R. S. Gupta

NON-EXISTENCE OF CONTACT TOTALLY UMBILICAL PROPER SLANT SUBMANIFOLDS OF A KENMOTSU MANIFOLD

Abstract. In this paper, we prove that there do not exist totally contact umbilical proper slant submanifolds of a Kenmotsu manifold and Kenmotsu space form $\overline{M}(c)$ for c=-1.

1. Introduction

The notion of a slant submanifold of an almost Hermitian manifold was introduced by Chen [5, 4]. On the other hand, A. Lotta [11] has defined and studied slant submanifolds of an almost contact metric manifold. He has also studied the intrinsic geometry of 3-dimensional non-anti-invariant slant submanifolds of K-Contact manifolds [12]. Later, L. Cabrerizo et al. [3] investigated slant submanifolds of a Sasakian manifold and obtained many interesting results. Afterwards, we have also studied slant submanifolds of Kenmotsu manifolds and trans-Sasakian manifolds [8, 6, 7]. Recently, V. Khan et al [10] have studied slant and semi-slant submanifolds of a Kenmotsu manifold and obtained that a totally contact umbilical semi-slant submanifold of a Kenmotsu manifold is totally contact geodesic if the invariant distribution is integrable. In this paper, we prove that a contact totally umbilical proper slant submanifold of a Kenmotsu manifold with structure $\{\varphi, \xi, \eta, g\}$ is necessarily totally geodesic, provided ξ is tangent to submanifold.

2. Preliminaries

An odd-dimensional Riemannian manifold \overline{M} is said to be an almost contact metric manifold if there exist structure tensors $\{\varphi, \xi, \eta, g\}$, where φ is a (1,1) tensor field, ξ a vector field, η a 1-form and g is a Riemannian metric on \overline{M} satisfying

$$\begin{split} \phi^2 X &= -X + \eta(X)\xi, \quad \phi \xi = 0, \quad \eta(\xi) = 1, \quad \eta(\phi X) = 0 \\ g(\phi X, \phi Y) &= g(X,Y) - \eta(X)\eta(Y), \quad \eta(X) = g(X,\xi) \end{split}$$

for any $X, Y \in T\overline{M}$, where $T\overline{M}$ denotes the Lie algebra of vector fields on \overline{M} . An almost contact metric manifold is called a Kenmotsu manifold (see [9]) if

$$(\overline{\nabla}_X \varphi)(Y) = g(\varphi X, Y)\xi - \eta(Y)\varphi X$$

where $\overline{\nabla}$ denotes the Levi-Civita connection on \overline{M} . On a Kenmotsu manifold we also have the formula: $\overline{\nabla}_X \xi = X - \eta(X) \xi$.

52 R. S. Gupta

Let M be an m-dimensional Riemannian manifold with induced metric g isometrically immersed in an n-dimensional Kenmotsu manifold \overline{M} . We denote by TM the Lie algebra of vector fields on M and by TM^{\perp} the set of all vector fields normal to M. For any $X \in TM$ and $N \in TM^{\perp}$, we write

(1)
$$\varphi X = PX + FX, \quad \varphi N = tN + fN$$

where PX (resp. FX) denotes the tangential (resp. normal) component of φX , and tN (resp. fN) denotes the tangential (resp. normal) component of φN . In view of (1), we have

$$T_{\mathbf{r}}\overline{M} = T_{\mathbf{r}}M \oplus F(T_{\mathbf{r}}M) \oplus \mu_{\mathbf{r}}$$

where μ_x is orthogonal complement to $F(T_xM)$ in T_xM^{\perp} .

In what follows, we suppose that the structure vector field ξ is tangent to M. Hence if we denote by D the orthogonal distribution to ξ in TM, we can consider the orthogonal direct decomposition $TM = D \oplus \xi$.

For each non zero X tangent to M at x and not proportional to ξ_x , we denote by $\theta(X)$ the Wirtinger angle of X, that is, the angle between ϕX and $T_x M$.

The submanifold M is called slant if the Wirtinger angle $\theta(X)$ is a constant, which is independent of the choice of $x \in M$ and X [11]. The Wirtinger angle θ of a slant submanifold is called the slant angle of the submanifold. Invariant and anti-invariant submanifolds are slant submanifolds with slant angle θ equal to 0 and $\frac{\pi}{2}$, respectively. A slant submanifold which is neither invariant nor anti-invariant is called a proper slant submanifold.

