,x) = b(t,φ(t,x))dt+σdW (t) , φ(0,x) = x

given by Theorem 2.

Thus we see that a suitable noise improves the theory of linear transport equa-
tion from the view-point of uniqueness of weak solutions. One of the aims of this paper
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is to prove a variant of this theorem, under different assumptions on b. It requires a new
form of commutator lemma with respect to those proved in [5] or [10].

Let us come to the blow-up problem. The following result can be deduced
from [10, Appendix A] in which we have considered BVloc-solutions for the transport
equation. In Section 2 we will give a direct proof of the existence part which is of
independent interest.

THEOREM 4. If σ 0= 0,

b ∈ L∞(0,T ;Cαb (R
d ;Rd)),

for some α ∈ (0,1) and u0 ∈C1
b
(
Rd), then there exists a unique classical C1-solution

for the transport equation with probability one. It is given by

u(t,x) = u0
(
φ−1
t (x)

)
(5)

where φ−1
t is the inverse of the stochastic flow φt = φ(t, ·).

The main claim of this theorem is the regularity of the solution for positive
times, which is new with respect to the deterministic case. The uniqueness claim is
known, as a particular case of a result in BVloc, see Appendix 1 of [8].

Notice that, for solutions with such degree of regularity (BVloc or C1), no as-
sumption on divb is required; divb does not even appear in the definition of solution
(see below). On the contrary, to reach uniqueness in the much wider class of weak
L∞-solutions, in [8] we had to impose the additional condition (4) on divb, for some
p > d ∧ 2 (divb also appears in the definition of weak L∞-solution); this happens also
in the deterministic theory.

1.3. Some other works on regularization by noise

The following list does not aim to be exhaustive, see for instance [7] for other results
and references:

• the uniqueness for linear transport equations can be extended to other weak as-
sumptions on the drift, [2], [17]; also no blow-up holds for Lp drift see [6] and
[18];

• similar results hold for linear continuity equations, [8], [16]:

∂ρ
∂t

+div(bρ) = 0, ρ|t=0 = ρ0 :

a noise of the form ∇ρ◦ dW
dt prevents mass concentration;

• analog results hold for the vector valued linear equations

∂M
∂t

+ curl(b×M) = 0
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similar to the vorticity formulation of 3-dimensional Euler equations or magneto-
hydrodynamics, where the singularities in the deterministic case are not shocks
but infinite values of M; a noise of the form curl(e×M)◦ dW

dt prevents blow-up
[12];

• improved Strichartz estimates for a special Schrödinger model with noise

i∂tu+Δu◦
dW
dt

= 0

have been proved, which are stronger than the corresponding ones for i∂tu+
Δu = 0 and allow to prevent blow-up in a non-linear case when blow-up is pos-
sible without noise, see [3];

• nonlinear transport type equations of two forms have been investigated: 2D Euler
equations and 1D Vlasov-Poisson equations; in these cases non-collapse of mea-
sure valued solutions concentrated in a finite number of points has been proved,
[11], [4].

We conclude the introduction with some notations.

1.4. Notations

Usually we denote by Di f the derivative in the i-th coordinate direction and with
(ei)i=1,...,d the canonical basis of Rd so that Di f = ei ·Df . For partial derivatives of
any order n ≥ 1 we use the notation Dn

i1,...,in . If η : Rd → Rd is a C1-diffeomorphism
we will denote by Jη(x) = det[Dη(x)] its Jacobian determinant. For a given function f
depending on t ∈ [0,T ] and x ∈ Rd , we will also adopt the notation ft(x) = f (t,x).

Let T > 0 be fixed. For α ∈ (0,1) define the space L∞
(
0,T ;Cαb (R

d)
)

as the set
of all bounded Borel functions f : [0,T ]×Rd → R for which

[ f ]α,T = sup
t∈[0,T ]

sup
x 0=y∈Rd

| f (t,x)− f (t,y)|
|x− y|α

< ∞

(| · | denotes the Euclidean norm in Rd for every d, if no confusion may arise). This is
a Banach space with respect to the usual norm ‖ f‖α,T = ‖ f‖0 +[ f ]α,T where ‖ f‖0 =
sup(t,x)∈[0,T ]×Rd | f (t,x)|. Similarly, when α= 1 we define L∞

(
0,T ;Lipb(Rd)

)
.

We write L∞
(
0,T ;Cαb (R

d ;Rd)
)

for the space of all vector fields f : [0,T ]×
Rd → Rd having all components in L∞

(
0,T ;Cαb (R

d)
)
.

Moreover, for n ≥ 1, f ∈ L∞
(
0,T ;Cn+αb (Rd)

)
if all spatial partial derivatives

Dk
i1,...,ik f ∈ L∞

(
0,T ;Cαb (R

d)
)
, for all orders k = 0,1, . . . ,n. Define the corresponding

norm as
‖ f‖n+α,T = ‖ f‖0 +

n

∑
k=1

‖Dk f‖0 +[Dn f ]α,T ,

where we extend the previous notations ‖ · ‖0 and [·]α,T to tensors. The definition of
the space L∞

(
0,T ;Cn+αb (Rd ;Rd)

)
is similar. The spaces Cn+αb (Rd) and Cn+αb (Rd ;Rd)
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are defined as before but only involve functions f : Rd → Rd which do not depend
on time. Moreover, we say that f : Rd → Rd belongs to Cn,α, n ∈ N, α ∈ (0,1), if
f is continuous on Rd , n-times differentiable with all continuous derivatives and the
derivatives of order n are locally α-Hölder continuous. Finally, C0

0(R
d) denotes the

space of all real continuous functions defined on Rd , having compact support and by
C∞0 (Rd) its subspace consisting of infinitely differentiable functions.

For any r > 0 we denote by B(r) the Euclidean ball centered in 0 of radius r
and byC∞r (Rd) the space of smooth functions with compact support in B(r); moreover,
‖ · ‖Lpr and ‖ · ‖W 1,p

r
stand for, respectively, the Lp-norm and the W 1,p-norm on B(r),

p ∈ [1,∞]. We let also [ f ]Cϑr = supx 0=y∈B(r) | f (x)− f (y)|/|x− y|ϑ.
We will often use the standard mollifiers. Let ϑ : Rd → R be a smooth test

function such that 0 ≤ ϑ(x) ≤ 1, x ∈ Rd , ϑ(x) = ϑ(−x),
∫
Rd ϑ(x)dx = 1, supp(ϑ) ⊂

B(2), ϑ(x) = 1 when x ∈ B(1). For any ε > 0, let ϑε(x) = ε−dϑ(x/ε) and for any
distribution g : Rd → Rn we define the mollified approximation gε as

(6) gε(x) = ϑε ∗g(x) = g(ϑε(x− ·)), x ∈ Rd .

If g depends also on time t, we consider gε(t,x) = (ϑε ∗g(t, ·))(x), t ∈ [0,T ], x ∈ Rd .

Recall that, for any smooth bounded domain D of Rd , we have: f ∈Wϑ,p(D),
ϑ ∈ (0,1), p≥ 1, if and only if f ∈ Lp(D) and

[ f ]pWϑ,p =
∫∫

D×D

| f (x)− f (y)|p

|x− y|ϑp+d
dxdy< ∞.

We haveW 1,p(D)⊂Wϑ,p(D), ϑ ∈ (0,1).

In the sequel we will assume a stochastic basis with a d-dimensional Brownian
motion (Ω,(F t) ,F ,P,(Wt)) to be given. We denote by Fs,t the completed σ-algebra
generated byWu−Wr, s≤ r ≤ u≤ t, for each 0 ≤ s< t.

Let us finally recall our basic assumption on the drift vector field.

HYPOTHESIS 1. There exists α ∈ (0,1) such that b ∈ L∞
(
0,T ;Cαb (R

d ;Rd)
)
.

2. No blow-up inC1

This section is devoted to prove Theorem 4. Since the solution claimed by this theorem
is regular, we do not need to integrate over test functions in the term b ·∇u and thus
we do not need to require divb ∈ L1

loc. For this reason, we modify the definition of
solution.

DEFINITION 3. Assume b∈ L1
loc, u0 ∈C1

b
(
Rd). We say that a stochastic process

u ∈ L∞(Ω× [0,T ]×Rd) is a classical C1-solution of the stochastic transport equation
if:
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i) u(ω, t, ·) ∈C1(Rd) for a.e. (ω, t) ∈Ω× [0,T ];

ii) for all ϑ ∈C∞0
(
Rd),

∫
Rd u(t,x)ϑ(x)dx is a continuous adapted semimartingale;

iii) for all ϑ ∈C∞0
(
Rd), one has

∫
Rd
u(t,x)ϑ(x)dx=

∫
Rd
u0 (x)ϑ(x)dx−

∫ t

0

∫
Rd
b(s,x) ·∇u(s,x)ϑ(x)dxds

+σ
∫ t

0

(∫
Rd
u(s,x)∇ϑ(x)dx

)
◦dW (s) .

If u is a classicalC1-solution and divb∈ L1
loc
(
[0,T ]×Rd), then u is also a weak

L∞-solution. Conversely, if u is a weak L∞-solution, u0 ∈ C1
b
(
Rd) and (i) is satisfied

then u is a classical C1-solution.
Before giving the proof we mention the following useful result proved in [10,

Theorem 5]:

THEOREM 5. Assume that Hypothesis 1 holds true for some α ∈ (0,1). Then
we have the following facts:

(i) (pathwise uniqueness) For every s ∈ [0,T ], x ∈ Rd, the stochastic equation (1)
has a unique continuous adapted solution Xs,x =

(
Xs,xt
(
ω
)
, t ∈ [s,T ] , ω ∈Ω

)
.

(ii) (differentiable flow) There exists a stochastic flow φs,t of diffeomorphisms for
equation (1). The flow is also of class C1+α′ for any α′ < α.

(iii) (stability) Let (bn) ⊂ L∞
(
0,T ;Cαb (R

d ;Rd)
)
be a sequence of vector fields and

φn be the corresponding stochastic flows. If bn → b in L∞(0,T ;Cα′b (Rd ;Rd)) for
some α′ > 0, then, for any p≥ 1,

(7) lim
n→∞

sup
x∈Rd

sup
0≤s≤T

E[ sup
r∈[s,T ]

|φns,r(x)−φs,r(x)|p] = 0

(8) sup
n∈N

sup
x∈Rd

sup
0≤s≤T

E[ sup
u∈[s,T ]

‖Dφns,u(x)‖p]< ∞,

(9) lim
n→∞

sup
x∈Rd

sup
0≤s≤T

E[ sup
r∈[s,T ]

‖Dφns,r(x)−Dφs,r(x)‖p] = 0.

REMARK 2. We point out that the previous assertions (7), (8) and (9) also holds
when φns,r(x) and φs,r(x) are replaced respectively by (φns,r)−1(x) and (φs,r)−1(x).

