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SOME RESEARCH TOPICS OF ARISTIDE SANINI *

| am sure that Aristide would make some ironic comment atlibaght of me writing a
note about his papers. He would probably also object to memting in Italian, which
I remember he would say with some pride was his second larghégyfirst being the
dialect of his village, San Secondo Parmense, near ParntginBuay opinion, the fact
that most of his papers are in Italian (and in local journaB unfairly limited the
diffusion of his work.

| hope not to act against his will trying to focus on some ofreisearch topics.
Inevitably, | will put more stress on those that | understhetier. These are topics that
were developed when, or shortly before, | was his studedtsame | learned directly
from him during his frequent visits to the library in the Mathatics Departmentin the
University of Turin.

| shall begin with a few biographical notes.

Sanini studied in Parma, under Professor Carmelo Longo helanged to En-
rico Bompiani’'s school. He moved from Parma to the Politeardi Torino to take
up a post as Longo’s assistant in the 1960’s. At this begmaiage of his career, his
research was mainly in projective differential geomettyisTis apparent by looking at
his early papers [S2, S3, S1, S6, S5, S7, S9], as well as thex paped on a talk he
gave in Bologna in 1990 on Bompiani’s contributions to Rieman geometry [S35].

In the 1970’s, Sanini began to focus on Finsler geometry) spiecial emphasis
on Finsler connections on the tangent bundle of a manifald afFeference to some of
his results on this topic, | refer readers to [12], and inipatar page 152.

He began his collaboration with Franco Tricerri later instbdiecade. This is
witnessed by the paper [S17] and the monograph [S20]. Begptfact that these are
their only works in common, their friendship and mathenstielationship endured
until the tragic death of Tricerri and his family in 1994. §havent left a deep wound,
above all in Aristide’s personal life, but also in his mattatival career.

Another long lasting collaboration was with Renzo Caddadlater Paola Piu,
both from Cagliari [S31, S42]. Their joint work began in th@8D’s when Aristide
started to turn his attention to harmonic maps, and latemsulifold geometry.

Before | start describing Aristide’s research topics, itmsrth saying a little
about his attitude and way of working, as far as | could urtdeds and learn from
him. He read thoroughly, and did not confine his attentiondpgus strictly related
to his current research interests. For example, | remembmrgaconversation with
him about a book on mechanics he was reading not long beferddath. When he
began a new research topic, he would read quite deeply alhdrthe subject. Then

*An extended version of a talk given at tBéornata di Geometria in memoria di Aristide Sanheld at
the Politecnico di Torino on 27 June 2008.
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he would start computing using his own methods (for instaheecould handle very
long calculations with moving frames). At this stage, hedregriting research notes
on which he would base a series of seminars. (The image on P&@gives two
examples.) Writing one or more papers on the chosen topidhveafinal step.

| am personally very fond of the technical report “FibratiG@liassmann e ap-
plicazioni armoniche” [S33], which has been translated pudlished in this volume.
| vividly remember when he gave a series of seminars in 198&dan these notes,
and soon afterwards | started my research under his sujperiased on problems he
discussed there. This report is both a summary of his relseertarmonic maps and
an example of his approach to the subject, and contains sdgiead results.

| would divide the research of Aristide Sanini roughly addwls:

1960's: projective-differential geometry;
1970's: Finsler spaces;

1970-80’s: geometry of foliations;
1980-90’s: harmonic maps, Gauss maps;

1990’s: submanifolds of Lie groups.

This paper is devoted to the description of the last two gisr{&ections 1, 2).

An appendix at the end of this survey reproduces part of arp@aeini and
| wrote together in 1998 [S43]. | remember that Aristide wasyvhappy with this,
but it remained unpublished since some time later we fouridi@i Cecilia Ferreira
had obtained a similar result [9]. But | think that our pra®kimpler and since, to be
frank, most of the ideas were Aristide’s, this extract gigesoncrete example of his
mathematics.

