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CONFORMAL VARIATIONAL PROBLEMS,

HARMONIC MAPS AND HARMONIC MORPHISMS

Abstract. We discuss some aspects of harmonic maps and morphisms related to conformal-
ity, especially some recent results on smoothness and infinitesimal behaviour of twistor and
transform methods for finding harmonic maps, and the dual notion of harmonic morphism.

1. Introduction

Amongst Aristide Sanini’s interests were conformal variational problems. He wrote
two papers on this subject [24, 25]. In the first of these, he characterized weakly con-
formal maps from surfaces as maps whose energy is extremalwith respect to variations
of the metric.

On the other hand, harmonic maps extremize the energywith respect to varia-
tions of the map. The intersection of these classes is the class of minimal branched im-
mersions; in particular, all harmonic maps from the 2-sphere are automatically weakly
conformal, and so are minimal branched immersions. There are many twistor and trans-
form methods for the construction of such mappings into various symmetric spaces,
starting with harmonic 2-spheres in complex projective space. However, the construc-
tions are algebraic and are not, in general, smooth or even continuous. After reminding
the reader of these ideas, in Section 6, we discuss some recent results on the smoothness
of the Gauss transform.

An infinitesimal variation of a harmonic map is called aJacobi field; if a Jacobi
field comes from a genuine variation, it is calledintegrable. We discuss these ideas
in Sections 7 and 8, in particular, the integrability of Jacobi fields along harmonic 2-
spheres inCP2.

Then we remind the reader of Uhlenbeck’s idea of ‘adding a uniton’, and we
mention some recent developments which allow us to give completely explicit formulae
for harmonic 2-spheres in the unitary group and related spaces.

Related to the Gauss transform is the twistor method for finding harmonic 2-
spheres inS4. In Section 10, we study the infinitesimal behaviour of this method,
seeing that Jacobi fields are no longer always integrable.

Then, in Section 11, we discuss horizontally weakly conformal maps, charac-
terizing them in a way dual to that of Sanini; this leads to a discussion of harmonic
morphisms in Section 12ff. where we see how to dualize some of the twistor theory for
weakly conformal harmonic maps to give formulae for harmonic morphisms.

∗An expanded version of the author’s talk at theGiornata di Geometria in Memoria di Aristide Sanini,
held at the Politecnico di Torino on 27 June 2008. This work was partially supported by the Gulbenkian
Foundation, Portugal.
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2. Harmonic maps between Riemannian manifolds

Let φ : (M,g)→ (N,h) be a smooth map between compact smooth Riemannian mani-
folds. Theenergyor Dirichlet integral of φ is

E(φ) =
∫

M
e(φ)ωg =

∫
M

1
2
|dφ|2 ωg

whereωg denotes the volume measure induced by the metricg and, for anyp∈M,

|dφp|2 = Hilbert–Schmidt square norm of dφp

= gi j hαβ φα
i φβ

j .

Hereφα
i = ∂uα/∂xi denote the partial derivatives ofφ with respect to some local coordi-

nates(xi) onM and(uα) onN, (gi j ) and(hαβ) are the components of the metric tensor
g andh, and(hαβ) is the inverse matrix of(hαβ).

The mapφ is calledharmonicif the first variation ofE for variationsφt of the
mapφ vanishes atφ, i.e., d

dt E(φt )
∣∣
t=0 = 0. We compute:

(1)
d
dt

E(φt)
∣∣∣
t=0

=−
∫

M

〈
τ(φ),v

〉
ωg

wherev= ∂φt/∂t|t=0 is thevariation vector field of(φt), andτ(φ) = ∇dφ is thetension
field of φ given by

τ(φ) = ∇dφ = Tr∇dφ =
m

∑
i=1

∇dφ(ei ,ei)

=
m

∑
i=1

{
∇φ

ei

(
dφ(ei)

)
−dφ(∇M

ei
ei)
}

for any orthonormal frame{ei}. In local coordinates, this reads

τ(φ)γ = gi j

(
∂2φγ

∂xi∂x j −Γk
i j

∂φγ

∂xk +Lγ
αβ

∂φα

∂xi

∂φβ

∂x j

)

= ∆Mφγ +g(gradφα, gradφβ)Lγ
αβ .

