Rend. Sem. Mat. Univ. Pol. Torino
\ol. 67, 4 (2009), 395 — 406
In Memoriam Aristide Sanini

J.C. Wood*

CONFORMAL VARIATIONAL PROBLEMS,
HARMONIC MAPS AND HARMONIC MORPHISMS

Abstract. We discuss some aspects of harmonic maps and morphismedradatonformal-
ity, especially some recent results on smoothness andtesimal behaviour of twistor and
transform methods for finding harmonic maps, and the dué@maf harmonic morphism.

1. Introduction

Amongst Aristide Sanini’s interests were conformal vaoiaal problems. He wrote
two papers on this subject [24, 25]. In the first of these, reratterized weakly con-
formal maps from surfaces as maps whose energy is extrithalespect to variations
of the metric

On the other hand, harmonic maps extremize the ensitliyrespect to varia-
tions of the mapThe intersection of these classes is the class of mininagadired im-
mersions; in particular, all harmonic maps from the 2-splaee automatically weakly
conformal, and so are minimal branched immersions. Thersany twistor and trans-
form methods for the construction of such mappings intootegisymmetric spaces,
starting with harmonic 2-spheres in complex projectivecspalowever, the construc-
tions are algebraic and are not, in general, smooth or eveincmus. After reminding
the reader of these ideas, in Section 6, we discuss some resalts on the smoothness
of the Gauss transform.

An infinitesimal variation of a harmonic map is calledacobi field if a Jacobi
field comes from a genuine variation, it is calledegrable We discuss these ideas
in Sections 7 and 8, in particular, the integrability of Jasidields along harmonic 2-
spheres ifCP?,

Then we remind the reader of Uhlenbeck’s idea of ‘adding &owhiand we
mention some recent developments which allow us to give tetely explicit formulae
for harmonic 2-spheres in the unitary group and relatedespac

Related to the Gauss transform is the twistor method forrigndiarmonic 2-
spheres inS*. In Section 10, we study the infinitesimal behaviour of thisthod,
seeing that Jacobi fields are no longer always integrable.

Then, in Section 11, we discuss horizontally weakly confarmaps, charac-
terizing them in a way dual to that of Sanini; this leads to scdssion of harmonic
morphisms in Section T2 where we see how to dualize some of the twistor theory for
weakly conformal harmonic maps to give formulae for harmeanorphisms.

*An expanded version of the author’s talk at tB®rnata di Geometria in Memoria di Aristide Sanini
held at the Politecnico di Torino on 27 June 2008. This worls wartially supported by the Gulbenkian
Foundation, Portugal.
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2. Harmonic maps between Riemannian manifolds

Leto: (M,g) — (N,h) be a smooth map between compact smooth Riemannian mani-
folds. Theenergyor Dirichlet integral of @ is

1
E :/ e :/ =|dg|?
(@)= | e@wg= | 5|def"cy
wherewy denotes the volume measure induced by the mgtsied, for anyp € M,

|dgp|? = Hilbert—Schmidt square norm ofpg
= gij hap (ﬂaqf .
Hereq = au®/ax denote the partial derivatives @fwith respect to some local coordi-
nates(x') onM and(u®) onN, (gij) and(hyg) are the components of the metric tensor
g andh, and(h®®) is the inverse matrix ofngg).
The mapg is calledharmonicif the first variation ofE for variationsg of the
map@vanishes a@, i.e., $E(@)|,_, = 0. We compute:

d
&) GE@| = [ (@.v)wy

wherev = 0@ /0t|i—o is thevariation vector field of(@ ), andt(¢) = Odgis thetension
field of @ given by

m
(o) Ode=TrOde= ZDdtp(a,a)
i=

m

2 (04 (dot@)) - do(Cg'e) }

i=

for any orthonormal framée }. In local coordinates, this reads
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Here,rikj (resp. LZ(B) denotes the Christoffel symbols ¢il,g) (resp.(N,h)),
andAM denotes th&aplace—Beltrami operator on functions M — R given by

AVf = Ogradf = Odf = —d*df = TrOdf

3

=S {a(a(f) - (O¥e)f}
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3. Examples of harmonic maps
From (1), we see thag: M — N is harmonic if and only if it satisfies tHearmonicor
tension field equatian
(2) 1(g) = TrOde= 0.
We list some standard examples.