To see this note that for a fixed t > 0, Zs = (φs,t)−1(x), s ∈ [0, t], is measurable
with respect to Fs,t (the completed σ-algebra generated by Wu−Wr, s≤ r ≤ u≤ t, for
each 0 ≤ s< t) and solves

(10) Zs = x−
∫ t

s
b(r,Zr)dr−σ[Wt −Ws].
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This is a simple backward stochastic differential equations, of the same form as the
original one (only the drift has opposite sign). Note that for regular functions f ∈
C2
b(R

d), Itô’s formula becomes

f (Zs) = f (x)−
∫ t

s
∇ f (Zr) ·b(r,Zr)dr−

∫ t

s
∇ f (Zr) ·dWr−

σ2

2

∫ t

s
< f (Zr)dr

where
∫ t
s ∇ f (Zr) ·dWr is the so called backward Itô integral (is a limit in probability of

elementary integrals like ∑k∇ f (Zsk) · (Wsk −Wsk−1) in which we consider the partition
s0 = 0 < .. . < sN = t). Since this stochastic integral enjoys usual properties of the
classical Itô integral, one can repeat all the arguments needed to prove (7), (8) and (9)
even for solutions Z to (10).

Proof. (Theorem 4) Under the assumptions of the theorem, it has been proved in Ap-
pendix 1 of [8] that unqueness holds in BVloc. Hence it holds in C1. For this result, no
assumption on divb is required.

We show now that (5) is a classical C1-solution. It is easy to check (i) in Defi-
nition 3. Moreover, if ϑ ∈C∞0 (Rd), by changing variable we have:

∫
Rd
u(t,x)ϑ(x)dx=

∫
Rd
u0(y)ϑ(φt(y))Jφt(y)dy,

where Jφt(y) = det[Dφt(y)], and so also property (ii) follows. To prove property (iii)
consider the flow φεt for the regularized vector field bε (see (6)) and let Jφεt (y) be its
Jacobian determinant. Note that u0 ◦ (φεt )−1 → u0 ◦φ−1

t weakly in L∞(Rd), uniformly
in t ∈ [0,T ] and P-a.s., indeed for ϑ ∈C∞0 (Rd) we have

∫
Rd
(u0 ◦ (φεt )−1)(y)ϑ(y)dy=

∫
Rd
u0(y)ϑ(φεt (y))Jφεt (y)dy

→
∫
Rd
u0(y)ϑ(φt(y))Jφt(y)dy,

as ε→ 0, using the properties of the stochastic flow stated in Theorem 5. By density
we can extend this convergence to any ϑ ∈ L1(Rd). Moreover since bε is smooth, it is
easy to prove that

dJεt (y) = divbεt (φεt (y))Jφεt (y)dt

and by the Itô formula we find
∫
Rd
u0(y)ϑ(φεt (y))Jεt (y)dy=

∫
Rd
u0(y)ϑ(y)dy+

∫ t

0
ds

∫
Rd
u0(y)Lb

ε
ϑ(φεs(y))Jφεs(y)dy

+
∫ t

0
ds

∫
Rd
u0(y)ϑ(φεs(y))divbεs(φεs(y))Jφεs(y)dy

+σ
∫ t

0
dWs ·

∫
Rd
u0(y)∇ϑ(φεs(y))Jφεs(y)dy,

(11)
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where
Lb

ε
ϑ(y) =

1
2
σ2Δϑ(y)+bεs(y) ·∇ϑ(y).

Note that, integrating by parts,
∫ t

0
ds

∫
Rd
u0(y)ϑ(φεs(y))divbεs(φεs(y))Jφεs(y)dy

=
∫ t

0
ds

∫
Rd
u0((φεs)

−1(x))ϑ(x)divbεs(x)dx

=−
∫ t

0
ds

∫
Rd
u0((φεs)

−1(x))∇ϑ(x) ·bεs(x)dx

−
∫ t

0
ds

∫
Rd
∇u0((φεs)

−1(x))D(φεs)−1(x) ·bεs(x)ϑ(x)dx.

Therefore
∫
Rd
u0(y)ϑ(φεt (y))Jεt (y)dy=

∫
Rd
u0(y)ϑ(y)dy+

1
2
σ2

∫ t

0
ds

∫
Rd
u0((φ

ε
s)

−1(x))<ϑ(x)dx

−
∫ t

0
ds

∫
Rd
∇u0((φεs)

−1(x))D(φεs)−1(x) ·bεs(x)ϑ(x)dx

+σ
∫ t

0
dWs ·

∫
Rd
u0(y)∇ϑ(φεs(y))Jφεs(y)dy.

By changing variable y = (φεs)
−1(x) of the second and third integral in the right-hand

side, there are no problems to pass to the limit as ε→ 0, P-a.s., using (iii) in Theorem
5 and Remark 2 (precisely, one can pass to the limit along a suitable sequence (εn) ⊂
(0,1) converging to 0). To this purpose we only note that for the stochastic integral we
have

∫ t

0
dWs ·

∫
Rd
u0(y)∇ϑ(φεs(y))Jφεs(y)dy →

∫ t

0
dWs ·

∫
Rd
u0(y)∇ϑ(φs(y))Jφs(y)dy

uniformly on [0,T ] in L2(Ω) as ε→ 0. Finally we get
∫
Rd
u0((φt)−1(x))ϑ(x)dx=

∫
Rd
u0(y)ϑ(y)dy+

σ2

2

∫ t

0
ds

∫
Rd
u0((φs)−1(x))<ϑ(x)dx

−
∫ t

0
ds

∫
Rd
∇u0((φs)−1(x))D(φs)−1(x) ·bs(x)ϑ(x)dx

+σ
∫ t

0
dWs ·

∫
Rd
u0((φs)−1(x))∇ϑ(x)dx.

By passing from Itô to Stratonovich integral this is exactly the formula we wanted to
prove. The proof is complete.
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REMARK 3. One can show that the boundedness assumption on b is not impor-
tant to prove the previous Theorem 4. Indeed at least when b is independent on t, one
can prove the result with b possibly unbounded, only assuming that its component bi
are “locally uniformly α-Hölder continuous”, i.e.,

(12) [bi]α,1 := sup
x 0=y∈Rd

|bi(x)−bi(y)|
(|x− y|α∨ |x− y|)

<+∞, i= 1, . . . ,d,

where a∨ b = max(a,b), for a,b ∈ R. Under (12) one can still construct a stochastic
differentiable flow φt(x) (see Theorem 7 in [9]) which satisfies properties (8) and (9)
(see also Remark 2) and this allows to perform the same proof of Theorem 4.

3. A stability property

The following result shows a stability property for the solutions of the SPDE; such
property involves the weak∗ topology (or the σ(L∞(Rd),L1(Rd))-topology).

PROPOSITION 1. Assume that Hypothesis 1 holds true for some α ∈ (0,1).
Moreover, denote by φt = φ0,t the stochastic flow for equation (1). Then, for any se-
quence (vn)⊂ L∞(Rd), we have:

vn → v ∈ L∞(Rd) in weak∗ topology =⇒ vn(φ−1
t (·))→ v(φ−1

t (·))

in weak∗ topology,
uniformly in t ∈ [0,T ], P−a.s.

Proof. We prove that, P-a.s., for any f ∈ L1(Rd) we have

(13) an = sup
t∈[0,T ]

∣∣∣
∫
Rd
[vn(φ−1

t (y))− v(φ−1
t (y))] f (y)dy

∣∣∣→ 0,

as n→ ∞.
Recall that there exists a positive constant M such that ‖vn‖0 ≤M, n ≥ 1, and

‖v‖0 ≤M and, moreover, by the separability of L1(Rd) there exists a countable dense
set D⊂C∞0 (Rd).

It is enough to check (13) when f ∈ D (with the event of probability one, pos-
sibly depending on f ). Indeed, if f ∈ L1(Rd), we can consider a sequence ( fN) ⊂ D
which converges to f in L1(Rd) and find, P−a.s.,

an ≤ 2M
∫
Rd

| f (y)− fN(y)|dy+ sup
t∈[0,T ]

∣∣∣
∫
Rd
[vn(φ−1

t (y))− v(φ−1
t (y))] fN(y)dy

∣∣∣;

by the previous inequality the assertion follows easily.
To prove (13) for a fixed f ∈ D we first note that, by changing variable (Jφt(x)

denotes the Jacobian determinant of φt at x)∫
Rd
[vn(φ−1

t (y))− v(φ−1
t (y))] f (y)dy=

∫
K
[v(x)− vn(x)] f (φt(x))Jφt(x)dx,(14)
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where we have defined the compact setK= π2({(t,x)∈ [0,T ]×Rd : φ−1
t (x)∈ supp( f )}),

with π2(s,x) = x, s ∈ [0,T ], x ∈ Rd .
Using that, P-a.s., the map: (t,x) +→ f (φt(x))Jφt(x) is continuous on [0,T ]×Rd ,

we see from (14) that the map: t +→
∫
Rd [vn(φ

−1
t (y))− v(φ−1

t (y))] f (y)dy is continuous
on [0,T ] and so, P-a.s.,

(15) an = sup
t∈[0,T ]∩Q

∣∣∣
∫
Rd
[vn(φ−1

t (y))− v(φ−1
t (y))] f (y)dy

∣∣∣.

By (14) we also deduce that, P-a.s.,

(16)
∣∣∣
∫
Rd
[vn(φ−1

t (y))− v(φ−1
t (y))] f (y)dy

∣∣∣→ 0, t ∈ [0,T ]∩Q.

We finish the proof arguing by contradiction. We consider an event Ω0 with P(Ω0) = 1
such that (15), (16) holds for any ω ∈ Ω0 and also (t,x) +→ f (φ(t,ω)(x))Jφ(t,ω)(x) is
continuous on [0,T ]×Rd for any ω ∈Ω0.

If (13) does not hold for some ω0 ∈ Ω0, then there exists ε > 0 and (tn) ⊂
[0,T ]∩Q such that

∣∣∣
∫
Rd
[vn(φ−1

tn (y))− v(φ−1
tn (y))] f (y)dy

∣∣∣> ε

(we do not indicate dependence on ω0 to simplify notation; in the sequel we always
argue at ω0 fixed). Possibly passing to a subsequence, we may assume that tn → t̂ ∈
[0,T ].

By changing variable we have, for any n≥ 1,

ε<
∣∣∣
∫
K
[v(x)− vn(x)] f (φtn(x))Jφtn(x)dx

∣∣∣≤ (1)+(2),

(1) =
∣∣∣
∫
K
[v(x)− vn(x)] [ f (φtn(x))Jφtn(x)− f (φt̂(x))Jφt̂(x)]dx

∣∣∣,

(2) =
∣∣∣
∫
K
[v(x)− vn(x)] f (φt̂(x))Jφt̂(x)dx

∣∣∣.

Now
(1)≤ 2M

∫
K
| f (φtn(x))Jφtn(x)− f (φt̂(x))Jφt̂(x)|dx,

which tends to 0, as n→ ∞, P−a.s., by the dominated convergence theorem (indeed at
ω0 fixed, (t,x) +→ f (φ(t,ω0)(x))Jφ(t,ω0)(x) is continuous on [0,T ]×Rd).