The main result can be described as follows. Mebe an oriented surface of
Euclidean spac&2 with no umbilical point and lety : M — SQ(3) be the function
mapping each poirt of M to the orthogonal matrix determined by the orthonormal
frame{e1, e, €3}, wheree; ande; are the unit vectors of the principal directions<at
Of course, this map can be locally identified with the Gausp ofdM into the flag
manifold of triples of orthogonal one-dimensional vectobspaces oR?® studied in
[9]. Itis shown that is harmonic if and only if M is a surface of revolution for whic
the product of the radius of a parallel and the curvature of\eeg meridian is constant
(Theorem 3).
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1. Harmonic maps, Gauss maps

1.1. Harmonic maps and deformations of metrics

| shall begin with an account of Sanini’s contributions terhanic maps in the 1980’s.
Recall that a map of Riemannian manifolgs(M,g) — (N,d’) is harmonicif it is a
critical point of theenergy functional

1 *
E(g) == E/Mtrg(p gdvg,

wheredyy denotes the volume element bf with respect to the metrig. The real
numbere() := ltrg(,o*g’ is calledenergy density(See also the paper of J. Wood in this
volume [18].)

If @ is a one-parameter variation @f= ¢ and

v e

—1
=— €@ TN
dt jt=o0 ¢

is the correspondingariation vector field of(@ ) then

dEd(:R) [t=0 - /M(T((P)av)dvg - 7<T((p),V>,

wheret() := trgDd@is thetension fieldof ¢.

Hencet (@) = 0 is the Euler—Lagrange equation for the energy functi&te),
andgis harmonic if and only ift(¢) = 0.

The energy functional

E(g) = % /M trg@'g'dvg,
depends in an essential way on the metric.
A smooth mapp: (M,g) — (N,d’) is calledweakly conformaif
1) ¢'h=2\%g

for some functior\ : M — [0, «0) (cf. [18]).

In [S26], Sanini carried out an investigation of the coratis for the energy to
be stationary with respect to a deformation of the metricré/mecisely,

1. arbitrary deformationsE is critical if and only ifdimM = 2 and @ is weakly
conformal ordimM > 2 and@is constant

2. isovolumetric deformation& is critical if and only ifdimM = 2 and@is weakly
conformal ordimM > 2 and@is either a homothetic immersion or constant.
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(cf. Theorem 1 in the paper of Wood in this volume [18]).

Thestress energy tensaf a mapg: (M,g) — (N,d) is the tensor fiel&(@) =
e(@)g— @*g. lts divergence is diS(@) = —(t(®),d@) and, in particular, ifg is har-
monic,S(@) is conservative (i.e., its divergence is identically zero)

Actually, (cf. a proof of Theorem 1 in [18]), the Euler—Laggge operator for
the variation of energy is precisely the stress energy tenso

More generally, givep: (M,g) — (N,g') with energy densitg(@) := 1trg@'d,
Uhlenbeck [16] introduced th@-energyfunctional

m/2
:%/ <%e¢) dvg, m=dimM,
M

which agrees with the energy far= 2 and depends only on the conformal structure

of M. Then dE( ) 1 q
dE@%)  _1.gny h_ da
dt =0 2< (@),h), dt =0’

whereS"(¢p) = (me(p)m/zfl(

In [S34] the following results are proved:

%e(pg — (pf*g’) is the analog of the stress-energy tensor.

1. The m-energy functional ®¢) is critical with respect to deformations of g if
and only ifgis weakly conformal.

2. If @is weakly conformal, theqis a local minimum of E(¢).

The second part was obtained by computing the second deeidtE"(¢).

The tangent bundi€ M of a Riemannian manifoldM, g) can be endowed with
a Riemannian metric, the so-called Sasaki metric, whichamdke submersior :
TM — M Riemannian. This metric can be described as follows.

Elements off M are pairgx, ), with x € TyM. A local coordinate systeifx') on
M determines a local coordinate systéxhx') on TM, WhICh associates to the vector
X its components with respect to the natural bésrs 7 at the poini.

For any vector fieldX € X(M), its horizontal I|ftXH and its vertical liftX"
are uniquely determined. This lift operation extends ats&insler fields or\M, i.e.,
to vector fields depending also on the directional variabl@hus any vector fiel@
tangent tol' M can be written uniquely as

z=7"+7",

wherezH andZzV are the horizontal and vertical componenZafespectively.
The Sasaki metrigon T M is then uniquely determined by the conditions

gxt YyM) =gixV.YyV)=g(X,Y), agxtYV)y=0, vX,Yex(M).