Here,Γk
i j (resp.Lγ

αβ) denotes the Christoffel symbols on(M,g) (resp.(N,h) ),

and∆M denotes theLaplace–Beltrami operator on functions f: M→R given by

∆M f = ∇gradf = ∇df =−d∗df = Tr∇df

=
m

∑
i=1

{
ei
(
ei( f )

)
−
(
∇M

ei
ei
)

f
}

=
1√
|g|

∂
∂xi

(√
|g|gi j ∂ f

∂x j

)
= gi j

(
∂2 f

∂xi∂x j −Γk
i j

∂ f
∂xk

)
.
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3. Examples of harmonic maps

From (1), we see thatφ : M→ N is harmonic if and only if it satisfies theharmonicor
tension field equation:

(2) τ(φ)≡ Tr∇dφ = 0.

We list some standard examples.

1. A smooth mapφ : Rm⊇U → Rn is harmonic if and only if∆φ = 0 where∆
is the usual Laplacian onRm.

2. A smooth mapφ : (M,g)→Rn is harmonic if and only if∆Mφ = 0 where∆M

is the Laplace–Beltrami operator on(M,g).

Note that both the above equations arelinear.

3. A smooth map from an interval ofR or fromS1 to N is harmonic if and only
if it defines ageodesicof N parametrized linearly.

4. Holomorphicandantiholomorphicmaps between Kähler manifolds are har-
monic; in fact they minimize energy in their homotopy class.

5. Harmonic morphisms, i.e., maps which preserve Laplace’s equation, are
harmonic maps, see Section 12.

4. Weakly conformal maps

A smooth mapφ : (M,g)→ (N,h) is calledweakly conformalif

(3) φ∗h= λ2g

for some functionλ : M→ [0,∞); explicitly, for all p∈M,

h
(
dφp(X),dφp(Y)

)
= λ(p)2g(X,Y) (X,Y ∈ TpM) ;

equivalently,
dφ∗p◦dφp = λ(p)2 IdTpM.

In local coordinates, equation (3) reads

hαβφα
i φβ

j = λ2gi j .

A. Sanini characterized weak conformality as follows.

THEOREM1 ([24]). A non-constant mapφ is a critical point of the energy with
respect to variationsof the metricif and only if dimM = 2 andφ is weakly conformal.

Proof. The Euler–Lagrange operator for such variations is thestress-energy tensor
S(φ) = e(φ)g− φ∗h. If this is zero, taking the trace shows that dimM = 2, then com-
paring with equation (3) shows thatφ is weakly conformal withλ2 = e(φ).
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5. Harmonic maps and minimal branched immersions

Let M2 be asurface, i.e., a Riemannian manifold of dimension two. Then the energy
integral is unchanged under conformal changes of the metric, so that the concept of har-
monic map from a surface depends only on its conformal structure; in particular, ifM2

is orientable, we can (and will) take it to be aRiemann surface, i.e., one-dimensional
complex manifold; then methods of complex analysis may be used.

Let φ : M2 → N be a weakly conformal map from a surface. Then, an easy
calculation shows that, away from points where dφ is zero, the mean curvature is 2λ2

times the tension field, hence,a weakly conformal map from a surface is harmonic if
and only if it is minimal away from points where its differential is zero. Such a map
is called aminimal branched immersion; the points where dφ is zero are calledbranch
points, and are described in [17].

The following fact was established by the author [30] and many others.

LEMMA 1. Any harmonic map from the2-sphere S2 is weakly conformal and
so is a minimal branched immersion.

Proof. The (2,0)-part of the stress energy tensor is a holomorphic section ofT∗2,0S2.
Such a section must vanish since this bundle has negative degree.

6. Smoothness of transforms

Let π : Cn+1\ {~0}→ CPn be the canonical projection. For any smooth mapφ : M2→
CPn, write φ = [Φ] to mean thatΦ : U → Cn+1 is a smooth map on an open subset of
M2 with φ = π◦Φ away from zeros; thusΦ representsφ in homogeneous coordinates.
We denote orthogonal projection ontoφ (resp.φ⊥) by πφ (resp.π⊥φ ). Note that the linear

mapΦ 7→ π⊥φ (∂Φ
/

∂z) (resp.Φ 7→ π⊥φ (∂Φ
/

∂z)) represents the partial derivative∂φ/∂z
(resp.∂φ/∂z).