Let us consider (2). By uniform continuity of f (φt(x))Jφt(x) on [0,T ]×K we
may choose q ∈ [0,T ]∩Q such that

| f (φt̂(x))Jφt̂(x)− f (φq(x))Jφq(x)|<
ε

4Mλ(K)
,
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for any x ∈ K (here λ(K) is the Lebesgue measure of K). Now, for any n≥ 1,

(2)≤
∣∣∣
∫
K
[v(x)− vn(x)] [ f (φt̂(x))Jφt̂(x)− f (φq(x))J f (φq(x))]dx

∣∣∣

+
∣∣∣
∫
K
[v(x)− vn(x)] f (φq(x))Jφq(x)dx

∣∣∣

≤ ε/2+
∣∣∣
∫
K
[v(x)− vn(x)] f (φq(x))Jφq(x)dx

∣∣∣.

Since x +→ f (φq(x))Jφq(x) is integrable on Rd , we find that the last term tends tends to
0, as n→ ∞.

We have found a contradiction. The proof is complete.

4. New uniqueness results

The aim of this section is to prove some new uniqueness results for L∞ weak solutions
of the SPDE obtained extending the key estimates in fractional Sobolev spaces.

Unlike Theorem 4 we will assume more conditions on b. On the other hand
we will allow u0 ∈ L∞(Rd) and prove stronger uniqueness results in the larger class of
weak solutions. Recall that the uniqueness statement, in a class of so regular solutions,
of Theorem 4 is rather obvious and does not require special effort and assumptions
on the drift. On the contrary, the uniqueness claims in a class of weak solutions of
Theorems 6 and 7 below are quite delicate and require suitable conditions on the drift.

The first result is the following:

THEOREM 6. Let d ≥ 2 and u0 ∈ L∞
(
Rd). Assume Hypothesis 1 and also that

divb ∈ Lq(0,T ;Lp(Rd))

for some q > 2 ≥ p > 2d
d+2α . Then there exists a unique weak L

∞-solution u of the
Cauchy problem for the transport equation and u(t,x) = u0(φ

−1
t (x)).

The main interest of this result is due to the fact that we can consider some p in
the critical interval (1,2] not covered by Hypothesis 2 in [10]; recall that this requires
that there exists p ∈ (2,+∞), such that

(17) divb ∈ Lp([0,T ]×Rd), d ≥ 2.

The next uniqueness result requires an additional hypothesis of Sobolev regularity for b
(beside the usual Hölder regularity) but allows to avoid global integrability assumptions
on divb.

THEOREM 7. Assume u0 ∈ L∞
(
Rd) , divb ∈ L1

loc([0,T ]×Rd) and

b ∈ L1(0,T ;Wϑ,1
loc (Rd))∩L∞(0,T ;Cα(Rd))(18)

with α,ϑ ∈ (0,1) and α+ϑ> 1. Then there exists a unique weak L∞-solution u of the
Cauchy problem for the transport equations and u(t,x) = u0(φ

−1
t (x)).
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REMARK 4. Recall that b ∈ L1(0,T ;Wϑ,1
loc (Rd)) if

∫ T
0 ‖b(s, ·)‖Wϑ,1(D)ds < ∞,

for any smooth bounded domain D ⊂Rd . SinceCα(D)⊂Wϑ,1(D), for any ϑ< α, we
deduce that Hypothesis 1 implies (18) when α> 1/2; in particular Theorem 7 follows
from Theorem 3 but only when α> 1/2.

The proofs of both theorems follow ideas of [10, Section 5], using the results be-
low on the commutator and on the regularity of the Jacobian of the flow. The following
commutator estimates follows from [10, Lemma 22].

COROLLARY 1. Assume v∈ L∞loc
(
Rd ,Rd), divv∈ L1

loc
(
Rd), g∈ L∞loc

(
Rd) and

ρ ∈C∞r (Rd).

(i) If there exists ϑ ∈ (0,1) such that v ∈Wϑ,1
loc (Rd ,Rd), then

∣∣∣∣
∫
Rd
Rε [g,v] (x)ρ(x)dx

∣∣∣∣≤Cr‖g‖L∞r+1

(
‖ρ‖L∞r ‖divv‖

L1
r+1

+ [ρ]C1−ϑ
r

[v]Wϑ,1
r+1

)
.

(ii) If there exists α ∈ (0,1) such that v ∈Cαloc(R
d ,Rd), then

∣∣∣∣
∫
Rd
Rε [g,v] (x)ρ(x)dx

∣∣∣∣≤Cr‖g‖L∞r+1

(
‖ρ‖L∞r ‖divv‖

L1
r+1

+ [v]Cαr+1
[ρ]W 1−α,1

r

)
.

Proof. We have
∣∣∣∣
∫∫

g(x′)Dxϑε(x− x′)
(
ρ(x)−ρ(x′)

)
[v(x)− v(x′)]dxdx′

∣∣∣∣

≤
ε1−ϑ

ε
[ρ]C1−ϑ

r
‖g‖L∞r+1

1
εd

∫∫
B(r+1)2

|Dxϑ(
x− x′

ε
)|
|v(x)− v(x′)|
|x− x′|ϑ+d

|x− x′|ϑ+ddxdx′

≤ [ρ]C1−ϑ
r

‖g‖L∞r+1
‖Dϑ‖∞ [v]Wϑ,1

r+1

The second statement has a similar proof.

The previous result can be extended to the case in which commutators are com-
posed with a flow.

LEMMA 1. Let φ be a C1-diffeomorphism of Rd (Jφ denotes its Jacobian). As-
sume v ∈ L∞loc

(
Rd ,Rd), divv ∈ L1

loc
(
Rd), g ∈ L∞loc

(
Rd).

Then, for any ρ ∈C∞r (Rd) and any R > 0 such that supp(ρ ◦ φ−1) ⊆ B(R), we
have a uniform bound of

∫
Rε [g,v] (φ(x))ρ(x)dx under one of the following condi-

tions:

(i) there exists ϑ ∈ (0,1) such that v ∈Wϑ,1
loc (Rd ,Rd), Jφ ∈C1−ϑ

loc (Rd);

(ii) there exists α ∈ (0,1) such that Jφ ∈W 1−α,1
loc (Rd), v ∈Cαloc(R

d ,Rd).
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Moreover, under one of the previous conditions, we also have

lim
ε→0

∫
Rε [g,v] (φ(x))ρ(x)dx= 0.

Proof. By a change of variables
∫
Rε[g,v](φ(x))ρ(x)dx =

∫
Rε[g,v](y)ρφ(y)dx where

the function ρφ(y) = ρ(φ−1(y))Jφ−1(y) has the support strictly contained in the ball of
radius R. Clearly, ‖ρφ‖L∞R ≤ ‖ρ‖L∞r ‖Jφ

−1‖L∞R . To prove the result, we have to check
that Corollary 1 can be applied with ρφ instead of ρ.

(i) To apply Corollary 1 (i), we need to check that ρφ ∈C1−ϑ
loc . This follows since

[ρφ]C1−ϑ
R

≤ ‖Jφ−1‖L∞R [ρ(φ
−1(·))]C1−ϑ

R
+ ‖ρ‖L∞r [Jφ

−1]C1−ϑ
R

≤ ‖Dφ−1‖L∞R ‖Dρ‖L∞r [Dφ
−1]C1−ϑ

R
+ ‖ρ‖L∞r [Dφ

−1]C1−ϑ
R

.

and the bound follows.

(ii) To apply Corollary 1 (ii), we need to check that ρφ ∈W 1−α,1
loc : first

[ρφ]W 1−α,1
R

≤ ‖Jφ−1‖L∞R [ρ◦φ
−1]W 1−α,1

R
+ [Jφ−1]W 1−α,1

R
‖ρ‖L∞r

and since
[ρ◦φ−1]W 1−α,1

R
≤ ‖D(ρ◦φ−1)‖L1

R
≤ ‖Dρ‖L1r

‖Dφ−1‖L∞R
we find

[ρφ]W 1−α,1
R

≤ CR‖Dρ‖L1r
‖Dφ−1‖L∞R ‖Jφ

−1‖L∞R +[Jφ−1]W 1−α,1
R

‖ρ‖L∞r

and the bound follows.

Finally the next theorem extends the analysis of the Jacobian of the flow pre-
sented in Section 2 and links the regularity condition on Jφ required in Lemma 1 (ii) to
the assumption on the divergence of b stated in Theorem 6.

THEOREM 8. Let d≥ 2. Assume Hypothesis 1 and the existence of p∈ ( 2d
d+2α ,2]

and q> 2 such that divb∈ Lq(0,T ;Lp(Rd)). Then, for any r> 0, Jφ∈ Lp(0,T ;W 1−α, p
r ),

P-a.s.

Proof. In the sequel we assume σ= 1 to simplify notation.
The first part of the proof is similar to the one of [10, Theorem 11]. Indeed

Step 1 can be carried on thanks to the chain rule for fractional Sobolev spaces: if
f : Rd → R is a continuous function, of class W 1−α,p

loc (Rd) and g : R → R is a C∞

function, then g◦ f ∈W 1−α,p
loc (Rd) and

[(g◦ f )]p
W1−α,p
r

≤

(
sup
x∈B(r)

∣∣g′( f (x))
∣∣
)p

[ f ]p
W 1−α,p
r

,
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for every r > 0. The modification of Step 2 does not pose any problem, so we only
consider the last steps of the proof.

Step 3. To prove the assertion it is enough to check that the family (ψε)ε>0 is
bounded in Lp(Ω× (0,T );W 1−α,p

r ).
Indeed, once we have proved this fact, we can extract from the previous se-

quence ψεn a subsequence which converges weakly in Lp(Ω× (0,T );W 1−α,p
r ) to some

γ. This also implies that such subsequence converges weakly in Lp(Ω× (0,T ),Lpr ) to γ
so we must have that γ= Jφ.

We introduce the following Cauchy problem, for ε≥ 0,

(19)






∂Fε

∂t
+

1
2
ΔFε+DFε ·bε = divbε, t ∈ [0,T [

Fε(T,x) = 0, x ∈ Rd .

This problem has a unique solution Fε in the space Lq(0,T ;W 2,p(Rd). Moreover, there
exists a positive constant C =C(p,q,d,T,‖b‖∞) such that

(20) ‖Fε‖Lq(0,T ;W 2,p(Rd)) ≤C‖divb‖Lq(0,T ;Lp(Rd)),

for any ε ≥ 0. This result can be proved by using [13, Theorem 1.2] and repeat-
ing the argument of the proof in [14, Theorem 10.3]. This argument works with-
out difficulties in the present case in which b (and so bε) is globally bounded and
divb ∈ Lq(0,T ;Lp(Rd)) with p,q ∈ (1,+∞).

From the previous result we can also deduce, since we are assuming q> 2, that
Fε ∈C([0,T ];W 1,p(Rd)), for any ε ≥ 0, and moreover there exists a positive constant
C =C(p,q d,T,‖b‖∞) such that

(21) sup
t∈[0,T ]

‖Fε(t, ·)‖W 1,p(Rd) ≤C‖divb‖Lq(0,T ;Lp(Rd)).

