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ON THE FORM OF INSTANTON-TYPE SOLUTIONS FOR
EQUATIONS OF THE FIRST PAINLEVE HIERARCHY BY
MULTIPLE-SCALE ANALYSIS

Abstract. We construct, using multiple-scale analysis, a formal tsmhucontaining suffi-
ciently many free parameters for the first Painlevé hierai@)m, with a large parameter.
This note is a short summary of our forthcoming paper [3].

1. Introduction

Aoki, Kawai and Takei, in 1990's, investigated the traditibPainlevé equations with
a large parametet from a viewpoint of the exact WKB analysis and local struetaf
formal solutions near turning points. In the papers [4, 8 ®,12], they constructed
the formal solutions with 2-parameters caliedtanton-type solutionsnd established
the connection formula among these solutions.

Several Painlevé hierarchies have recently been foundiousareas of math-
ematics and it is also expected to establish the conneationula of instanton-type
solutions for these hierarchies with a large parameter. tikair purpose, we need to
construct instanton-type solutions with sufficiently mémee parameters so that Stokes
phenomena are correctly caught.

In this note, we consider the first Painlevé hierar(Rym, (m=1,2,...) with
a large parametet and construct its instanton-type solutions. For the secoarh-
ber (R )2 of the hierarchy, Y. Takei [13] had constructed instantgmetsolutions by
using singular perturbative reduction of a Hamiltoniantsgsto its Birkhoff normal
form. The first author [2] also constructed them by multiptede analysis. We follow
the latter method and construct instanton-type solutiongfgeneral membé&P )m.
Detailed construction will be given in our forthcoming aléi [3].
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2. Instanton-type solutions and multiple-scale analysis

2.1. The first Painlevé hierarchy with a large parameter

Letw; (j =1,2,...) be the polynomial of variablag andv, (1 <k, | < j) defined by
the recurrence relation

1 j -1 1 -1
(1) wj =3 > Uikt Y UWjk— > > ViVj—k+Cj + Ojmt.
=1 =1 s

Herec;j is a constant andjm, stands for the Kronecker delta. Then the first Painlevé
hierarchy(P)m with a large parametey (m= 1,2,...) is the system of non-linear
equations

dy;
1Y%
HZZVJ, J:1;27 , M,
2) g
Vi .
7ld_tJ:2(uj+1+uluj+Wj)7 J:]-a 27"'ama

whereu; andv;j are unknown functions dfwith the additional conditioim,1 = 0.

Note that the first membém,); gives the traditional first Painlevé equatiBn
with a large parametey.

As the definition of the system is very complicated, we remftite system into
the simpler form with the generating functions defined by

UG::OOUG", ve::mvek, W) = 3wkt
o (6) k;k (6) k;k (6) k;k
C(O) 1= 3 (ok+Bumt)8 ™.

K=1
HereB denotes an independent variable. Then the sy$&rmhecomes

2Vo
d [ ue
4 1= = —v?
@ ” dt( Ve ) —(1+2ule)(1_u)+%

with the condition that the coefficients &+ of U andV are zero. Herd = Bimplies
thatA— Bis equal to zero module™?2,
2.2. 0-parameter solutions of (P)m

For the construction of instanton-type solutions, we fikgtstruct a special kind of
the solution of(P ), called a @parameter solution We rewrite the result [7] on the
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0-parameter solution dfR ), by using generating functions. Let us consider formal
series im 1 of the form

(5) G =S n G, vit)=3n k), j=1..,m
=0 o

and let us define the generating functions with respect ttetiting termsij o andvj o
of uj andvj by

8

(6) Go(8) == S Gj .08 and p(8) :zzvj,oei,
=1 =1

respectively. Then, putting) into (2), we find the following equations for the gener-
ating functions:

1+2C

7 Vo =0, (1+ 2U1109) = (1_ 00)2.

The equations can be easily solved and we have

- [ 1+2C
=1—-/—.
(8) to 1+ 201109

Note that theus ¢ in the right-hand side of8) is taken so that the coefficient 1 o of
6™ 1in (g is zero.
2.3. Instanton-type solutions of( P ),

Leta= —%, and we fix it in what follows. We first introduce several naias to define
instanton-type solutions.