Let TM be the tangent bundle 6M,g), endowed with the Sasaki metdc
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A vector field§ onM may be considered as a map

g : (M,g) = (TM, Q).

A joint work Caddeo—Sanini [S31] studies conditions undbicl the induced metric
q)gg_on M is harmonic with respect tg.

Thisis equivalent to the requirement that the identity niagh, g) — (M,(l)’gtj)
is harmonic. It turns out that this happens when:

1. € is a conformal vector field and M is a surface,
2. ¢ is a Killing vector field and M is locally flat,

3. ¢ is a Killing vector field with constant length and M has comstaurvature,
dimM > 2.

Given a mapp: (M,g) — (N,d), its differential® is a map between the Rie-
mannian manifold3 M andT N, endowed with their respective Sasaki metrics.

Recall that the mapis totally geodesidf Ddg= 0.

ComputingDd®, whereD is the metric connection o®* (T (T N) induced by
the Sasaki metric oM N, it is shown in [S25] thapis totally geodesic if and only b
is totally geodesic

Moreover, the tension field @b at (x,x) € TM, 1(®) = tr(Dd®), is related to
that of @ by

H
(2) (®) = {T(CP) + Y RY(Ddg(x. &)dgx)dge } +{divDde) (%)} .

whereg is an orthonormal basis atand™ (respectively’) denotes the horizontal
(respectively vertical) projection.

Thus ([S25, Proposition 3]j @is harmonic, therb is harmonic if and only if
1. 3;RY(Ddg(x,&)dgx)dge = 0, for any X& X(M),
2. divDde= 0.

The Laplacian of the energy denséfp) can be expressed as follows (cf. [6]):

(3) De(g) =|Ddg® + Y (dg(RicMe),dge) — 5 (R (dger, dge;)dge, dge;),
] 1)

where Ric is the (1,1) Ricci tensor. Moreover, the energysdgmnf a totally geodesic
map is constant. Hence, by (2), (3) and the above result [S2fosition 3] one gets
thatif ® is harmonic and M is compact thepis totally geodesic.
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In a subsequent paper, [S29], Sanini considered an isamigtrinersion
f: M — N. The differential off then defines an immersiof : TTM — TiN be-
tween the bundles of unit tangent vectors. This is relatethéeoGauss map of an
m-dimensional submanifold dfl as a map oM into the Grassmannian af-planes in
N (associating to each poirtof M its tangent space a&j [13].

We add a few comments concerning the metric on the unit tartgealesr; M.
The unit tangent bundle is the hypersurfacd ®f given by elementsx, x) such that
[x| = 1. It can therefore be endowed with the induced metric. la tlise,;T1M has
constant mean curvature ([S29, Proposition 2]).

Actually, as Sanini learned later from [11] and [10], theseaione-parameter
family of metrics onTyM making the submersiomM — M Riemannian. We will
call these metrics “Sasaki-like metrics”. The Sasaki neetdrresponds to setting the
parameter equal to 1. This is at the origin of what he latecrilesd as “a strange
result”, that | shall now discuss. He studied the harmoyigiit; whenf is not totally
geodesic andN is a space of constant curvature dsing similar computations as in
his previous paper [S25], he showed that in this dasis harmonic (with respect to
the Sasaki metrics oW and TN) if and only if

1. c=0and f(M) is a minimal Einstein submanifold,

2. c=dimM and f(M) is a totally umbilical submanifold of N.

Actually, if one modifies the metric of the unit tangent busldy a constant [10]
(i.e., if one considers a “Sasaki-like metric” @M instead — see Subsection 1.2) then
this condition becomes a relationship among this conda@sectional curvature of
and the dimension d¥l (see [S33, Proposition 4]

A submanifoldM of a Riemannian manifoltll is calledpseudoumbilicaif the
mean curvature vector is an umbilical normal section, ifeAy = |H|%id, whereA
denotes the shape operator.

Also in the paper [S29], the following generalization of Bigh—Vilms Theorem
[15] was proved.