A smooth mapφ = [Φ] : M2→CPn has twoGauss transforms, a∂′-transform:

G′(φ) =
[
π⊥φ

∂Φ
∂z

]
,

defined at points where∂φ/∂z is non-zero, and a∂′′-transform:

G′′(φ) =
[
π⊥φ

∂Φ
∂z

]
,

defined at points where∂φ/∂z is non-zero. These are both independent of the choice of
Φ.

For simplicity, assume now thatM2 is oriented. Ifφ is harmonic and not anti-
holomorphic (resp. holomorphic), thenG′(φ) (resp. G′′(φ)) extends over the zeros of
∂φ/∂z (resp.∂φ/∂z) to give a harmonic map. Then, following work of other authors
(see [14]), the next result was established by J. Eells and the author [14]; we give the
formulation in [9].
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THEOREM 2. All harmonic maps from S2 to CPn are obtained from holomor-
phic maps by applying the∂′-Gauss transform up to n times.

To use this to study the space of harmonic maps, we need to answer the question,
Is the Gauss transform smooth, or even continuous?In general, it is not; however, for
integersk, d andE with k andE non-negative, set

Hol∗k(S
2,CP2) = the space of full holomorphic maps of degreek;

Harmd,E(S
2,CP2) = the space of harmonic maps of degreed and energy 4πE.

Then the following was established by L. Lemaire and the author.

THEOREM 3 ([21]). The Gauss transform

G′ : Hol∗k(S
2,CP2)→Harm(S2,CP2)

is smooth if restricted to the subspaceHol∗k,r(S
2,CP2) of holomorphic maps of fixed

total ramification index r. In fact, it gives a diffeomorphism

G′ : Hol∗k,r(S
2,CP2)→ Harmk−r−2,3k−r−2(S

2,CP2) .

7. Infinitesimal deformations and transformations

Let (φt,s) be a 2-parameter variation ofφ; write v=
∂φt,s

∂t

∣∣∣
(0,0)

andw=
∂φt,s

∂s

∣∣∣
(0,0)

for

the corresponding variation vector fields. Set

Hφ(v,w) =
∂2E
∂t∂s

(φt,s)
∣∣∣
(0,0)

=

∫
M
〈Jφv,w〉ωg

where
Jφv= ∆φv−TrRN(dφ,v)dφ .

Here∆φ = −Tr∇2 is the Laplacian onφ−1TN. The linear operatorJφ is called the
Jacobi operatoralongφ.

The following is easy to establish [22].

LEMMA 2. (i) If (φt) is a one-parameter family of maps withφ0 = φ and
∂φt
/

∂t
∣∣
t=0 = v , then

Jφ(v) =−
∂
∂t

τ(φt )
∣∣∣
t=0

.

(ii) If φt is a one-parameter family ofharmonicmaps withφ0 = φ, then v=
∂φt
/

∂t
∣∣
t=0 is aJacobi field alongφ, i.e., Jφ(v) = 0.

SoJφ is thelinearizationof the tension fieldτ, up to a sign convention.
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8. Integrability of Jacobi fields

DEFINITION 1. A Jacobi field v along a harmonic mapφ is said to beintegrable

if there is a one-parameter family(φt) of harmonic maps withφ0 = φ and
∂φt

∂t

∣∣∣
t=0

= v.

We ask the question,For what manifolds are all Jacobi fields integrable?

One reason that this is important is the following result of D. Adams and L. Si-
mon.

THEOREM 4 ([1]). Let (M,g) and (N,h) be real-analytic Riemannian man-
ifolds. If all Jacobi fields along harmonic maps from M to N areintegrable, then
Harm(M,N) is a real-analytic manifoldwith tangent spaces given by the Jacobi fields.

Since we can construct all harmonic maps fromS2 toCPn explicitly as above, it
is natural to ask what is known in this case. In the casen= 1, R. Gulliver and B. White
[18] showed that all Jacobi fields along harmonic maps are integrable. For the case
n= 2, L. Lemaire and the author showed the following.