Let ug jo andvy jq (k=1,2,..., ] =0,1,2,...) be unknown functions of the
variablet. We define

9 u:= Zbk

and denote by (u) (resp.of(v)) the coefficient 0B in u (resp.v).

Let © be the set of formal power series @fwithout constant terms, and let
Q: (08)2 —; ©? be the map defined by the relation

(10) Q( §3 ) 1=2< (1+ zal,otgl)ex—O?(X)e )

forx=S x;0l,y= S y0 co.
2

8

Uk ja (1) 85019, vi= Vi ja (1) 85019,
, 2.2,
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Then, by the change of unknown functiong#),
(11) U =lo+n°(1— do)u, V =Vo+n%(1—Go)v,

we obtain the system of unknown functiofus v) in the form

(52 (%) =n*((sutw )~e( %))
)2
+n®u <h+%> < \lj )e,

with

(13)  S(u,v):= %(—v, u)Q( \ng ) +309(u)ue and h:= %(Iog(l— (o).

As the form of the above system suggests, the @agays an important role
in the study of(P)m and its eigenvectoi(A) corresponding to an eigenvalden the

sense ofY(A(A)B) = AA(A)B has the special forr< A :((){\))/2 ) with

0 had >\2 —8i
(14) a\) := 1907 kgog()\)keHl’ g\ = %.

Since the coefficients &1 in U andV are zero, the coefficietil — Gg)a(A) of ™1
must be zero. Hence the eigenvaluef Q is a root of the algebraic equation

(15) AN =A™~ T Gog(h)™* =0,
k=1

whereli o is given by(5). Note that\(A, t) is an even function ak.

Letvii(t), ..., vim(t) be the roots of the algebraic equatiomoivhere we set
Vk = —V_g, and letQ be an open subset it. We always assume the following two
conditions from now on.

(A1) The rootsvi(t)’s (1 < |i| < m) are mutually distinct for eache Q.

(A2) The functionpivi(t) +--- + pmvm(t) does not vanish identically of2 for any
(p17 EERE) pm) € Zm\{o}
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Lett:= (14, ..., Tm) bemindependent variables, and let us define the rings

(16)

(@)= o) Hﬂaerl’ onfemonte n“e_m”,

whereM (Q) (resp.O(Q)) denotes the set of formal power serie®iwith coefficients

in multi-valued holomorphic functions with a finite numbérlanching points and
poles (resp. holomorphic functions) 6n We also denote byly (Q) (resp. 29 (Q))
the subset iy (Q) (resp. 49(Q)) consisting of a formal power series of order less
than or equal ta with respect tay. For¢(ty,...,Tm, t, 0, n) € 44(Q), we define the
morphismi by

t t
(17) l(¢):¢<n [visas o | vm(s>dst,e,n).
By replacing% in (12) with

d
+"'+|’]VmF,
m

we obtain the partial differential equation associatedh i) of the form

() (o2 ) or(2)
I RO
) ()

Here the operatd? is defined by

0
+nNva=—

d d
(18) — +NVi— %

ot o1y

d d
(20) P=x:—-0Q, Xt =Vi=— + - +Vnz—
o1y O

Then, for a solution(u, v) € 42(Q) := (4«(Q))? of the system (19), thé(u), 1(V))
becomes a formal solution of the system (12).

DEFINITION 1. We say that a formal solutiofU, V) on Q of the systent4)
is of instanton-type ifU, V) has the form(0o, Vo) +n® (1 — Go)(1(u), 1(v)) for which
(u,v) € 42(Q) is a solution of(19).

2.4. Existence of instanton-type solutions fo(P)m

Now we state our main theorem whose proof is given in [3].
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THEOREM1. LetQ be an open subset it} and we assume the conditiof#sl)
and(A2). Then we have instanton-type solutions of equatior{®0f, with free2m-
parameterB_m, ..., Bm) € C2M[[n~Y]. In particular, we can construct the solution
(u, V) in 43(Q) for (19) of the form

(21) ( y ) - fi(T, t;)AVK),

with
fi(t,t;n) = ; n“m( Y fepe(t)e? )
peZ™, [p|=]
where|p| := [p1|+ -+ |Pml.

We can give the more precise form fifappearing in the above theorem. The
leading termfy o and the subleading terrfip  of fy, for example, are described by the
following Lemmas 1 and 2.