THEOREM1 ([S29, Theorem 3])Let N be a space of constant curvature c. If
f :M — N is a pseudoumbilical Einstein submanifold with paralledan curvature,
then the restriction to 1M of the vertical component of the tension fie(d ) of the
differential F: TM — TN of f is orthogonal to 1N.

Conversely, if the vertical componentF ) 1, is orthogonal to TN, then
1. the mean curvature of M is parallel,
2. the following conditions are equivalent:

(&) M is Einstein,
(b) M is pseudoumbilical,

IHere and later, | refer to the numbering in the translatianted in this volume
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3. the quadratic form
Q(X) =gn(RIicM(X) —mA X —c(m—1)X, X)
= *ZigN(a(Q,X),G(Q,X»

is proportional to the metric of M, where smadimM, a is the second fundamen-
tal form and(g) is an orthonormal frame of M.

We will see in the next subsection that to say Qas$ proportional to the metric
is equivalent to the conformality of the Gauss map\bfinto the Grassmannian of
m-planes.

1.2. Gauss maps and harmonic maps

Recall that the “classical” Gauss mgmnaps any poink of a orientable surface im-
mersed inR3 to the unit vectoN, applied at the origin oR3.

If (M,qg) is anm-dimensional Riemannian manifold isometrically immersed
R" (or, more generally, a space of constant curvature), thencan define several
generalizations of the Gauss map.

e TheGauss map into the Grassmanniahich maps anyx € M to the subspace
of R" parallel toTyM, i.e.,

y: M — Gp(n)

with Gn(n) the Grassmannian ofi-planes ofR" endowed with its canonical metric as
a symmetric space.

e The “spherical” Gauss map(defined by Chern and Lashof) is the mapping

v:TIMt — g1

sending any unit normal vector to the point$f* obtained by its parallel transport to
the origin of R".

The harmonicity of the Gauss map can be read in term of the anifoid ge-
ometry ofM.

For example, a classical result by Chern is that an orieatsinifacef : M2 <
R" is harmonic if and only if the Gauss map — Gz(n) = Q,_2 (complex quadric in
CP"1) is antiholomorphic

Moreover, Ruh and Vilms [15] proved that M — Gny(n) is harmonic if and
only if the mean curvature vector is parallel, i8;H = 0.

We refer to [S33, Theorem 4] for results of Obata on weak aonédity of the
Gauss mayy for submanifolds of spaces of constant curvature. The tiomdihaty is
weakly conformal is equivalent to the fact that the quadriiim Q (see Theorem 1)
is proportional to the metric d¥l, i.e., Q(X) = ¢2g(X,X), for anyX tangent taV, cf.
[S33].

More generally, for a submanifold of an arbitrary Riemanni@anifold
f : M — N one can define the following generalized Gauss maps (JeRggnii{10],
Wood [17]).
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e TheGauss map into the Grassmann bundle
y:M = Gy(TN)

sending any poinmto f.(T,M) regarded as arplane inT¢ ;) N, and thus a point in
the Grassmann bund@®,(T N). The latter is endowed with the one-parameter family
of metrics (the “Sasaki-like metrics” we mentioned above amich we will describe
soon).

e The“spherical” Gauss map

V. -|_1|\/|l — TuN
X&) = (f(x),8).

Let O(M) be the principal bundle oM of orthonormal frames dfl endowed
with the canonical forn® = (6'), which is aR™-valued 1-form and the(m)-valued
connection 1-formw = (w)) determined by the Levi-Civita connection &t. The
Grassmann bundI&,(T Mi is the associated bundle to(i@) with typical fiber the
Grassmannian gb-planes inR™

O(m)

o™ = S < om—p)

Let us consider the quadratic form oriI\®)
W= (6)2+N25 (Wf)?,
wherer =1,....p, a=p+1,...,mandA is a positive constant.
SinceW is O(p) x O(m— p)-invariant and vanishes on the fibers of the submer-
sion QM) — Gp(T M), itinduces a family of positive definite quadratic forahg on

Gp(TM), the “Sasaki-like metrics”. The Sasaki metric &M corresponds t@ = 1
andA = 1.

In the technical report [S33], the tension field of these galired Gauss maps is
computed. Thus, some known results (both of Sanini and ailithiors) are computed
with a unified method.