Let ∇ be be the Riemannian connection on M. Then the Gauss and Weingarten formulae are

$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y)$$

$$\overline{\nabla}_X N = -A_N X + \nabla_X^{\perp} N$$

for $X, Y \in TM$ and $N \in TM^{\perp}$; h and A_N are the second fundamental forms related by

$$g(A_NX,Y) = g(h(X,Y),N)$$

where ∇^{\perp} is the connection in the normal bundle TM^{\perp} .

Similar to the concept of contact totally umbilical submanifold of a Sasakian manifold introduced in the book of Yano and Kon (cf. [13, page 374]), we define:

DEFINITION 1. If the second fundamental form h of a submanifold M, tangent to the structure vector field ξ , of a Kenmotsu manifold, is of the form

(2)
$$h(X,Y) = [g(X,Y) - \eta(X)\eta(Y)]\alpha$$

for any $X,Y \in TM$, where α is a vector field normal to M, then M is called contact totally umbilical. Furthermore M is called totally geodesic if $\alpha = 0$.

The mean curvature vector H is defined by $H = \frac{1}{m} \operatorname{trace} h$. We say that M is minimal if H vanishes identically.

We mention the following results for later use:

THEOREM A ([3]). Let M be a submanifold of an almost contact metric manifold \overline{M} such that $\xi \in TM$. Then M is slant if and only if there exists a constant $\lambda \in [0,1]$ such that

$$P^2 = -\lambda(I - \eta \otimes \xi).$$

Furthermore, if θ is the slant angle of M, then $\lambda = \cos^2 \theta$.

COROLLARY B ([3]). Let M be a submanifold of an almost contact metric manifold \overline{M} with slant angle θ . Then for any $X,Y \in TM$, we have

(3)
$$g(PX, PY) = \cos^2 \theta(g(X, Y) - \eta(X)\eta(Y)),$$

(4)
$$g(FX, FY) = \sin^2 \theta (g(X, Y) - \eta(X)\eta(Y)).$$

Let M be an m-dimensional proper slant submanifold of an n-dimensional Kenmotsu manifold \overline{M} . Then $F(T_xM)$ is a subspace of T_xM^{\perp} . Then for $x \in M$, there exists an invariant subspace μ_x of $T_x\overline{M}$ for which we have

$$T_{\mathbf{r}}\overline{M} = T_{\mathbf{r}}M \oplus F(T_{\mathbf{r}}M) \oplus \mu_{\mathbf{r}},$$

in view of (1).

3. Main result

THEOREM 1. Every contact totally umbilical proper slant submanifold M of a Kenmotsu manifold \overline{M} such that the structure vector field ξ is tangent to M is totally geodesic, provided $\nabla_X^\perp \alpha \in \mu$ for every $X \in TM$.

Proof. First, a formula for covariant derivative of F is already known, see for instance [10, (2.19)]:

$$(\nabla_X F)Y = h(X, PY) + fh(X, Y) - \eta(Y)FX$$

for $X, Y \in TM$, following the notations as in (1). Now, assuming (2) and using (3), this yields, for any (local) unit vector field X tangent to M and orthogonal to ξ :

(5)
$$(\nabla_{PX}F)X = -g(PX, PX)\alpha = -(\cos^2\theta)\alpha$$

The left hand side of this equation is orthogonal to FX as a consequence of (4); hence, $g(\alpha, FX) = 0$. It follows that $\alpha \in \mu$. Finally, taking the inner product of both sides of (5) with α , one gets

(6)
$$g(\nabla_{PX}^{\perp}FX,\alpha) = -(\cos^2\theta)g(\alpha,\alpha)$$

because $g(F\nabla_{PX}X,\alpha)=0$ since $\alpha\in\mu$. Now assuming also that $\nabla_X^{\perp}\alpha\in\mu$ for every $X\in TM$, the left hand side of (6) must vanish identically, and result follows.

S. Gupta

THEOREM 2. Every contact totally umbilical proper slant submanifold M of a Kenmotsu space form $\overline{M}(c)$ such that the structure vector field ξ is tangent to M is totally geodesic, provided c = -1.