We only give a sketch of proof of (21). Define uε(t,x) = Fε(T − t,x); we have the
explicit formula

uε(t,x) =
∫ t

0
Pt−sgε(s, ·)(x)ds,

where (Pt) is the heat semigroup and gε(t,x) =Duε(t,x) ·bε(T − t,x)−divbε(T − t,x).
We get, since q> 2 and q′ = q

q−1 < 2,

‖Dxuε(t, ·)‖Lp ≤ c
∫ t

0

1
(t− s)1/2 ‖g

ε(s, ·)‖Lpds

≤C
(∫ T

0

1
sq′/2 ds

)1/q′ (∫ T

0
‖divb(s, ·)‖qLpds

)1/q

and so (21) holds. Using Itô formula we find (remark that Fε(t, ·) ∈C2
b(R

d))
(22)
Fε (t,φεt (x))−Fε (0,x)−

∫ t

0
DFε (s,φεs (x)) ·dWs =

∫ t

0
divbε (s,φεs (x))ds= ψε(t,x).
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Since we already know that (ψε)ε>0 is bounded in Lp(Ω× (0,T ),Lpr ) and since p≤ 2,
to verify that (ψε)ε>0 is bounded in Lp(Ω× (0,T );W 1−α,p

r ), it is enough to prove that
E
∫ T

0 [ψε(t, ·)]2W1−α,2
r

dt ≤ C, for any ε > 0. We give details only for the most difficult
term

∫ t
0 DFε(s,φεs(x))dWs in (22). The F(0,x) term can be controlled using (21) and the

others are of easier estimation. We show that there exists a constantC> 0 (independent
on ε) such that

(23) E
∫ T

0
dt
[∫ t

0
DFε (s,φεs (·))dWs

]2

W 1−α,2
r

≤C

We have

E
[∫ T

0
dt

∫
B(r)

∫
B(r)

|
∫ t

0(DFε (s,φεs (x))−DFε (s,φεs (x′)))dWs|2

|x− x′|(1−α)2+d
dxdx′

]

=
∫ T

0

∫
B(r)

∫
B(r)

E
∫ t

0

|DFε (s,φεs (x))−DFε (s,φεs (x′)) |2

|x− x′|(1−α)2+d
dsdxdx′,

= E
∫ T

0
dt

∫ t

0
ds

∫
B(r)

∫
B(r)

|DFε (s,φεs (x))−DFε (s,φεs (x′)) |2

|x− x′|(1−α)2+d
dxdx′

≤ TE
[∫ T

0
ds

∫
B(r)

∫
B(r)

|DFε (s,φεs (x))−DFε (s,φεs (x′)) |2

|x− x′|(1−α)2+d
dxdx′

]
,

≤ TE
∫ T

0
[DFε(s,φεs(·))]2W1−α,2

r
ds

By the Sobolev embedding the W 1−α,2
r -seminorm can be controlled by the norm in

W 1,p
r if

1−
d
p
≥ (1−α)−

d
2
.

This holds if p≥ 2d
d+2α . Then we consider p1 such that p> p1 >

2d
d+2α and show that

(24) E
∫ T

0
‖DFε(s,φεs(·))‖2

W1,p1r
ds≤C < ∞,

whereC is independent on ε.

Step 4. To obtain (24) we estimate

E
∫ T

0
ds
(∫

B(r)
|D2Fε (s,φεs (x))Dφεs (x) |p1dx

) 2
p1

A similar term has been already estimated in the proof of Theorem 11 in [10]. Since
∫
B(r)

(∫ T

0
E
[
|Dφεs (x)|

r]ds
)γ
dx< ∞,
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for every r,γ≥ 1 (see (8)), by the Hölder inequality, it is sufficient to prove that

∫ T

0
E

[(∫
B(r)

∣∣D2Fε (s,φεs (x))
∣∣p dx

) 2
p
]
dt ≤C < ∞.

We have

∫ T

0
E

[(∫
B(r)

∣∣D2Fε (s,φεs (x))
∣∣p dx

) 2
p
]
dt

= E

[∫ T

0
ds
(∫

φεs(B(r))

∣∣D2Fε (s,y)
∣∣p J(φεs)−1(y)dy

) 2
p
]

≤ sup
s∈[0,T ],y∈Rd

E[J(φεs)−1 (y)]2/p
∫ T

0

(∫
Rd

∣∣D2Fε (s,y)
∣∣p dy

) 2
p ≤C < ∞,

where, using the results of [10, Section 3] and the bound (20), C is independent on
ε> 0. The proof is complete.

References

[1] AMBROSIO, L. Transport equation and Cauchy problem for bv vector fields. Invent. Math.
158 (2004), 227–260.

[2] ATTANASIO, S., AND FLANDOLI, F. Renormalized solutions for stochastic transport equa-
tions and the regularization by bilinear multiplicative noise. Comm. P.D.E. 36, 8 (2011),
1455–1474.

[3] DEBUSSCHE, A., AND TSUTSUMI, Y. 1D quintic nonlinear Schrödinger equation with
white noise dispersion. J. Math. Pures Appl.(9) 96, 4 (2011), 363–376.

[4] DELARUE, F., FLANDOLI, F., AND VINCENZI, D. Noise prevents collapse of Vlasov-
Poisson point charges. To appear on Comm. Pure Appl. Math.

[5] DIPERNA, R., AND LIONS, P. Ordinary differential equations, transport theory and
Sobolev spaces. Invent. Math. 98 (1989), 511–547.

[6] FEDRIZZI, E., AND FLANDOLI, F. Noise prevents singularities in linear transport equa-
tions. published online on J. Funct. Anal. (http://dx.doi.org/10.1016/j.jfa.2013.01.003).

[7] FLANDOLI, F. Random perturbation of PDEs and fluid dynamic models. In Saint Flour
summer school lectures 2010, vol. 2015. Springer, Berlin, 2011.

[8] FLANDOLI, F., GUBINELLI, M., AND PRIOLA, E. Does noise improve well-posedness
of fluid dynamic equations? In Proceedings “SPDE’s and Applications - VIII” (Levico,
2008), no. 25. 2010, pp. 139–155.

[9] FLANDOLI, F., GUBINELLI, M., AND PRIOLA, E. Flow of diffeomorphisms for SDEs
with unbounded Hölder continuous drift. Bulletin des Sciences Mathématiques 134 (2010),
405–422.

[10] FLANDOLI, F., GUBINELLI, M., AND PRIOLA, E. Well posedness of the transport equa-
tion by stochastic perturbation. Invent. Math. 180 (2010), 1–53.



Remarks on the stochastic transport equation 73

[11] FLANDOLI, F., GUBINELLI, M., AND PRIOLA, E. Full well-posedness of point vortex
dynamics corresponding to stochastic 2D Euler equations. Stochastic Process. Appl. 121,
7 (2011), 1445–1463.

[12] FLANDOLI, F., AND NEKLYUDOV, M. Regularization by noise in a vector advection
equation. in preparation.

[13] KRYLOV, N. The heat equation in lq((0, t), lp)− spaces with weights. SIAM J. on Math.
Anal. 32 (2001), 1117–1141.

[14] KRYLOV, N., AND RÖCKNER, M. Strong solutions of stochastic equations with singular
time dependent drift. Probab. Theory Related Fields 131 (2005), 154–196.

[15] KUNITA, H. Stochastic differential equations and stochastic flows of diffeomorphisms. In
Ecole d’été de probabilités de Saint-Flour, XII—1982, vol. 1097. Springer, Berlin, 1984,
pp. 143–303.

[16] MAURELLI, M. Thesis.
[17] MAURELLI, M. Wiener chaos and uniqueness for stochastic transport equation. C. R.

Math. Acad. Sci. Paris 349, 11-12 (2011), 669–672.
[18] MOHAMMED, S., NILSSEN, T., AND PROSKE, F. Sobolev differentiable stochastic flows

of SDEs with measurable drift and applications. preprint, arXiv:1204.3867.
[19] VERETENNIKOV, Y. On strong solution and explicit formulas for solutions of stochastic

integral equations. Math. USSR Sb.

AMS Subject Classification: 60H15; 35LXX; 35F10

Franco FLANDOLI
Dipartimento di Matematica, Università di Pisa
Via Buonarroti 1c, 56127 Pisa, ITALIA
e-mail: flandoli@dma.unipi.it

Massimiliano GUBINELLI
CEREMADE & CNRS UMR 7534, Université Paris Dauphine
Place du Maréchal De Lattre De Tassigny, 75775 PARIS cedex 16, FRANCE
e-mail: gubinelli@ceremade.dauphine.fr

Enrico PRIOLA
Dipartimento di Matematica, Università di Torino
Via Carlo Alberto 10, 10123 Torino, ITALIA
e-mail: enrico.priola@unito.it

Lavoro pervenuto in redazione il 19.10.2012, e, in forma definitiva, il 15.01.2013





Rend. Sem. Mat. Univ. Politec. Torino
Vol. 70, 1 (2012), 75 – 84
Forty years of Analysis in Turin
A conference in honour of Angelo Negro

Bruno FRANCHI and Maria Carla TESI ∗

A QUALITATIVE MODEL FOR
AGGREGATION-FRAGMENTATION AND DIFFUSION OF

β-AMYLOID IN ALZHEIMER’S DISEASE

Abstract. In this paper we present a mathematical model for the aggregation, fragmentation
and diffusion of Aβ amyloid in the brain affected by Alzheimer’s disease. The model is
based on a classical discrete Smoluchowski aggregation-fragmentation equation modified to
take diffusion into account.

Ad Angelo con stima e affetto.

Alzheimer’s disease (AD) is nowadays one of the most common late life de-
mentia: current estimates of AD incidence are above 24 million of affected persons
worldwide, a number that is expected to double every 20 years. Due to the consis-
tent economic costs this will imply for the whole society, not to mention the disease
caused to the affected patients and their families, it is clear that considerable efforts are
made at all possible levels of research (medical, biological, pharmacological and even
mathematical) to make any kind of feasible progress in the study of the disease.

From the mathematical point of view, even if in recent years several models
have been developed for the description and the study of pathologies such as tumors,
the modeling for the study of AD is far less developed. Besides the classical approaches
in vivo and in vitro, there has been an increasing interest toward the approach in silico,
i.e. toward mathematical modeling and computer simulations. We refer for instance to
[15], [3], and, first of all, to the remarkably exhaustive and deep paper [5].

It is important to stress that, despite the large number of experimental data that
can be extracted from biomedical literature and incorporated in mathematical models
as in [5], mathematical models do not currently have a “predictive” value; rather, they
are what physicists call “toy models”, i.e. simplified formal models that can be used
in order to test preliminary new theories, quickly identifying, for instance, the most
relevant hypotheses or rejecting those less likely to lead to new insights. In this sense,
qualitative models take a place beside more specific fully quantitative models, and can
be used for reducing experimental costs or for overcoming structural difficulties.