THEOREM 5 ([22]). All Jacobi fields along harmonic maps from S2 toCP2 are
integrable.

The idea is that the Gauss transform and its inverse are smooth away from
branch points, so if a harmonic mapφ : S2→ CP2 is the Gauss transformG′( f ) of
a holomorphic mapf : S2→ CP2, then the inverse ofG′ maps a Jacobi field alongφ
into one alongf . We then show that this Jacobi field is actually holomorphic.The key
step is to show that it extends across the branch points, thena GAGA principle tells us
that it’s actually given by rational functions and so explicitly integrable. It follows that
the original harmonic map is integrable. The methods make essential use of the low
dimensions, and so are unlikely to generalize to highern.

9. Factorization into unitons

The Gauss transform is an example of K. Uhlenbeck’s operation of ‘adding a uniton’
which transforms harmonic mapsM2→ U(n) from a surface to the unitary group into
other harmonic mapsM2→U(n) as follows. Any harmonic mapφ defines a connection
Aφ = 1

2φ−1dφ on the trivial bundleCn = M2×Cn and thus a covariant derivativeDφ =

d+Aφ; then aunitonor flag factorfor φ is a subbundleβ of the trivial bundle which is
(i) holomorphic with respect to Dφz (i.e. the sections ofβ are closed underDφ

z), and (ii)

closed under Aφz. Uhlenbeck showed the following.

THEOREM 6 ([28]). (i) The map̃φ : M2→ U(n) given byφ̃ = φ(πβ− π⊥β ) is

harmonic. We say that̃φ is obtained fromφ by adding the unitonβ or by the flag
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transform with flag factorβ.

(ii) Any harmonic mapφ : S2→ U(n) can written as a finite product:

φ = const.(πβ1
−π⊥β1

) · . . . · (πβr −π⊥βr
) .

Such a product is called auniton factorizationof the harmonic mapφ, and
the minimum number of flag factors required is called theuniton number. Given an
arbitrary harmonic mapφ, one method of factorization is to add the unitonα0 = kerAφ

z

giving a new harmonic mapφ1, then repeat the process. After a finite numberr of steps
one reaches a constant map; then settingβi = (αr−i)⊥ gives a factorization, called the
factorization by Az-kernels. Dually, we may useAz-images [32]. However, neither of
these is the most efficient way in the sense of minimizing the number of steps; that
is provided by using the kernel of the bottom coefficient of the extended solution as
proposed by Uhlenbeck [28]; dually, we may use the image of the adjoint of the top
coefficient.

Conversely, to build all possible harmonic maps, we do successive flag trans-
forms starting with the constant map, giving a sequence of harmonic mapsφ0 = const.,
φ1, . . . ,φr = φ. To do this, we must know all the possible flag factors (unitons) at each
stage.

However, there are two problems:

(i) to find unitons, we must find a holomorphic (or, at least, meromorphic) basis
for the trivial bundleCn with respect toDφi

z for eachi; to find this we must, in general,
solve∂-problems;

(ii) like the Gauss transform, adding a uniton may not dependsmoothly, or even
continuously, on the data.

M. J. Ferreira, B. A. Simões and the author solved the first problem as follows.

THEOREM7 ([15]). For the (dual of) Uhlenbeck’s factorization, all the possible
unitons at each stage can be found explicitly in terms of projections of holomorphic
functions, without solving∂-problems, giving explicit formulae for all harmonic maps
from the2-sphere toU(n).

By thinking of them as stationary Ward solitons, B. Dai and C.-L. Terng [13]
also obtained explicit formulae for the unitons of the Uhlenbeck factorization.

The author and M. Svensson [27] developed the ideas in [15] toshow how to
find explicit formulae for the harmonic maps corresponding to any factorization of
U(n) including those in [13] and [15]. Thus we obtain explicit algebraic parametriza-
tions of all harmonic mapsS2→ U(n) by meromorphic functions, which can be used
to study continuity.

10. Smoothness of twistor methods

With a history going back to Weierstrass,twistor methodshave been successful in
constructing harmonic maps, especially from the 2-sphere to symmetric spaces. The
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first case of this was the following.