1. A smooth magp: R™ DU — R" is harmonic if and only ifA@ = 0 whereA
is the usual Laplacian oR™.

2. A smooth magp: (M,g) — R" is harmonic if and only itM@ = 0 whereAV
is the Laplace—Beltrami operator oM, g).

Note that both the above equations kmear.

3. A smooth map from an interval & or from S to N is harmonic if and only
if it defines ageodesiof N parametrized linearly.

4. Holomorphicandantiholomorphianaps between Kéhler manifolds are har-
monic; in fact they minimize energy in their homotopy class.

5. Harmonic morphismsi.e., maps which preserve Laplace’s equation, are
harmonic maps, see Section 12.

4. Weakly conformal maps

A smooth magpp: (M,g) — (N, h) is calledweakly conformaif
(3 ¢h=2%g
for some functior\ : M — [0, «0); explicitly, for all p € M,
h(dep(X),dgp(Y)) =A(P)?G(X,Y)  (X,Y € TyM);
equivalently,
dy o dpp = A(p)?ldT,m-
In local coordinates, equation (3) reads
hanf‘(p? = )\Zgij .
A. Sanini characterized weak conformality as follows.

THEOREM1 ([24]). A non-constant magis a critical point of the energy with
respect to variationsf the metricf and only if dimM = 2 and@is weakly conformal.

Proof. The Euler-Lagrange operator for such variations is dtress-energy tensor
S(@) = e(@)g— ¢*h. If this is zero, taking the trace shows that ditn= 2, then com-
paring with equation (3) shows thais weakly conformal witi\? = e(¢). O
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5. Harmonic maps and minimal branched immersions

Let M2 be asurface i.e., a Riemannian manifold of dimension two. Then the gper
integral is unchanged under conformal changes of the mstridhat the concept of har-
monic map from a surface depends only on its conformal siracin particular, ifvi2
is orientable, we can (and will) take it to beReemann surfaga.e., one-dimensional
complex manifold; then methods of complex analysis may leelus

Let @: M? — N be a weakly conformal map from a surface. Then, an easy
calculation shows that, away from points wheggisi zero, the mean curvature i$2
times the tension field, henca weakly conformal map from a surface is harmonic if
and only if it is minimal away from points where its differi@his zera Such a map
is called aminimal branched immersigithe points where @is zero are callebranch
points and are described in [17].

The following fact was established by the author [30] and yrathers.

LEMMA 1. Any harmonic map from tha-sphere 3 is weakly conformal and
S0 is a minimal branched immersion.

Proof. The (2,0)-part of the stress energy tensor is a holomorphic sectio‘@j@fﬁz.
Such a section must vanish since this bundle has negativeeleg O

6. Smoothness of transforms

Letr: C™1\ {0} — CP" be the canonical projection. For any smooth npap12 —
CP", write @ = [®] to mean thatb : U — C"*! is a smooth map on an open subset of
MZ2 with @= 110 ® away from zeros; thu® representg in homogeneous coordinates.
We denote orthogonal projection orgigresp.¢*) by 1, (resp.rré). Note that the linear
map® s T (0P /02) (resp.® +— 11, (0P /02)) represents the partial derivatide/dz
(resp.0g/02).

A smooth magp = [®] : M2 — CP" has twoGauss transformsad’-transform:

o
=%,
defined at points whem@p/dz is non-zero, and &’-transform:
ov
&0 =[]

defined at points whemp/dz is non-zero. These are both independent of the choice of
P.

For simplicity, assume now that? is oriented. Ifgis harmonic and not anti-
holomorphic (resp. holomorphic), th&i (@) (resp. G’(¢9)) extends over the zeros of
0¢/0z (resp.0g/0dz) to give a harmonic map. Then, following work of other author
(see [14]), the next result was established by J. Eells amdulthor [14]; we give the
formulation in [9].
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THEOREM 2. All harmonic maps from%to CP” are obtained from holomor-
phic maps by applying th&-Gauss transform up to n times.

To use this to study the space of harmonic maps, we need teattsquestion,
Is the Gauss transform smooth, or even continudagfeneral, it is not; however, for
integersk, d andE with k andE non-negative, set

Hol (S?,CP?) = the space of full holomorphic maps of degkee
Harrru’E(Sz, (CPZ) = the space of harmonic maps of degdegnd energy #AE.

Then the following was established by L. Lemaire and the@uth
THEOREM3 ([21]). The Gauss transform
G’ : Holi($,CP?) — Harm($?,CP?)

is smooth if restricted to the subspaldel’g,r(sz,(CPz) of holomorphic maps of fixed
total ramification index r. In fact, it gives a diffeomorphis

G : Holi, (S%,CP?) — Harm_ 3cr—2(S*, CP?).