In this spirit, in our recent paper [1] we have provide an elementary mathemat-
ical model of the diffusion and agglomeration of the β-amyloid (Aβ hereafter) in the
brain affected by Alzheimer’s disease (AD). For a detailed review of the current knowl-
edge on the role of Aβ in AD (the so-called amyloid cascade hypothesis), we refer to
[6]. Roughly speaking, Aβ is produced normally by the intramembranous proteolysis

∗The authors are supported by MURST, Italy, and by University of Bologna, Italy, funds for selected
research topics.
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of APP (amyloid precursor protein) throughout life, but a change in the metabolism
may increase the total production of Aβ, and, in particular, the production – among
other isoforms – of the monomeric Aβ40 and Aβ42 that are highly toxic. From now on,
for sake of simplicity, we shall simply write Aβ.

Successively, Aβ oligomers are subject to three different phenomena:

• diffusion through the microscopic tortuosity of the brain tissue;

• agglomeration, leading eventually to the formation of long, insoluble amyloid
fibrils, which accumulate in spherical microscopic deposits known as senile
plaques;

• fragmentation, leading to the formation of small oligomers through the breakage
of longer amyloid fibrils.

In our paper [1] we have considered only agglomeration and diffusion of Aβ oligomers,
completely neglecting fragmentation phenomena. This choice was motivated by the
fact that we were primarly interested in considering the early stage of AD, when small
amyloid fibrils are free to move and to coalesce in the brain. Therefore we discarded
deliberately fibril fragmentation, which can be considered as a secondary process in the
mechanism of amyloid self-assembly ([7], [17]), especially when oligomers of small
size are involved. In the present paper, however, we include also fragmentation and we
generalize the results obtained in [1].

A natural way to describe the agglomeration (and also fragmentation) phenom-
ena is by means of the so-called Smoluchowski equations (classical references are [14]
and [4]).

Since the fibrils at the stage of the disease under consideration are relatively
small, diffusion also plays a key role in the description of the behaviours of the fibrils,
as recently discussed e.g. in [10], [9].

In [1] we fixed as spatial scale of reference a size comparable to a multiple of
the size of a neuron, and we avoided the description of intracellular phenomena, as well
as of the clinical manifestations of the disease at a macroscopic scale.

With this choice of scale, we coherently assumed a uniform diffusion, and there-
fore we modeled it by the usual Fourier linear diffusion equation. Indeed, if one con-
siders a large (i.e. macroscopic) portion of the brain tissue, it has been recently proved
that the diffusion of the amyloid is affected by the metabolic activity and therefore may
change from one region to another according to the neuronal activity ([2]). On the
contrary, since we focus on a small portion of the celebral tissue (typically the affected
areas are the hippocampus or of the cerebral cortex), linear diffusion appears to be the
most appropriate (see, for instance, [11]).

Moreover, we assumed that “large” assemblies do not aggregate with each other.
This assumption was related to technical aspects of the model (basically, it is meant to
prevent blow-up phenomena for solutions at a finite time), but was also coherent with
experimental data.

We now briefly recall all the notations introduced in [1]: The portion of cerebral
tissue we consider is represented by a bounded smooth region Ω0 ⊂ R3 (since only
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qualitative information is desired we shall take Ω0 ⊂R2 in our simulations for keeping
the computing effort small enough), whereas the neurons are represented by a family
of regular regions Ω j such that

1. Ω j ⊂Ω0 if j = 1, . . . ,M;

2. Ωi∩Ω j = /0 if i 0= j.

We set

Ω :=Ω0 \
M⋃
j=1

Ωi.

From the mathematical point of view, we will consider a vector-valued function
u= (u1, . . . ,uN), where N ∈ N and u j = u j(t,x), t ∈ R, t ≥ 0 (the time), and x ∈Ω:

• if 1 ≤ j < N− 1, then u j(t,x) is the (molar) concentration at the time t at the
point x of an Aβ assembly of j monomers;

• uN takes into account aggregations of more than N−1 monomers. Although uN
has a different meaning from the other um’s, we keep the same letter u in order
to avoid cumbersome notations.

With these notations we were lead to the following Cauchy-Neumann problem:

(1)






∂
∂t u1 = d1Δxu1 −u1∑Nj=1 a1, ju j,

∂
∂t um = dmΔxum−um∑Nj=1 am, ju j+

1
2 ∑

m−1
j=1 a j,m− ju jum− j

(for 1 < m< N),

∂
∂t uN = dNΔxuN + 1

2 ∑ j+k≥N,k<N, j<N a j,ku juk,

with Neumann boundary conditions:

(2)






∂um
∂ν

= 0 on ∂Ω0, for m= 1, . . . ,N

∂u1
∂ν

= ψ j on ∂Ω j, j = 1, . . . ,M

∂um
∂ν

= 0 on ∂Ω j, j = 1, . . . ,M for m= 2, . . . ,N,

where 0 ≤ ψ j ≤ 1 is a smooth function for j = 1, . . . ,M, and, eventually, with Cauchy
data:
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(3)






u1(0, ·) =U1 ≥ 0

um(0, ·) = 0 for m= 2, . . . ,N.

The coefficient ai, j ≥ 0 take into account the rate of coagulation of oligomers of
length i and j, respectively, whereas 0 ≤ ψ j ≤ 1 is a smooth function for j = 1, . . . ,M,
describing the production of the amyloid near the membrane of the neuron. We only
took into account neurons affected by the disease, i.e. we assume ψ j 0≡ 0 for j =
1, . . . ,M. Moreover, to avoid technicalities, we assumed that U1 is smooth, more pre-
ciselyU1 ∈C 2+α(  Ω) for some α ∈ (0,1), and that ∂U1

∂ν = ψ j on ∂Ω j, j = 0, . . . ,M.
For the system above we were able to prove in [1] the existence of a unique

positive classical solution, existing for all positive times, as well as some estimates on
its asymptotic behaviour.

As explained above, our previous model can be improved if we take into account
that the Aβ-oligomers are also subject to a secondary process of fragmentation. More
precisely, we assume that oligomers of length i+ j is subject to a fragmentation phe-
nomenon, yielding oligomers of length i and j, with fragmentation rate βi, j = β j,i ≥ 0.
Coherently with our model, we make the following assumptions:

• Large agglomerate are stable. Then the equation for m = N does not contain
fragmentation terms. Analogously, the equation for m = N − 1 contains only
fragmentation terms corresponding to t loss of mass. For the same reason, we
assume bi, j = 0 if i+ j ≥ N;

• since in the disease coagulation prevails over fragmentation, we assume there
exists γ ∈ (0,1) such that

(4) bi, j−i ≤ γai, j for i, j = 1, . . . ,N−1, i< j.

Thus, we are lead to the following coagulation-fragmentation system

(5)






∂
∂t u1 = d1Δxu1 −u1∑Nj=1 a1, ju j+∑N−2

j=1 b1, ju j+1,

∂
∂t um = dmΔxum−um∑Nj=1 am, ju j

+ 1
2 ∑

m−1
j=1 a j,m− ju jum− j

− 1
2 ∑

m−1
j=1 bm− j, jum+∑N−m−1

j=1 bm, ju j+m
(for 1 < m< N−1),

∂
∂t uN−1 = dN−1ΔxuN−1 −uN−1∑Nj=1 aN−1, ju j

+ 1
2 ∑

N−2
j=1 a j,N−1− ju juN−1− j

− 1
2 ∑

N−2
j=1 bN−1− j, juN−1,

∂
∂t uN = dNΔxuN + 1

2 ∑ j+k≥N,k<N, j<N a j,ku juk,
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with the same Neumann boundary conditions and Cauchy initial data as above.
If we set bi,0 = b0,i = 0, then equations (5) can be written in in the simpler way

(6)






∂
∂t u1 = d1Δxu1 −u1∑Nj=1 a1, ju j+∑N−2

j=1 b1, ju j+1,

∂
∂t um = dmΔxum−um∑Nj=1 am, ju j+

1
2 ∑

m−1
j=1 a j,m− ju jum− j

− 1
2 ∑

m−1
j=0 bm− j, jum+∑N−m−1

j=0 bm, ju j+m
(for 1 < m≤ N−1),

∂
∂t uN = dNΔxuN + 1

2 ∑ j+k≥N,k<N, j<N a j,ku juk,

In addition, to avoid technicalities, we assume thatU1 is smooth, more precisely
U1 ∈C 2+α(  Ω) for some α ∈ (0,1), and that ∂U1

∂ν = ψ j on ∂Ω j, j = 0, . . . ,M.

THEOREM 1. If T > 0 then the Neumann-Cauchy problem (6) has a unique
classical positive solution u ∈C 1+α/2,2+α([0,T ]×  Ω).

Proof. Let g ∈C 2+α(  Ω) be such that

∂g
∂ν

= 0 on ∂Ω0

and
∂g
∂ν

= ψ j on ∂Ω j, j = 1, . . . ,M.

Set now v1 := u1 −g, vm := um for m> 1. Equations (6) become

(7)






∂
∂t v1 = d1Δxv1 − v1

(
a1,1v1 +∑Nj=2 a1, jv j+2a1,1g

)

+d1Δxg−a1,1g2 −g∑Nj=2 a1, jv j+∑N−1
j=1 b1, jv j+1

∂
∂t vm = dmΔxvm− vm

(
∑Nj=1 am, jv j+am,1g

)

+ 1
2 ∑

m−1
j=1 a j,m− jv jvm− j+a1,m−1gvm−1

− 1
2 ∑

m−1
j=0 bm− j, jum+∑N−m−1

j=0 bm, ju j+m
(for 1 < m< N),

∂
∂t vN = dNΔxvN + 1

2 ∑ j+k≥N a j,kv jvk
+g
(
a1,N−1vN−1 +a1,NvN

)
,

with homogeneous boundary conditions and Cauchy data

(8)






v1(0, ·) =U1 −g

vm(0, ·) = 0 for m= 2, . . . ,N.
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By [8] and the parabolic maximum principle (see, e.g., [13], Theorem 9.6), there exists
τmax > 0 such that the above Cauchy-Dirichlet problem has a local positive classical
maximal solution

v ∈C
1+α/2,2+α([0,τ]×  Ω)

for every τ ∈ (0,τmax). Therefore, the original Neumann-Dirichlet problem has a local
positive classical situation in [0,τmax)×  Ω.

To achieve the proof of the theorem, we have but to show that u can be continued
on all [0,T ]×Ω, and therefore, by [8] (1.3), or [12], Theorem 1 (iii), we have but to
show that

(9) sup
0≤t<τmax

‖u(t, ·)‖(L∞(Ω))N < ∞.

We can argue as in [16] and [1] by induction on the components of u. Let
g ∈C 2(  Ω) be such that

∂g
∂ν

= 1 on ∂Ω0

and
∂g
∂ν

= 1 on ∂Ω j, j = 1, . . . ,M.