We give an example, which | remember well, since it is relatetthe first paper
| wrote following the advice and suggestions of Sanini [8ld a later joint paper [S37].

THEOREM2. [10] The spherical Gauss mag T;M+ — T;N of a submanifold
M of a space of constant curvature N and wéthdimM > 2 is harmonic if and only if
the following conditions hold

1. fis minimal,
2. the second fundamental formcisnformal i.e.,

tr(AgAn) =A(EN),

for any normal vector§, n, whereA is a function on M.
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Surfaces with conformal second fundamental form are in f@chogeneous
(even symmetric) as soon as one assumes their mean curvattwefieldH is parallel
in the normal bundle. Indeedssume f M — N"(c) is an isometric immersion of a
compact connected surface in an n-dimensional real spaga-6f constant curvature
¢ (with n=4or 5). If the second fundamental form of M is conformal andzesa and
the mean curvature vector of M is parallel in the normal bumdhen either

1. n=4and M is a Veronese surface in a 4-sphere, or
2. n=4and M is a Clifford torus in a Euclidean 4-space, or

3. n=>5and f is an immersion of a real projective plane into a 5-sgherhich is
factored through a Veronese surface in a suitable 4-sphretied 5-sphere [3].

Submanifolds with conformal second fundamental form ale&ted with a wi-
dely studied class of immersed submanifolds igiaéropic immersionsAn immersion
f : M < M is said to be isotropic if for any € M, we have|a(v,V)|| = A(x)||v||? for
anyv € TyM, whereA is a positive smooth function dvl (the isotropy function).

The main link between the above classes of submanifoldsigaifowing: if
f : M < M has conformal second fundamental form and assuming teatadimen-
sion is p= %m(er 1), then f is isotropic and the isotropy function coincideshvite
conformality functiorfS37].

I am also in some way linked personally to the next paper $amote on Gauss
maps, since | helped him to write it in English [S38]. In thiaper, he studies the
Gauss mag: (M,g) — (Gm(n),I") and considers submanifolds satisfying the weaker
property that the tension field of the Gauss myap orthogonal to its image, i.ety L
im(y). This is equivalent to the stress energy tensgrtadving zero divergence (cf. [1])
and is characterized by the condition

Y a(e.X)OgH =0,
|

whereH is the mean curvature vector field afe) is an orthonormal frame dfl.
In particular,if M compact and orientable theH || constant

A detailed study is carried out for surfacesif or more generally in spaces
of constant curvature withty L im(y). For example it is shown thahe surfaces
M? C N3(c) satisfyingy;a(e;,X) - OgH = 0 with O*H 3 0 are ruled by geodesics
intersecting orthogonally a plane curve L of constant ctuva in N3(c). For c=0
they are round cones

2. Submanifolds of Lie groups

In the second half of the 1990’s, Sanini started to turn hisndion to submanifold
geometry in Lie groups.
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In particular, he considered the Heisenberg group

1
Hz = 0 "X Y,zeR
0

O B X
< N

endowed with the left invariant Riemannian metric
ds? = dx® +dy? + (dz— xdy)?.

The Heisenberg groufHs,ds’), although diffeomorphic t®3, has a very different
behavior from the point of view of its Riemannian (sub)malifgeometry. Indeed
Hs is a nilpotent Lie group admitting large classes of both maliand constant mean
curvature surfaces.

A remarkable property, explicitly proved in [S41], is thiabweverHs does not
admit totally umbilical surfaces.

The (generalized) Gauss mgpM — Gn(T Hs) of a surfaceM of the Heisen-
berg groupHs was examined in [S41].

Using the above property, it is proved ththe Gauss mayy is conformal if
and only if M is minimal Moreover, a characterization of a surfaddewith constant
mean curvature having vertically harmonic Gauss map isngidamely, in casé/
is minimal, it is a surface having the same analytical regméstion inR® as a plane
parallel to the axis of revolution dflz. In caseM has nonvanishing constant mean
curvature,M is a “round cylinder” (in the above sense) with rulings plelatio the
axis of revolution oH3. Vertically harmonic means that the vertical componenhef t
tension field with respect to the submers®s(T Hz) — M vanishes.