Proof. The curvature tensor \overline{R} of Kenmotsu space form $\overline{M}(c)$ with constant curvature c=-1 is given (see [9]) by

$$\overline{R}(X,Y)Z = g(X,Z)Y - g(Y,Z)X$$

for any X, Y and Z vector fields on \overline{M} . Then, we have the Codazzi equation

(7)
$$(\nabla_X h)(Y, Z) - (\nabla_Y h)(X, Z) = 0.$$

Taking the covariant derivative of (2), we get

(8)
$$(\nabla_X h)(Y, Z) = -\alpha \{ \eta(Z) g(\phi X, \phi Y) + \eta(Y) g(\phi X, \phi Z) \} + g(\phi Z, \phi Y) \nabla_X^{\perp} \alpha.$$

Using (8) in (7), and taking the inner product of both sides with FY, we find that

(9)
$$g(\phi Z, \phi Y)g(\nabla_Y^{\perp} \alpha, FY) - g(\phi Z, \phi X)g(\nabla_Y^{\perp} \alpha, FY) = 0.$$

On the other hand, using (2) and $g(\alpha, FY) = 0$, it is easy to prove that

(10)
$$g(\nabla_Y^{\perp}\alpha, FY) = g(X, PY)g(\alpha, \alpha).$$

From (10), we have $g(\nabla_{Y}^{\perp}\alpha, FY) = 0$. Using this fact in (9), we get

$$g(\phi Z, \phi Y)g(\nabla_X^{\perp} \alpha, FY) = 0.$$

Since $g(\phi Z, \phi Y) \neq 0$ in general, one obtains $g(\nabla_X^{\perp} \alpha, FY) = 0$. Consequently, the result follows from (10).

REMARK 1. It is easy to see that an invariant submanifold of a Kenmotsu manifold \overline{M} with structure vector field tangent to M is minimal. This is because $\theta=0$ for an invariant submanifold M of \overline{M} ; from (6), it follows that $\alpha=0$ which implies that M is minimal. Thus, from Theorem 1, we can say that every contact totally umbilical invariant submanifold of a Kenmotsu manifold is totally geodesic. We can also see that if M is (m+1)-dimensional proper slant submanifold of (2m+1)-dimensional Kenmotsu manifold \overline{M} , then $\mu=\{0\}$, which shows that $F(T_pM)=T_pM^\perp$. We get that $\alpha=0$, which implies that the proof of Theorem 1 is valid in this case as well.

Acknowledgement. I would like to thank the referee for valuable suggestions towards improvement of the article.

References

- [1] BLAIR D. E. *Contact Manifolds in Riemannian Geometry*, vol. 509 of *Lect. Notes in Math.* Springer-Verlag, Berlin-New York, 1976.
- [2] BLAIR D. E. AND OUBINA J. A. Conformal and related changes of metric on the product of two almost contact metric manifolds. *Publ. Math. Debrecen* 34 (1990), 199–207.
- [3] CABRERIZO J. L., CARRIAZO A. AND FERNANDEZ L. M. Slant submanifolds in Sasakian manifolds. *Glasgow Math. J.* 42 (2000), 125–138.
- [4] CHEN B. Y. Geometry of Slant Submanifolds. Katholieke Universiteit Leuven, 1990.
- [5] CHEN B. Y. Slant immersions. Bull. Australian Math. Soc. 41 (1990), 135-147.
- [6] GUPTA R. S., HAIDER S. M. K. AND SAHID M. H. Slant submanifolds of a Kenmotsu manifold. *Rad. Mat.* 12, 2 (2004), 205–214.
- [7] GUPTA R. S., HAIDER S. M. K. AND SHARFUDDIN A. Slant submanifolds of a trans-Sasakian manifold. *Bull. Math. Soc. Sci. Math. Roumanie* 47(95), 1-2 (2004), 45–57.
- [8] GUPTA R. S. AND PANDEY P. K. Structure on a slant submanifold of a Kenmotsu manifold. *Differ. Geom. Dyn. Syst. 10* (2008), 139–147.
- [9] KENMOTSU K. A class of almost contact Riemannian manifolds. *Tohoku Math. J. 21* (1972), 93–103.
- [10] KHAN V. A., KHAN M. A. AND KHAN K. A. Slant and semi-slant submanifolds of a Kenmotsu manifold. *Math. Slovaca* 57, 5 (2007), 483–494.
- [11] LOTTA A. Slant submanifolds in contact geometry. *Bull. Math. Soc. Sci. Math. Roumanie* 39 (1996), 183–198.
- [12] LOTTA A. Three-dimensional slant submanifolds of K-contact manifolds. Balkan J. Geom. Appl. 3, 1 (1998), 37–51.
- [13] YANO K. AND KON M. Structure on Manifolds. World Scientific, 1984.

AMS Subject Classification: 53C25, 53C42

Ram Shankar GUPTA
University School of Basic and Applied Sciences
Guru Gobind Singh Indraprastha University
Sector-16C, Dwarka, Delhi-110075, INDIA
e-mail: ramshankar.gupta@gmail.com

Lavoro pervenuto in redazione il 05.02.2011 e, in forma definitiva, il 16.06.2011