Without loss of generality, we may assume g ≥ 0. We set C := max  Ω d1|Δxg|, u0 :=
g+Ct and v1 := u1 −u0. We have

(10)






∂
∂t v1 = d1Δxv1 −a1,1v2

1
− v1

(
∑Nj=2 a1, ju j+2a1,1u0

)
+∑Nj=2 b1, j−1u j+

+d1Δxu0 − ∂u0
∂t −a1,1u2

0 −u0∑Nj=2 a1, ju j
∂v1
∂ν =−1 on ∂Ω0
∂v1
∂ν = ψ j−1 ≤ 0 on ∂Ω j, j = 1, . . . ,M
v1(x,0) =U1(x)−g(x), x ∈Ω.

We set h :=−∑Nj=2
(
a1, jv1 −b1, j−1

)
u j and

k : =−d1Δxu0 +C+a1,1u2
0 +u0

N

∑
j=2

a1, ju j

≥−d1Δxu0 +C ≥ 0.

Thus, the equation in (10) becomes

(11)
∂
∂t
v1 −d1Δxv1 =−a1,1v2

1 −2a1,1u0v1 +h− k ≤−2a1,1u0v1 +h.

We take now k1 := max{γ,‖U1(x)−g(x)‖L∞(Ω)}. We multiply equation (11) by (v1 −
k1)+ and we integrate on [0, t]×Ω, for t < τmax. Keeping into account that u0 ≥ 0 and
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hence u0v1(v1 − k1)+ ≥ 0, we get
1
2
‖(v1(t, ·)− k1)

2
+‖L2(Ω) +

∫ t

0
‖∇(v1(s, ·)− k1)

2
+‖L2(Ω) ds

−
∫ t

0

(∫
∂Ω

∂v1
∂ν

(v1(s, ·)− k1)+
)
ds

≤−
N

∑
j=2

∫ t

0

∫
Ω
(v1(s,x)− k1)+

(
a1, jv1(s,x)−b1, j−1

)
u j(s,x)dxds

≤−
N

∑
j=2

a1, j

∫ t

0

∫
Ω
(v1(s,x)− k1)+

(
v1(s,x)− γ

)
u j(s,x)dxds,

by (4). Suppose now (v1(s,x)−k1)+ > 0. Then v1(s,x)> k1 ≥ γ, and hence (v1(s, ·)−
k1)+

(
v1(s, ·)− γ

)
u j(s, ·)≥ 0 in Ω, so that

1
2
‖(v1(t, ·)− k1)

2
+‖L2(Ω) +

∫ t

0
‖∇(v1(s, ·)− k1)

2
+‖L2(Ω) ds

−
∫ t

0

(∫
∂Ω

∂v1
∂ν

(v1(s, ·)− k1)+ dH n−1
)
ds≤ 0.

Since ∂v1
∂ν ≤ 0 on ∂Ω, we can conclude that ‖(v1(t, ·)− k1)2

+‖L2(Ω) ≤ 0, and then that
v1 ≤ k1, so that

0 ≤ u1 ≤ k1 +Cτmax.

Suppose now
‖u j(t, ·)‖(L∞(Ω))N ≤Cj for t ∈ (0,τmax)

j = 1, . . . ,m−1. If we choose C ≥ d1 max  Ω |Δxu0|, u0 := g+Ct (where g is as above)
and vm := um−u0, we have

(12)






∂
∂t vm = dmΔxvm− vm∑Nj=1 am, ju j

+dmΔxu0 − ∂u0
∂t −u0∑Nj=1 am, ju j

+ 1
2 ∑

m−1
j=1 a j,m− ju j(x, t)um− j(x, t)

− 1
2 ∑

m−1
j=0 bm− j, jum+∑N−m−1

j=0 bm, ju j+m,
∂vm
∂ν =−1 on ∂Ω0
∂vm
∂ν =−1 on ∂Ω j, j = 1, . . . ,M
vm(x,0) =−g(x), x ∈Ω.

Since dmΔxu0 − ∂u0
∂t −u0∑Nj=1 am, ju j ≥ 0, the equation in (12) yields

∂
∂t
vm−dmΔxvm

≤−vm
N

∑
j=1

am, ju j+
1
2

m−1

∑
j=1

a j,m− ju j(x, t)um− j(x, t)

−
1
2

m−1

∑
j=0

bm− j, jum+
N−m−1

∑
j=0

bm, ju j+m
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We can repeat now the arguments of the proof of Lemma 2.2 in [16] to obtain
the a priori bound (9). This achieves the proof of the Theorem.

If m= 1, . . . ,N−1, we multiply by m the equation for um in (6) and we sum up
for m= 1, . . . ,N−1. We obtain

∂
∂t

N−1

∑
m=1

mum = Δx
N−1

∑
m=1

dmmum

−
N−1

∑
m=1

N

∑
j=1

mam, jumu j+
1
2

N−1

∑
m=2

m−1

∑
j=1

maj,m− ju jum− j

−
1
2

N−1

∑
m=2

m
m−1

∑
j=0

bm− j, jum+
N−1

∑
m=1

m
N−m−1

∑
j=0

bm, ju j+m.

(13)

Now, as in [1],

−
N−1

∑
m=1

N

∑
j=1

mam, jumu j+
1
2

N−1

∑
m=2

m−1

∑
j=1

maj,m− ju jum− j

−
N−1

∑
m=1

mam,NumuN .

On the other hand, keeping in mind that bi, j = 0 if i+ j ≥ N, we can write

−
1
2

N−1

∑
m=1

m
m−1

∑
j=0

bm− j, jum+
N−1

∑
m=1

m
N−m−1

∑
j=0

bm, ju j+m

=−
1
2

∞

∑
m=1

m
m−1

∑
j=0

bm− j, jum+
∞

∑
m=1

m
∞

∑
j=0

bm, ju j+m

=−
1
2

∞

∑
m=1

∞

∑
j=0

(m+ j)bm, jum+
∞

∑
m=1

m
∞

∑
j=0

bm, ju j+m

=−
1
2

∞

∑
m=0

∞

∑
j=0

jbm, jum+
1
2

∞

∑
m=0

m
∞

∑
j=0

bm, ju j+m = 0.

In other words, the stability of large agglomerates yields that the global mass
of the soluble oligomers is not affected by the fragmentation. Thus, in particular, the
following asymptotic estimate holds

PROPOSITION 1 (see [1], Proposition 3.7). If we set

Φ(t) :=
N−1

∑
m=1

∫
Ω
mum(t,x)dx
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(in other words, Φ is the total mass of soluble oligomers), then there exists a > 0 such
that for t > 1 we have

Φ(t)≤ e−a(t−1)Φ(1)+
d1∑Mj=1

∫
∂Ω j

ψ j dH n−1

aλ1|Ω|
(1− e−a(t−1)).(14)
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ON A CONJECTURE OF DE GIORGI CONCERNING
NONLINEARWAVE EQUATIONS

Abstract. We discuss a conjecture by De Giorgi, which states that global weak solutions to
the Cauchy problem associated to certain nonlinear wave equations can be obtained as limits
of minimizers of suitable convex functionals. There is no restriction on the growth of the
nonlinearity, and the method is easily extended to more general equations.

Dedicated to Angelo Negro on the occasion of his 70th birthday.

1. The conjecture

In this talk I will report on a joint work with Paolo Tilli, discussing a conjecture of
Ennio De Giorgi related to some classes of nonlinear wave equations.
We consider minimization/evolution problems in space time, R×Rn, n≥ 0; the accent
on minimization or evolution depends on the point of view, and as we will see this is at
the core of the problem.

In a paper published in the Duke Mathematical Journal, [1], De Giorgi stated
the following conjecture.

CONJECTURE 1. Let p ∈ N be an even number. For ε > 0, let vε(t,x) denote
the minimizer of the convex functional

Fε(v) =
∫ ∞

0

∫
Rn
e−t/ε

{
|v′′(t,x)|2 +

1
ε2 |∇v(t,x)|

2 +
1
ε2 |v(t,x)|

p}dxdt

subject to the boundary conditions

v(0,x) = α(x), v′(0,x) = β(x), x ∈ Rn,

where α,β ∈C∞0 (Rn) are given functions. Then, for almost every (t,x) ∈ R+×Rn, the
limit

w(t,x) = lim
ε↓0

vε(t,x)

exists and the function w(t,x) solves in R+×Rn the nonlinear wave equation

(1) w′′ −Δw+
p
2
wp−1 = 0

with initial conditions

(2) w(0,x) = α(x), w′(0,x) = β(x), x ∈ Rn.

∗Author partially supported by the PRIN2009 grant “Critical Point Theory and Perturbative Methods
for Nonlinear Differential Equations”
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REMARK 1. Existence and uniqueness of a minimizer for the functional Fε are
straightforward. Basically one can consider the largest space of L1

loc(R×Rn) functions
where Fε is finite and minimize among functions that satisfy the boundary condition (in
a suitable sense). Coercivity and strict convexity easily provide existence and unique-
ness of a minimizer vε.

The above conjecture casts a completely new bridge between hard evolution
problems and more easily tractable convex minimization problems. Indeed, if proven
true, it provides a method to approximate nonlinear (defocusing) wave equations by
convex minimization problems. The variational approach is by genuine minimization,
and not by Critical Point Theory, where one would have to use functionals that behave
rather badly from the point of view of existence results. Notice also that the nonlinear-
ity exponent p can be arbitrarily large.

We also point out that the approach is new (in spirit) even for the linear wave
equation w′′ −Δw= 0 or for the linear Klein–Gordon equation w′′ −Δw+w= 0.

A further point of interest is the possibility to extend the method to other classes
of evolution equations.

A proof of this conjecture has to face a series of difficulties. Among others, we
list the following ones.

• The functionals involve first order spatial derivatives, but second order time
derivatives.

• The weight e−t/ε in each single functional (ε fixed) decays very rapidly as t→∞.

• For fixed t2 > t1, the weight ratio e−t1/ε/e−t2/ε diverges as ε→ 0.

• The time–scale depends on ε, making it difficult to compare two minimizers vε1
and vε2 .

• As ε→ 0, e−t/ε concentrates close to t = 0, and rescaled functionals Γ-converge
to a constant functional, thereby exhibiting a strong loss of information.

The following is our main result.

THEOREM 1 ([2]). For every real p≥ 2 and for initial data α,β in H1∩Lp, the
conjecture is true, up to subsequences.

REMARK 2. Passing to subsequences is not necessary if the Cauchy problem
(1)–(2) has uniqueness. However uniqueness for this problem is not known for large p.

REMARK 3. The solution of the Cauchy problem (1)–(2) obtained in the above
theorem is of energy class, i.e. the function

E(t) :=
∫
Rn

(
|w′(t,x)|2 + |∇w(t,x)|2 + |w(t,x)|p

)
dx

satisfies the energy inequality E(t)≤ E(0).
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We recall that conservation of energy for the Cauchy problem (1)–(2) is not
known for large p.

2. The main ideas of the proof

We now sketch some of the main ideas involved in the proof. It is clear that, in order to
pass to the limit in the Euler–Lagrange equation associated to the functionals Fε, some
estimates are needed. The type of estimates that we obtain, and that are sufficient to
complete the limit procedure, can be summarized in the following list.