7. Infinitesimal deformations and transformations

0@ s 0@ s

Let (¢ s) be a 2-parameter variation @f write v = 3t loo andw = 3s 100, for
the corresponding variation vector fields. Set
0%E
H = — =
olvw) = 55-(@)| = [ ouw) g

where
Jov = A% — TrRY (dg, v)do.

Here A® = —Tr(0? is the Laplacian orp *TN. The linear operatody is called the
Jacobi operatoalong.

The following is easy to establish [22].

LEMMA 2. (i) If (@) is a one-parameter family of maps witly = ¢ and
0@ /ot|,_,=v, then
0

Jo(V) = A

(@)

t=0"

(i) If @ is a one-parameter family ofiarmonicmaps withgy = @, then v=
o /ot|,_, is aJacobi field along, i.e., J(v) = 0.

SoJy is thelinearizationof the tension field, up to a sign convention.
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8. Integrability of Jacobi fields

DEeFINITION 1. A Jacobifield v along a harmonic mgps said to bentegrable

if there is a one-parameter family ) of harmonic maps witky = @ and %—? o™ V.

We ask the questiofor what manifolds are all Jacobi fields integrable?

One reason that this is important is the following result oAdams and L. Si-
mon.

THEOREM 4 ([1]). Let (M,g) and (N,h) be real-analytic Riemannian man-
ifolds. If all Jacobi fields along harmonic maps from M to N amgéegrable, then
Harm(M,N) is a real-analytic manifoldvith tangent spaces given by the Jacobi fields

Since we can construct all harmonic maps fr&hto CP" explicitly as above, it
is natural to ask what is known in this case. In the gasel, R. Gulliver and B. White
[18] showed that all Jacobi fields along harmonic maps aegmable. For the case
n= 2, L. Lemaire and the author showed the following.

THEOREMS5 ([22]). All Jacobi fields along harmonic maps from 8 CP? are
integrable.

The idea is that the Gauss transform and its inverse are bnavedy from
branch points, so if a harmonic mgp S — CP? is the Gauss transfor®'(f) of
a holomorphic mag : S — CP?, then the inverse o’ maps a Jacobi field along
into one alongf. We then show that this Jacobi field is actually holomorpfhie key
step is to show that it extends across the branch points al@hGA principle tells us
that it's actually given by rational functions and so exipljcintegrable. It follows that
the original harmonic map is integrable. The methods makergi®l use of the low
dimensions, and so are unlikely to generalize to higher

9. Factorization into unitons

The Gauss transform is an example of K. Uhlenbeck’s operatidadding a uniton’
which transforms harmonic map4® — U(n) from a surface to the unitary group into
other harmonic magdg? — U(n) as follows. Any harmonic mapdefines a connection
AP = %(p*ld(p on the trivial bundleC" = M? x C" and thus a covariant derivatiz —
d+ A% then aunitonor flag factorfor @is a subbundI@ of the trivial bundle which is
(i) holomorphic with respect to ;b(i.e. the sections d are closed undeﬁ)‘zp), and (ii)

closed under & Uhlenbeck showed the following.

THEOREM 6 ([28]). (i) The mapg: M? — U(n) given byg = ¢(Tg ~Ty) is
harmonic. We say thaT) is obtained fromgp by adding the unitor3 or by the flag
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transform with flag factop.
(ii) Any harmonic mag: S — U(n) can written as a finite product:

@=Cconst.(Tg, —Thg. ) - ... - (T, — Ty, ).

Such a product is called aniton factorizationof the harmonic magp, and
the minimum number of flag factors required is called timton number Given an
arbitrary harmonic magp, one method of factorization is to add the unitdh= kerA?
giving a new harmonic mag', then repeat the process. After a finite numbef steps
one reaches a constant map; then sefling (o' ') gives a factorization, called the
factorization by A-kernels Dually, we may usé\;-images [32]. However, neither of
these is the most efficient way in the sense of minimizing thelmer of steps; that
is provided by using the kernel of the bottom coefficient & #xtended solution as
proposed by Uhlenbeck [28]; dually, we may use the image @fitijoint of the top
coefficient.

Conversely, to build all possible harmonic maps, we do ssgice flag trans-
forms starting with the constant map, giving a sequencemhbaic mapsp = const.,
@1,...,¢ = @ To do this, we must know all the possible flag factors (urg)at each
stage.