LEMMA 1. We have
(22) fco=wxe™ (1< |kl <m),

wherewy, w_k (1 <k < m) are multi-valued holomorphic functions éhof the form
t

(w:[3<k0>exp</ ( Z(p(k i)B fexp( Z/hdt) hk> dt)

oo_k:Bwﬁexp</ ( Z(p(k B fexp( 2/ h; dt) hk> dt)

with free2m-parameter$[3(_°r)n, ey [351?)) € C?™. Hereg(k, j) are rational functions of
the variablesy’s and hx are holomorphic functions i with the conditions

(24) (p(k7 J) = (p(_k7 J) (1 <j< m)7 he =h_.

(23)

For the explicit forms ofp(k, j) andhy, see[3]. Furthermore the subleading
term of the solution is given by the following.

LEMMA 2. For any k(1 < k] <m), the { o is given by

2 | e

fa = | vy, (@t Vi@ ettt —vjo e )
1<[j[<m,
(25) 17k

2
- g ﬁh' Kj 0| +E&)Km7k+}yk X i
J:le I Vg 2 Vi
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Hereyy are holomorphic functions i@ with yx = y_x and h j are defined by

4 (k-vi)

1<1<m,
(26) b= —2 (£0,  hoi=3 —
kj = , e
N v 277

with the conventionjh == hy ;-

References

[1] Aok, T. Multiple-scale analysis for Painlevé transcendents wilarge parameteSym-
plectic Singularities and Geometry of Gauge Fields, Ban@ehter Publ. 391997), 11—
17.

[2] Aoki, T. Multiple-scale analysis for higher-order Painlevé a&ipns. RIMS Kokydroku
Bessatsu BR2007), 89-97.

[3] Aoki, T., HONDA, N., AND UMETA, Y. On a construction of general formal solutions for
equations of the first Painlevé hierarchy I. Preprint, 2012.

[4] Aoki, T., KAwAI, T., AND TAKEI, Y. WKB analysis of Painlevé transcendents with a
large parameter. IIWorld Sci. Publ., River Edge N1996), 1-49.

[5] HONDA, N. On the Stokes geometry of the Noumi-Yamad systeRIMS Kdkylroku
Bessatsu BR2007), 45-72.

[6] HONDA, N. Degenerate Stokes geometry and some geometric seuatderlying a vir-
tual turning point.RIMS Kokydroku Bessats(2008), 15-49.

[71 Kawal, T., KOIKE, T., NISHIKAWA, Y., AND TAKEI, Y. On the Stokes geometry of
higher order Painlevé equation&stérisque297 (2004), 117-166.

[8] Kawal, T., AND TAKEI, Y. WKB analysis of Painlevé transcendents with a largepara
eter. I.Adv. Math 11§1996), 1-33.

[9] Kawal, T., AND TAKEI, Y. WKB analysis of Painlevé transcendents with a largempara
eter. lll. Adv. Math 1341998), 178-218.

[10] Kawal, T., AND TAKEI, Y. Algebraic Analysis of Singular Perturbation Thepwpl. 227
of Translations of Mathematical Monograph&mer. Math. Soc., 2005.

[11] TakEl, Y. Singular-perturbative reduction to Birkhoff normalrfio and instanton-type
formal solutions of Hamiltonian system&ubl. RIMS 341998), 601-627.

[12] TakEl, Y. An explicit description of the connection formulafoetfirst Painlevé equation.
Toward the Exact WKB Analysis of Differential Equationgydar or Non-Linear(2000),
271-296.

[13] TAKEI, Y. Instanton-type formal solutions for the first Painleviérarchy. Algebraic
Analysis of Differential Equations, Springer-Verlag 20@87-319).



338

AMS Subject classification: 34E20, 34M40, 76M45

Takashi AOKI

Department of Mathematics, Kinki University
Higashi-Osaka 577-8502, JAPAN

e-mail: aoki@math.kindai.ac. jp

Naofumi HONDA

Department of Mathematics, Hokkaido University
Sapporo, 060-0810, JAPAN

e-mail: honda@math.sci.hokudai.ac. jp

Yoko UMETA

Department of Mathematics, Hokkaido University
Sapporo, 060-0810, JAPAN

e-mail: s053006@math.sci.hokudai.ac. jp

Lavoro pervenuto in redazione il 20.02.2012

T. Aoki, N. Honda and Y. Umeta