• A localized L2 estimate for ∇vε, with values in L2(Rn):
∫ t+T

t

∫
Rn

|∇vε(s,x)|2 dxds≤CT, t ≥ 0, T ≥ ε.

• A localized Lp estimate for vε, with values in Lp(Rn):
∫ t+T

t

∫
Rn

|vε(s,x)|p dxds≤CT, t ≥ 0, T ≥ ε.

• A global L∞ estimate for v′ε, with values in L2(Rn):
∫
Rn

|v′ε(t,x)|2 dx≤C, t ≥ 0.

These estimates provide convergence (up to subsequences) to some w(t,x), with

w ∈ L∞(R+;Lp), ∇w ∈ L∞(R+;L2), w′ ∈ L∞(R+;L2),

for which the energy function

E(t) :=
∫
Rn

(
|w′|2 + |∇w|2 + |w|p

)
dx

is finite for a.e. t > 0.
Moreover, w solves (in weak sense) the wave equation

w′′ −Δw+
p
2
|w|p−2w= 0,

as one sees by passing to the limit in the Euler–Lagrange equation of vε. In this context,
it is interesting to note that the weight e−t/ε can be absorbed inside the test function
during the limit process.

Indeed, let η∈C∞0 (R+×Rn) be a test function. Since vε is the global minimizer
for Fε, it satisfies the Euler–Lagrange equation that, written in weak form, is

∫ ∞

0

∫
Rn
e−t/ε

(
ε2v′′εη′′+∇vε∇η+

p
2
|vε|p−2vεη

)
dxdt = 0.
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Integrating once by parts in time yields
∫ ∞

0

∫
Rn

(
−ε2v′ε

(
e−t/εη′′)′+ e−t/ε(∇vε∇η+

p
2
|vε|p−2vεη)

)
dxdt = 0.

Now choosing η= et/εϕ, with ϕ ∈C∞0 (R+×Rn), the preceding identity reads
∫ ∞

0

∫
Rn

(
−v′ε(ε2ϕ′′+2εϕ′+ϕ)′+∇vε∇ϕ+

p
2
|vε|p−2vεϕ

)
dxdt = 0

As ε→ 0, from vε → w (weakly in H1, strongly in Lp−1, . . . ) we obtain
∫ ∞

0

∫
Rn

(
−w′ϕ′+∇w∇ϕ+

p
2
|w|p−2wϕ

)
dxdt = 0 ∀ϕ ∈C∞0 (R+×Rn),

namely the weak form of the wave equation

w′′ −Δw+
p
2
|w|p−2w= 0.

REMARK 4. Also the two initial conditions

vε(0,x) = α(x) and v′ε(0,x) = β(x)

pass to the limit as ε→ 0. For the former, the L∞(R+;L2) bound on v′ε is enough. For
the latter, we need estimates on v′′ε , uniform in ε. These are obtained in L∞, with values
in the dual of H1 ∩ Lp, by a careful choice of test functions in the Euler–Lagrange
equation for vε.

We now sketch the main argument to obtain the a priori estimates that allowed
us to carry out the preceding limit procedure. First of all it is convenient to get rid of
the parameter ε in the weight: setting

uε(t,x) = vε(εt,x),

we see that vε minimizes Fε if and only if uε minimizes

Jε(u) =
∫ ∞

0

∫
Rn
e−t
(
|u′′|2 + ε2|∇u|2 + ε2|u|p

)
dxdt

with boundary contidions {
u(0,x) = α

u′(0,x) = εβ

Precisely, Jε(uε) = εFε(vε).
Now a crucial role is played by the function

E(t) =
∫
Rn

|u′ε|2 dx−2
∫
Rn
u′εu′′ε dx+ et

∫ ∞

t
e−sL(s)ds
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where L is
L(s) =

∫
Rn

|u′′ε (s,x)|2 + ε2|∇uε(s,x)|2 + ε2|uε(s,x)|p dx.

The function E : R+ → R is a sort of energy, and indeed it is strongly related
to the energy E of the wave equation. Its properties are summarized int he following
result.

THEOREM 2 (Energy lemma). Let uε be the minimizer for Jε and let

E(t) =
∫
Rn

|u′ε|2 dx−2
∫
Rn
u′εu′′ε dx+ et

∫ ∞

t
e−sL(s)ds.

Then E is positive and decreasing; precisely

E ′ =−4
∫
Rn

|u′′ε |2 dx in the sense of distributions

and
0 ≤

1
ε2E(t)≤ E(0)+O(ε),

where
E(0) :=

∫
Rn

(
β2 + |∇α|2 + |α|p

)
dx.

The proof of this result could be obtained, formally, by multiplying by u′ε the
Euler–Lagrange equation, but the integral

∫
Rn

|uε|p−2uεu′ε dx

is (a priori) meaningless for large p.
Instead, we make use of inner variations: we build competitors for uε of the

form
Uδ(t,x) = uε(t+δη(t),x), η ∈C∞0 (R+),

and compute
d
dδ
Jε(Uδ) at δ= 0. This is essentially the procedure that is used to derive

the Du Bois–Reymond equation in the Calculus of Variations.
The other tools to complete the argument are the following.

• A level estimate:
Jε(uε)≤ Jε(α+ εtβ)≤Cε2.

• An energy estimate:

E(0) = ε2E(0)+O(ε3)≤Cε2.

• A consequence of the Energy lemma:
∫
Rn

|u′ε(t)|2dx+ et
∫ ∞

t

∫ ∞

s
e−τL(τ)dτds≤ E(t)≤ E(0)≤Cε2.
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Setting
H(t) =

∫ ∞

t
e−τL(τ)dτ,

the last inequality can be written more concisely

(3)
∫
Rn

|u′ε(t)|2dx+ et
∫ ∞

t
H(s)ds≤Cε2.

From this we first derive a pointwise estimate onH. SinceH is decreasing by definition,

H(t+1)≤
∫ t+1

t
H(s)ds≤

∫ ∞

t
H(s)ds

Multiplying by et+1 and using (3) yields

et+1H(t+1)≤ eet
∫ ∞

t
H(s)ds≤Cε2,

that is,
etH(t)≤Cε2 ∀t ≥ 1.

But if t ∈ [0,1],
etH(t)≤ eH(t)≤ eH(0) = eJε(uε)≤Cε2,

so that
etH(t)≤Cε2 ∀t ≥ 0.

We are now in a position to conclude. Due to the preceding discussion we can proceed
by estimating

Cε2 ≥ etH(t) = et
∫ ∞

t
e−sL(s)ds≥ et

∫ t+1

t
e−sL(s)ds

≥ ete−t−1
∫ t+1

t
L(s)ds= e−1

∫ t+1

t

∫
Rn

|u′′ε |2 + ε2|∇uε|2 + ε2|uε|p dxds

≥ e−1ε2
∫ t+1

t

∫
Rn

|∇uε|2 + |uε|p dxds.

Dividing by ε2 we obtain
∫ t+1

t

∫
Rn

|∇uε|2dxds≤C ∀t ≥ 0,

∫ t+1

t

∫
Rn

|uε|pdxds≤C ∀t ≥ 0

and, directly from (3),
∫
Rn

|u′ε(t)|2 dx≤Cε2 ∀t ≥ 0.
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When we scale back to vε by uε(s,x) = vε(εs,x) and we change variables these esti-
mates take the form

1
ε

∫ εt+ε

εt

∫
Rn

|∇vε|2dxds≤C ∀t ≥ 0,

1
ε

∫ εt+ε

εt

∫
Rn

|vε|pdxds≤C ∀t ≥ 0

and
ε2

∫
Rn

|v′ε(t)|2 dx≤Cε2 ∀t ≥ 0.

Since t is arbitrary, we can rename εt by t and obtain
∫ t+ε

t

∫
Rn

|∇vε|2dxds≤Cε ∀t ≥ 0,

∫ t+ε

t

∫
Rn

|vε|pdxds≤Cε ∀t ≥ 0,

∫
Rn

|v′ε(t)|2 dx≤C ∀t ≥ 0.

The last one is the global L2 estimate on v′ε. As for the remaining two, given T ≥ ε, the
interval [t, t+T ] can be covered by O(T/ε) adjacent subintervals of length ε. On each
of these intervals we use the above estimates and we add the results, arriving at

∫ t+T

t

∫
Rn

|∇vε|2 dxds≤CεO(T/ε)≤CT, t ≥ 0, T ≥ ε

∫ t+T

t

∫
Rn

|vε|p dxds≤CεO(T/ε)≤CT, t ≥ 0, T ≥ ε,

which are the localized estimates we were looking for.

3. Some open problems

Here is a very short list of open problems that arise from the preceding discussion.

• Proving the conjecture without passing to subsequences. This is related, as we
said, to the presence of uniqueness for the Cauchy problem (1)–(2), when p is
large. If there is uniqueness, we know that there is no need for subsequences. If,
on the contrary, there is no uniqueness, the situation could be even more interest-
ing. Indeed, if one could prove the conjecture without passing to subsequences,
then one would have a way to select a privileged solution to the Cauchy problem
that could be referred to, for example, as the “Variational Solution”.



92 E. Serra

• Other equations. Just to make an example, what about

w′′ −
2
q

div
(
|∇w|q−2∇w

)
+
p
2
|w|p−2w= 0,

the wave equation for the q-Laplacian with defocusing nonlinearity?
This would correspond to the functional

∫ ∞

0

∫
Rn
e−t/ε

(
ε2|v′′|2 + |∇v|q+ |v|p

)
dxdt.

As far as we know, even the existence of global weak solutions (to the Cauchy
problem) for large q is unknown. Does the method of De Giorgi work to solve
this problem?

• The abstract form of De Giorgi’s Conjecture. Consider any convex functional of
the Calculus of Variations,

F(u) =
∫
Ω
f (x,u,∇u, . . .)dx

Let vε(t,x) be the minimizer of
∫ ∞

0
e−t/ε

(∫
Ω
ε2|v′′ε (t,x)|2 dx+F(vε(t, ·))

)
dt

with given boundary conditions vε(0, ·) and v′ε(0, ·)
As ε→ 0, does vε converge to some w, which solves the Cauchy Problem for the
equation

w′′+∇F(w) = 0 ?
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WEAK INSTABILITY OF HAMILTONIAN EQUILIBRIA

Abstract. This is an expository paper on Lyapunov stability of equilibria of autonomous
Hamiltonian systems. Our aim is to clarify the concept of weak instability, namely instability
without non-constant motions which have the equilibrium as limit point as time goes to minus
infinity. This is done by means of some examples. In particular, we show that a weakly
unstable equilibrium point can be stable for the linearized vector field.

1. Introduction

Stability of the equilibrium is a mathematical field more then two centuries old. Indeed,
Lagrange stated the celebrated Lagrange-Dirichlet theorem in the eighteenth century,
and some so called converses of that statement are still proved nowadays. So many
mathematicians have been interested in stability that we refrain from mentioning them
with the exception of the most important, Lyapunov, who defended his doctoral thesis
“The general problem of the stability of motion” in 1892. The applications are also
countless in mechanics and in most sciences. To start with the rich literature on this
matter, see Arnold et al. [1], Meyer et al. [3], and Rouche et al. [6].