In a joint paper with Piu [S42] they consider surfaces in thesknberg group
(Hz,ds?) of the formS= expuXexpvY, (u,v) € R?, where

0 a c 0O a vy
X=10 0 b and Y=|0 0 B
0 0O 0 0O

are two linearly independent vectors tangenttoat the identity. They prove that

1. S is a minimal surface with Gauss mgpvertically harmonic if and only if
[X,Y] =0 (which is equivalent toa— ab = 0).

2. S is a minimal surface witly harmonic if and only ifX,Y] = 0 and the one-
parameter subgroup(u) = expuX either is a geodesic ofg1or has torsion
equal to zero (i.e., &+ b? — 2 =0).

Moreover, ifo(u) is not a geodesic and has vanishing torsion, then the ruled
surfaceS; generated by principal normal lines is flat ala().
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Appendix. A surface of revolution of a remarkable type

Let M be an oriented surface of Euclidean sp&ewith no umbilical point. Re-
call from the introduction that one can consider the map1 — SQ(3) mapping each
pointx of M to the orthogonal matrix determined by the orthonormal &dm, e>, e3},
wheree; ande, are the unit vectors of the principal directionsxatThis map can be
locally identified with the Gauss map bf into the flag manifold of triples of orthogo-
nal one dimensional vector subspaces. The compact Lie $&) is endowed with
a biinvariant metrigy'.

The following result will be proven.

THEOREM 3. The mapd : (M,g) — (SQ(3),d’) is harmonic if and only if M
is a surface of revolution for which the product of the radoafsa parallel and the
curvature of a given meridian is constant.

As a first step, the surfaces of revolution satisfying thevabaondition will
be constructed explicitly. One gets a family of surfaceshasgeneral solution of an
ordinary differential equation of second order. Obsenag,tfor instance, spheres are
not in this family (but round cones and cylinders are).

The next step will be to show that the surfaces constructéteipreviuos sec-
tion are the only surfaces for whighis harmonic.

Observe that by Pluzhnikov’s Theorem [14], a mappiraf a Riemannian man-
ifold (M, g) into a Lie groupG, endowed with a biinvariant metrig, is harmonic if
and only if the formf*0 has null divergence, wherg 0 is the induced form oM by
the Maurer—Cartan forrb on G, cf. also [4].

Surfaces of revolution wittp harmonic

Let M be a surface i3, generated by revolution of the meridian cufwéu),0,z(u)),
x(u) > 0, along thez axis. We assume that the meridian curve is referred to agthen
hence(x')? + (Z)? = 1. Thus the surfack! is parametrized by

P(u,v) = (x(u) cosv, x(u)sinv, z(u)).

A unit normal vector ig3 = (—Z cosv, —Z sinv,x'). The first fundamental form is given
by

(4) ds? = di? + x2dV?
and the principal curvatures are

11 =a(e,e) =xXZ"—x"Z, (curvature of the meridian)
Oz2 = 0(e2, &) =Z /X,

wheree; = Ry, & = R,/|R/| is an orthonormal frame of the tangent space amslthe
second fundamental form.



Some research topics of Aristide Sanini 389

SetX := (e1,e2,€3) (Wwhere theg are thought as column vectors), the induced form by
the Maurer—Cartan forré of SQ(3) is given by

o0 =X"ldX
€ de de de; de de des
e H(Emw) e (S w) o)
5) e du du du dv dv dv

0 0 X'Z-X7Z' 0O —x O
= 0 0 0 du+| ¥ 0 —Z |dv
XZ'—x'Z 0 0 0o 7 0

The divergence of a 1-forfai= 3 BidX is given by
B=—5d'0iBi=—5 g'{0iBi — Bk},
whereg is the Riemannian metric aridare the Christoffel symbols.
Using (4), one getsl, =%, =T3,=0andr}, = —xx.
The condition thap*0 has null divergence can be read off by the only equation
/
(X2 —X'Z) + X;(x’z” _X'Z)=0,
which is equivalent to
(6) du{x(XZ'—x"Z)} =0.

Hence we have the following

LEmMMA 1. The only surfaces of revolution M for which the miap(M,g) —
(SQ3),d') is harmonic are the ones for which the product of the radiua pérallel
and the curvature of a given meridian is constant.