Thinking ofCP3 as the set of complex lines through the origin, letπ : CP3→
HP1 = S4 be theCalabi–Penrose twistor mapgiven by sending a complex line to the
quaternionic line containing it. E. Calabi showed the following.

THEOREM 8 ([10, 11]). Every harmonic mapφ : S2→ S4 is ± the projection
π◦ f of a horizontal holomorphic map f: S2→CP3.

Here ‘horizontal’ means that the image of the differential df at each point is
orthogonal to the kernel of dπ.

L. Lemaire and the author used this to study Jacobi fields along harmonic maps
from S2 to S4 and toS3, obtaining the following result [23].

THEOREM 9. (i) For each d= 1,2, . . . , the map f7→ φ = π◦ f is a diffeomor-
phism of the space of holomorphic horizontal maps f: S2→ CP3 of degree d onto the
space of harmonic mapsφ : S2→ S4 of energy4πd.

(ii) If φ (equivalently,f ) is full, the Jacobi fields alongφ correspond to infinites-
imal deformations of the horizontal holomorphic mapf .

(iii) There are some non-full harmonic mapsφ : S2 → S4 which have non-
integrable Jacobi fields.

(iv) There are some non-full harmonic mapsφ : S2→ S3 which have non-inte-
grable Jacobi fields.

11. The dual problem: horizontal weak conformality

The following definition can be regarded as the dual of that ofweak conformality given
in Section 4.

DEFINITION 2. φ : (M,g) → (N,h) is called horizontally weakly conformal
(HWC) (or semiconformal) if, for each p∈M, either

(i) dφp = 0, in which case we call p acritical point, or

(ii) dφp maps the horizontal spaceH p = {ker(dφp)}⊥ conformally onto Tφ(p)N,
i.e.,dφp is surjective and there exists a numberλ(p) 6= 0 such that

h
(
dφp(X),dφp(Y)

)
= λ(p)2g(X,Y) (X,Y ∈ H p) ,

in which case we call p aregular point.

Equivalently,φ is HWC if and only if, for eachp∈M,

dφp◦dφ∗p = λ(p)2 IdTφ(p)N

for someλ(p) ∈ [0,∞). In local coordinates, this reads

gi j φα
i φβ

j = λ2hαβ .
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These should be compared with the formulae in Section 4. The functionλ : M→ [0,∞)
is called thedilation of φ ; it is smooth away from the critical points; on setting it equal
to zero at the critical points, it becomes continuous onM with λ2 smooth.

Note that, whereas a non-constant weakly conformal mapφ is an immersion
away from the points where dφ vanishes, a non-constant horizontally weakly conformal
map is a submersion away from those points.

We then have the following dual of Sanini’s result above, see[6].

THEOREM 10. A non-constant mapφ is a critical point of the energy with re-
spect to horizontal variations of the metric if and only ifdimN= 2andφ is horizontally
weakly conformal.

Proof. The map is a critical point if and only if its stress-energy tensor is zero on
horizontal vectors. It is easily seen that this holds if and only if dim N = 2 andφ is
HWC.

12. Harmonic morphisms

We can now study a type of map which in many ways, is dual to thatof harmonic
maps. A smooth mapφ : (M,g)→ (N,h) is called aharmonic morphismif, for every
harmonic functionf :V→R defined on an open subsetV of N with φ−1(V) non-empty,
the compositionf ◦φ is harmonic onφ−1(V). We have the followingcharacterization
due independently to B. Fuglede and T. Ishihara.

THEOREM11 ([16, 19]). A smooth mapφ : M→N between Riemannian mani-
folds is a harmonic morphism if and only if it is bothharmonicandhorizontally weakly
conformal.

Proof. The ‘if’ part is a simple application of the chain rule for a function of a func-
tion. The converse direction requires the local existence of enough harmonic functions,
obvious in the real-analytic case, but more delicate in the smooth case.

We list some properties of harmonic morphisms.

1. Thecompositionof two harmonic morphisms is a harmonic morphism.

2. Harmonic morphismspreserve harmonicityof maps, i.e., the composition
f ◦φ : M→ P of a harmonic mapf : N→ P with a harmonic morphismφ : M→ N is
a harmonic map.