Important mathematical objects related to the instability of the equilibrium are
asymptotic motions. Before their formal definition, let us mention that the upper po-
sition of a simple pendulum, and zero velocity, constitute an unstable equilibrium and
its asymptotic motions are neither rotations (when the pendulum swings around and
around) nor librations (when it swings back and forth), and they stay between the two
behaviors.

Let us consider a smooth vector field f on an open set A⊆ RN with an equilib-
rium point x̂ ∈ A, so f (x̂) = 0. We say that φ : (−∞,b) → A is an asymptotic motion
in the past to the equilibrium point x̂, if φ(t) is a non-constant solution to the o.d.e.
ẋ= f (x) such that φ(t)→ x̂ as t →−∞. In the sequel we briefly write ‘asymptotic mo-
tion’ instead of ‘asymptotic motion in the past’ since we are only concerned with this
kind of asymptotic motions. Of course the existence of an asymptotic motion implies
the Lyapunov instability of the equilibrium point. The basic sufficient condition for
the existence of an asymptotic motion is the presence of an eigenvalue of f ′(x̂) with
strictly positive real part, see for instance Hartman [2] remark to Corollary 6.1, p. 243.

In this paper we focus on autonomous Hamiltonian systems so in the sequel
N = 2n, x= (q, p), q, p ∈ Rn, and the vector field is

(1) (∂pH(q, p),−∂qH(q, p))

for some smooth H called the Hamiltonian function. Our aim is to clarify the concept
∗This paper is based on a lecture given in Turin on June 1, 2012, for Angelo Negro’s 70th birthday.
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of Lyapunov instability without asymptotic motions that we briefly call weak instability.
This is done by means of some examples.

Section 2 deals with linear systems. Of course there is a trivial situation where
weak instability appears: the free particle. The equilibrium is non-isolated and the
eigenvalues vanish, the example can be done in one degree of freedom so in dimension
2. A more subtle instability of the equilibrium for a linear system is obtained when the
eigenvalues are purely imaginary and some Jordan blocks have dimension greater than
one, of course this can happen only in dimension at least 4. The example we are going
to see comes from the planar restricted 3-body problem at one of the relative equilibria,
the Lagrange equilateral points, also called the Trojan points, at the critical Routh value
of the mass ratio of the primaries.

In Section 3 we move on nonlinear systems. Their equilibria can be unstable
even if we have stability for the linearized system as the Cherry Hamiltonian in dimen-
sion 4 shows by means of an asymptotic motion. Cherry’s system is the third example
of this paper, it was published in 1925 and, in the last 20 years, it became important in
plasma physics, see Pfirsch [5] and the references therein.

Our fourth example, also in dimension 4, comes from [10] and shows that we
can have weak instability of an Hamiltonian equilibrium which is linearly stable. Some
systems, produced by Barone-Netto and myself [11] and [9], preceded [10], they give
non-Hamiltonian examples of weak instability for linearly stable equilibria.

Hopefully, the concept of weak instability will stimulate further researches in
stability within mathematical physics, together with other fresh notions like the “weak
asymptotic stability” introduced by Ortega, Planas-Bielsa and Ratiu, see [4] and the
references therein.

2. Weak instability for linear systems

2.1. Free particle

Our first example is a particle on a straight line under no forces

(2) H(q, p) =
p2

2
, q, p ∈ R.

The Hamiltonian vector field is

(3)
(
∂pH(q, p),−∂qH(q, p)

)
= (p,0).

It is a linear field with the double eigenvalue 0. The integral curves are

(4) q(t) = q(0)+ p(0)t , p(t) = p(0).

Each (q0,0) ∈ R2 is an equilibrium point and its instability can be shown by means of
the sequence (q(0), p(0)) = (q0,1/m)→ (q0,0) as m→+∞. There are no asymptotic
motions.
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2.2. Linearization at L4

Our second example is the quadratic part of the Hamiltonian function of the planar
restricted 3-body problem at one of the relative equilibria, the Lagrange libration point
L4 at the critical Routh value of the mass ratio of the primaries. In the sequel q =
(q1,q2), p= (p1, p2),(q, p) = (q1,q2, p1, p2), and

(5) H(q, p) =
1√
2

det(p,q)+
1
2
|q|2 =

1√
2
(
p1q2 − p2q1

)
+

1
2
(
q2

1 +q2
2
)
.

The Hamiltonian vector field is

(∂p1H(q, p),∂p2H(q, p),−∂q1H(q, p),−∂q2H(q, p)) =

=
(
q2/

√
2,−q1/

√
2,−q1 + p2/

√
2,−q2 − p1/

√
2
)
,

(6)

see H0 and the o.d.e. at the end of p. 256, with ξ = q, η = p, ω = 1/
√

2, δ = 1, and
also H0 at p. 258 in Meyer et al. [3].

It is a linear vector field with the double eigenvalues λ = ±i/
√

2 and Jordan

blocks
(
λ 1
0 λ

)
. The origin is now the unique equilibrium point.

The function |q|2 is a first integral. Suppose the integral curve (q(t), p(t))→ 0
as t → −∞, then |q(t)|2 ≡ 0 and this fact further implies that |p(t)|2 ≡ 0, indeed for
q(t)≡ 0 we have

(7)
d
dt
|p(t)|2 = 2p(t) ·

(
−q1(t)+ p2(t)/

√
2,−q2(t)− p1(t)/

√
2
)
= 0.

So the integral curve is constant and we do not have asymptotic motions to the equilib-
rium point.

The origin is an unstable equilibrium point as we can see with

q1(t) =
1
m

cos
t√
2
, q2(t) =−

1
m

sin
t√
2
,

p1(t) =−
t
m

cos
t√
2
, p2(t) =

t
m

sin
t√
2
,

(8)

for w (q1(0),q2(0), p1(0), p2(0)) = (1/m,0,0,0)→ 0 as m→+∞.
Incidentally, in connection with the nonlinear 3-body problem which has the

Hamiltonian vector field defined by (6) as linearization at L4, the book [3] at the end of
Sec. 13.6 says that in 1977 two papers claimed to have proved the stability of the equi-
librium, however one proof is wrong and the other is unconvincing. The last sentence
is: “It would be interesting to give a correct proof of stability in this case, because the
linearized system is not simple, and so the linearized equations are unstable”.
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3. Instability for linearly stable equilibria

3.1. Cherry Hamiltonian

Next, the famous Cherry Hamiltonian system shows that the equilibrium can be un-
stable even if it is stable for the linearized system, briefly even if it is linearly stable.
In Cherry [7] p. 199, or in Whittaker [8] p. 412, we can see the Hamiltonian function
H : R4 → R

(9) H(q, p) =
1
2
(
q2

1 + p2
1
)
−
(
q2

2 + p2
2
)
+σ
(
q2
(
q2

1 − p2
1
)
−2q1p1p2

)
.

The Hamiltonian vector field, written as a column vector, is

(10)





p1 −2σq2p1 −2σq1p2
−2p2 −2σq1p1

−q1 −2σq2q1 +2σp1p2
2q2 +σp2

1 −σq2
1



 .

The linearized vector field (p1,−2p2,−q1,2q2) is obtained for σ = 0. The origin is
stable for the linearized systems which consists of two harmonic oscillators: q̈1 =−q1,
q̈2 = −4q2. The eigenvalues are distinct ±i, ±2i. However, the origin is Lyapunov
unstable for the vector field (10) whenever σ 0= 0 since it has the following asymptotic
motion defined for t < 0

q1(t) =
sin t√
2σ t

, q2(t) =
sin(2t)

2σ t
,

p1(t) =
cos t√
2σ t

, p2(t) =−
cos(2t)

2σ t
.

(11)

q1

q2

p1

Figure 1: Asymptotic motion for Cherry Hamiltonian
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3.2. Variation-like Hamiltonian

Our final example shows that the origin is an unstable equilibrium point which is lin-
early stable and has no asymptotic motions for the system defined by

(12) H(q, p) = p1p2 +q1q2 +σq2
1q2, σ 0= 0.

It is a particular case of the following Hamiltonian function introduced in [10]

(13) H(q, p) = p1p2 +g(q1)q2, g(0) = 0, g′(0)> 0,

where g ∈C1 on a neighborhood of 0. The Hamiltonian vector field is

(14)





p2
p1

−g′(q1)q2
−g(q1)



=





p2
p1

−g′(0)q2
−g′(0)q1



+o
(
|(q, p)|

)
.

The origin is stable for the linearized system which consists of two harmonic oscilla-
tors: q̈1 =−g′(0)q1, q̈2 =−g′(0)q2. In this case the eigenvalues are double ±i

√
g′(0)

however the Jordan blocks are one-dimensional.
The subsystem of the first and last canonical equations

(15) q̇1 = p2, ṗ2 =−g(q1),

separates. If we take a solution (q1(t), p2(t)) of this subsystem and plug q1(t) into the
second and third canonical equations, we then get the equations of variation of (15)
along the solution (q1(t), p2(t)). This is why the function in formula (13) is called
variation-like Hamiltonian in the title of this subsection.

There are no asymptotic motions, indeed if the solution

(16) (q1(t),q2(t), p1(t), p2(t)
)
→ 0 as t →−∞

then (q1(t), p2(t)) ≡ 0, since the origin is a local center for (15), and this implies
(q2(t), p1(t))≡ 0 too.

In spite of this fact, the origin is unstable for (14) for most functions g as above.
Theorem 3.3 in [10] proves that stability is equivalent to the isochrony of the periodic
solutions of the subsystem (15) in a neighborhood of 0 ∈ R2, and this implies the
isochronous periodicity of all integral curves of (14) in a neighborhood of 0 ∈ R4.
Moreover, Corollary 2.3 in [10] for a smooth g provides

(17) g′′′(0) =
5g′′(0)2

3g′(0)

as the simplest necessary condition for (local isochrony and then) stability. So the
choice g(q1) = q1 +σq2

1 of the Hamiltonian (12) gives instability for all σ 0= 0. In
Figure 2 we can see the projection on the q1,q2-plane of the integral curve of the
Hamiltonian vector field given by (12).
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q1

q2

q1

q2

q1

q2

Figure 2: Projection of an unbounded orbit for H = p1p2 +q1q2 +q2
1q2

Finally, let us remark that the Hamiltonian (12), composed with the symplectic
transformation (Q,P) +→ (Q1 +Q2,Q1 −Q2,P1 +P2,P1 −P2)/

√
2, becomes

(18)
1
2
(
Q2

1 +P2
1
)
−

1
2
(
Q2

2 +P2
2
)
+

σ

2
√

2
(Q1 +Q2)

(
Q2

1 −Q2
2
)

a function with some features in common with Cherry’s Hamiltonian (9).

Acknowledgments. The pictures were made using Mathematica by Wolfram Re-
search Inc. by means of the package CurvesGraphics6 by Gianluca Gorni available at:
http://sole.dimi.uniud.it/~gianluca.gorni/
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