If the meridian has equation= 0, z= f(x), the above condition is equivalent
to the second order ordinary differential equation
"
f73 = K (k constany,
(14 f2)2 X

whose solutions (depending on the const&rgadc > 0) are

f(x) = i/M dx
1—log?(cxX)

Observe that, fok = 0 one gets the round cone and, with an obvious change of vari-
ables, the round cylinder.
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The general case of surfaces wigtharmonic

Let M be a surface oE3, with no umbilical point. Using the same notations as in
[2], at any pointx € M one has an orthonormal frange;, 2, e3}, wherees is the unit
normal vector ane, e, are the unit vectors of the principal directions. In terms of
differential forms (ifx is the position vector fieldy' the dual forms t@ andw), are the

connections forms, withiJ- + m,j = 0) one has

dx= wle, + wle,
der = wie, + wies,
de = whe; + wies,

des = wie + wien.

In particular, one has the structure equations

(7) do! = - Aw?,  do? = - Awt
We set
(8) w? =ho' +ko?, o =aw!, wS=cw’,

wherea, ¢ (with a > c) are the principal curvatures & atx and

1
H:E(a+c), K=ac

are the mean curvature and the Gaussian curvature, rageciihe Gauss and Co-
dazzi equations read

(9) K =ac=hy—k; —h?—K?,

(10) c1 = (a—c)k, a; = (a—c)h,
where, here and in the sequiet,= e>(h) and so on. Further, one has
(11) [€1,€2] = Ue, & — Ue,€1 = —hey — ke

If ¢ denotes the map froM to SQ(3) given by the orthonormal framigey, €2, €3}, then
the 1-form¢*6 with values inso(3), induced by the Maurer—Cartan form &@Q(3) is
given by

el
(12) ¢°6=| e |(derdedey) = wp(er)w' +uj
&

Using the Hodge: operator, we get

(13) 500 = —f (2)w' + W (e1)w’.
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Thus¢ is harmonic if and only iD$*0d « ¢*6 = 0. Explicitly,
(14) —d (wg(ez)) N+ o (&2)ws A W +d (cog(el)) AN — @ (e1)wi A =0,

Setting
oa=1pB=2; a=1,B=3;, a=2,p=3,

respectively, and using (8), we get the following condii@expressing the harmonicity
of ¢:

(15) hi+k>=0,
(16) a; +ak=0,
(17) c; —ch=0.

Note that (15) is equivalent to the fact that the codiffei@mtf the connection form)f
vanishes. Using the above, equations (10), (11) and

[e1, &](a) = —hag — kag, [e1,€](c) = —hcy — ke,
we get the equations
(18) chy = —(a+c)hk ak = (a+c)hk
When multiplied bya andc respectively, and added, using (15), these imply
(19) (¢ —a?)hk=0.

SinceM has no umbilical point, one cannot hawe- c. If c= —a (i.e.,M is minimal),
by (18) one would havh; =k, = 0 and hence, by (10), (16) and (1f)= k = 0, thus
a=c=0, by (9).

Hence in order that (18) hold, we must hde= 0. We consider the case=0
(the other is similar and actually equivalent). o 0 the integral curves of the field
e; are geodesics ikl. Thus they are plane curves, since they are curvature lifef®(
instance [8, page 140] or [5, page 152]). Moreover, by (10§) @nd (18), it follows
thata, = ¢ = ko = 0, which means that the integral curves of the figldre circles.
Indeed, if0 denotes the Levi-Civita connection Bf, we have

Oe,e = —kert+ces,  Oelee = — (K + ey,

which implies that the curvature lines tangenetare plane curves and have constant
curvaturey/k? + c2.

Thus the surfaces for whiap is harmonic are of revolution. To end the proof
of the theorem, we show that the product of the principal aumea and the radius
1/v/k? 4 c? of the circle is constant.
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We already remarked that

( - ) =0
viere)
Moreover, by (16), (10) and (9), we have

I R ~12 a2 —3/2
q<m> =a (kK +c?) a(k®+c?)~¥2(kky + cqp)

= (K24 c2) 732 (—ak(k® +c?) — ak(—ac— k?) —ac(a— c)k)
-0

)

proving the constancy.
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