3. If dimN= 1, thenthe harmonic morphisms are precisely the harmonic maps;
in particular,if N =R, then the harmonic morphisms are precisely the harmonic func-
tions.

4. A mapφ : N→ P between surfacesis a harmonic morphism if and only if it
is weakly conformal.

5. The concept ofharmonic morphism to a surfacedepends only on the con-
formal structure of the surface. Hence the notion ofharmonic morphism to a Riemann
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surfaceis well-defined.

We next list some examples of harmonic morphisms.

1. For anym∈ {1,2, . . .}, radial projection

Rm\ {~0}→ Sm−1, ~x 7→~x
/
|~x|

is a harmonic morphism with dilationλ(~x) = 1/|~x|. More generally, ahorizontally
conformal submersion withgradλ tangent to the fibres is a harmonic morphism if and
only if it has minimal fibres.

2. TheHopf maps S3→ S2, S7→ S4, S15→ S8, S2n+1→ CPn, S4n+3→
HPn are harmonic morphisms with constant dilation. More generally, a Riemannian
submersion is a harmonic morphism if and only if its fibres areminimal.

3. (J.Y. Chen [12])Stable harmonic mapsfrom a compact Riemannian mani-
fold to S2 are harmonic morphisms.

13. Twistor theory for harmonic morphisms

The following was proved by the author [31] for submersions and extended to maps
with critical points by M. Ville [29].

THEOREM12. Given a non-constant harmonic morphismφ : M4→N2 from an
orientable Einstein4-manifold to a Riemann surface, there is a Hermitian structure J
on M4 such thatφ is holomorphic with respect to J, and J is parallel along the fibres
of φ.

Conversely, the author showed that, ifM4 is also anti-self-dual, a Hermitian
structure gave rise to local harmonic morphisms, away from points where it is Kähler.
This was generalized as follows.

Hermitian structures correspond to holomorphic sections of the twistor space
Z6 of M4. V. Apostolov and P. Gauduchon [2] showed that local existence of har-
monic morphisms is equivalent to local existence of Hermitian structures, and this is
equivalent to the self-dual partW+ of the Weyl tensor being degenerate. WhenW+

is identically zero, i.e.,M4 is anti-self-dual, the twistor space has anintegrablecom-
plex structure so that there are lots of Hermitian structures, and so lots of harmonic
morphisms.

Twistor methods have been extended to give various classes of holomorphic
harmonic maps and morphisms from higher-dimensional spaces to surfaces, see [26]
and [6, Chapters 8 and 9].

14. Explicit formulae for harmonic morphisms

Starting from Theorem 12, explicit formulae can be given forharmonic morphisms to
surfaces from 4-dimensional real or complex space-forms. By dimension reduction,
we obtain the followingmini-twistor formulae in 3-dimensional space forms given by
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P. Baird and the author [3] forR3 and [4] forS3 andH3; we give here the version for
R3. In fact, the first part of this result is essentially due to C.G. J. Jacobi [20]; the
converse (ii) was established in [3].

THEOREM 13. (i) Let g and h be holomorphic functions on an open subset of
C. Then any smooth local solutionφ : R3⊇U → C , z= φ(x1,x2,x3) to the equation

(4) −2g(z)x1+(1−g(z)2)x2+ i(1+g(z)2)x3 = 2h(z)

is a harmonic morphism.

(ii) Every harmonic morphism is given this way locally, up to composition with
isometries on the domain and weakly conformal maps on the codomain.

WhenM4 is of Minkowski signature, Hermitian structures becomeshear-free
ray congruences; on complexifying, they both becomeholomorphic foliations by null
planes, see [5]. To find harmonic morphisms into Lorentzian surfaces, we replace the
complex analytic functionsg and h in (4) by functions analytic with respect to the
hyperbolic numbers [7]. All cases can be unified by using thebicomplex numbers, see
[8].

Acknowledgments.The author thanks Sergio Console and the organizing committee
for the invitation to talk at theGiornata di Geometria in Memoria di Aristide Sanini,
and Luc Lemaire and Martin Svensson for some comments on a draft of this paper.
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