However, there are two problems:

(i) to find unitons, we must find a holomorphic (or, at leastromeorphic) basis
for the trivial bundleC" with respect th;“ for eachi; to find this we must, in general,
solved-problems;

(i) like the Gauss transform, adding a uniton may not degndothly, or even
continuously, on the data.

M. J. Ferreira, B. A. Sim&es and the author solved the firdblera as follows.

THEOREMY ([15]). Forthe (dual of) Uhlenbeck’s factorization, all the podeib
unitons at each stage can be found explicitly in terms ofgmidpns of holomorphic
functions, without solving-problems, giving explicit formulae for all harmonic maps
from the2-sphere tdJ(n).

By thinking of them as stationary Ward solitons, B. Dai aneLCTerng [13]
also obtained explicit formulae for the unitons of the Ulleck factorization.

The author and M. Svensson [27] developed the ideas in [18hdov how to
find explicit formulae for the harmonic maps correspondiogny factorization of
U(n) including those in [13] and [15]. Thus we obtain expliciteligaic parametriza-
tions of all harmonic mapS§? — U(n) by meromorphic functions, which can be used
to study continuity.

10. Smoothness of twistor methods

With a history going back to Weierstragsyistor methodshave been successful in
constructing harmonic maps, especially from the 2-sphesytmmetric spaces. The
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first case of this was the following.

Thinking of CP? as the set of complex lines through the origin,ietCP3 —
HP! = S* be theCalabi—Penrose twistor magiven by sending a complex line to the
guaternionic line containing it. E. Calabi showed the failog.

THEOREM 8 ([10, 11]). Every harmonic mag: & — S* is + the projection
o f of a horizontal holomorphic map fS> — CP3,

Here ‘horizontal’ means that the image of the differentiélat each point is
orthogonal to the kernel ofrd

L. Lemaire and the author used this to study Jacobi fieldsgdh@nmonic maps
from S to S* and toS?, obtaining the following result [23].

THEOREMO. (i) Foreachd=1,2,...,the map f— @=Ti0 f is a diffeomor-
phism of the space of holomorphic horizontal mapsst — CP? of degree d onto the
space of harmonic mags: &> — S* of energy4rd.

(ii) If @ (equivalently,f) is full, the Jacobi fields along correspond to infinites-
imal deformations of the horizontal holomorphic méap

(iii) There are some non-full harmonic maps & — S* which have non-
integrable Jacobi fields.

(iv) There are some non-full harmonic mapsS? — S® which have non-inte-
grable Jacobi fields.

11. The dual problem: horizontal weak conformality

The following definition can be regarded as the dual of thaterdik conformality given
in Section 4.

DEFINITION 2. @: (M,g) — (N,h) is called horizontally weakly conformal
(HWC) (or semiconformalif, for each pe M, either

(i) dp = 0, in which case we call p eritical point, or
(i) dp, maps the horizontal space, = {ker(dg,)}* conformally onto &N,
i.e.,dgp is surjective and there exists a numbé&p) # 0 such that

h(d@p(X),dgp(Y)) = A(p)*(X.Y)  (X.Y € 7p),
in which case we call p eegular point
Equivalently,pis HWC if and only if, for eaclp e M,
dap o dgiy = A(p)® Id, N
for someA(p) € [0,). In local coordinates, this reads

gij (Ha(p? _ )\ZhGB )
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These should be compared with the formulae in Section 4. dihetibnA : M — [0, )
is called thedilation of @; it is smooth away from the critical points; on setting it afju
to zero at the critical points, it becomes continuougvowith A% smooth.

Note that, whereas a non-constant weakly conformal mé&pan immersion
away from the points wherepanishes, a non-constant horizontally weakly conformal
map is a submersion away from those points.

We then have the following dual of Sanini’s result above,[6ke

THEOREM 10. A non-constant map is a critical point of the energy with re-
spect to horizontal variations of the metric if and onlglimN = 2 and@is horizontally
weakly conformal.

Proof. The map is a critical point if and only if its stress-energgger is zero on
horizontal vectors. It is easily seen that this holds if antyaf dimN = 2 andg@ is
HWC. O

12. Harmonic morphisms

We can now study a type of map which in many ways, is dual to dfidtarmonic
maps. A smooth map: (M,g) — (N,h) is called aharmonic morphisnif, for every
harmonic functiorf : V — R defined on an open sub&ebf N with ¢~(V) non-empty,
the compositiorf o @is harmonic org~(V). We have the followingharacterization
due independently to B. Fuglede and T. Ishihara.

THEOREM11 ([16, 19]). A smooth mag: M — N between Riemannian mani-
folds is a harmonic morphism if and only if it is bditarmonicand horizontally weakly
conformal

Proof. The ‘if’ part is a simple application of the chain rule for anfttion of a func-
tion. The converse direction requires the local existefiemough harmonic functions,
obvious in the real-analytic case, but more delicate in theath case. O

We list some properties of harmonic morphisms.

1. Thecompositiorof two harmonic morphisms is a harmonic morphism.

2. Harmonic morphismpreserve harmonicitgpf maps, i.e., the composition
fo@: M — P of a harmonic mag : N — P with a harmonic morphismp: M — N is
a harmonic map.

3. If dimN = 1, thenthe harmonic morphisms are precisely the harmonic maps
in particular,if N =R, then the harmonic morphisms are precisely the harmonic-fun
tions

4. Amap@: N — P between surfacas a harmonic morphism if and only if it
is weakly conformal.

5. The concept oharmonic morphism to a surfaaepends only on the con-
formal structure of the surface. Hence the notioh@&fmonic morphism to a Riemann
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surfaceis well-defined.
We next list some examples of harmonic morphisms.
1. Foranyme {1,2,...}, radial projection

R™ {0} — S™!, x> R%/|X

is a harmonic morphism with dilatioh(X) = 1/|X|. More generally, orizontally
conformal submersion witgrad\ tangent to the fibres is a harmonic morphism if and
only if it has minimal fibres

2. TheHopf maps 8- &, &' - &% S &8 £l cpn, sn3
HP" are harmonic morphisms with constant dilation. More gelhgra Riemannian
submersion is a harmonic morphism if and only if its fibresraieimal

3. (J.Y. Chen [12]) Stable harmonic mapgsom a compact Riemannian mani-
fold to S are harmonic morphisms.

13. Twistor theory for harmonic morphisms

The following was proved by the author [31] for submersiond axtended to maps
with critical points by M. Ville [29].

THEOREM12. Given a non-constant harmonic morphigmM* — N2 from an
orientable Einsteim-manifold to a Riemann surface, there is a Hermitian streeti
on M* such thatp is holomorphic with respect to J, and J is parallel along thedi
of @.

Conversely, the author showed thatMf is also anti-self-dual, a Hermitian
structure gave rise to local harmonic morphisms, away fromtp where it is Kéhler.
This was generalized as follows.

Hermitian structures correspond to holomorphic sectidnh® twistor space
Z% of M*. V. Apostolov and P. Gauduchon [2] showed that local existeof har-
monic morphisms is equivalent to local existence of Heamitstructures, and this is
equivalent to the self-dual paw, of the Weyl tensor being degenerate. Wh&n
is identically zero, i.e.M* is anti-self-dual, the twistor space hasiategrablecom-
plex structure so that there are lots of Hermitian structuaad so lots of harmonic
morphisms.

Twistor methods have been extended to give various clagskslamorphic
harmonic maps and morphisms from higher-dimensional sptcsurfaces, see [26]
and [6, Chapters 8 and 9].

14. Explicit formulae for harmonic morphisms

Starting from Theorem 12, explicit formulae can be givenHarmonic morphisms to
surfaces from 4-dimensional real or complex space-formsdiBiension reduction,
we obtain the followingmini-twistor formulae in 3-dimensional space forms given by
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P. Baird and the author [3] fdk® and [4] for S® andH?3; we give here the version for
R3. In fact, the first part of this result is essentially due toGC.J. Jacobi [20]; the
converse (i) was established in [3].

THEOREM13. (i) Let g and h be holomorphic functions on an open subset of
C. Then any smooth local solutiggt R DU — C, z= @(x1, %2, X3) to the equation

(4) ~29(2x+ (1 - 9(@*)xe +i(1+9(2)%)x = 2h(2)

is a harmonic morphism.

(ii) Every harmonic morphism is given this way locally, up to cosiion with
isometries on the domain and weakly conformal maps on themaih.

WhenM* is of Minkowski signature, Hermitian structures becoshear-free
ray congruenceson complexifying, they both becontmlomorphic foliations by null
planes see [5]. To find harmonic morphisms into Lorentzian surfagee replace the
complex analytic functiong andh in (4) by functions analytic with respect to the
hyperbolic numbers [7]. All cases can be unified by usingdiscemplex numbersee

[8].
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