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SOME RESEARCH TOPICS OF ARISTIDE SANINI ∗

I am sure that Aristide would make some ironic comment at the thought of me writing a
note about his papers. He would probably also object to me notwriting in Italian, which
I remember he would say with some pride was his second language, his first being the
dialect of his village, San Secondo Parmense, near Parma. But, in my opinion, the fact
that most of his papers are in Italian (and in local journals)has unfairly limited the
diffusion of his work.

I hope not to act against his will trying to focus on some of hisresearch topics.
Inevitably, I will put more stress on those that I understandbetter. These are topics that
were developed when, or shortly before, I was his student, and some I learned directly
from him during his frequent visits to the library in the Mathematics Department in the
University of Turin.

I shall begin with a few biographical notes.

Sanini studied in Parma, under Professor Carmelo Longo, whobelonged to En-
rico Bompiani’s school. He moved from Parma to the Politecnico di Torino to take
up a post as Longo’s assistant in the 1960’s. At this beginning stage of his career, his
research was mainly in projective differential geometry. This is apparent by looking at
his early papers [S2, S3, S1, S6, S5, S7, S9], as well as the paper based on a talk he
gave in Bologna in 1990 on Bompiani’s contributions to Riemannian geometry [S35].

In the 1970’s, Sanini began to focus on Finsler geometry, with special emphasis
on Finsler connections on the tangent bundle of a manifold. For a reference to some of
his results on this topic, I refer readers to [12], and in particular page 152.

He began his collaboration with Franco Tricerri later in this decade. This is
witnessed by the paper [S17] and the monograph [S20]. Despite the fact that these are
their only works in common, their friendship and mathematical relationship endured
until the tragic death of Tricerri and his family in 1994. This event left a deep wound,
above all in Aristide’s personal life, but also in his mathematical career.

Another long lasting collaboration was with Renzo Caddeo and later Paola Piu,
both from Cagliari [S31, S42]. Their joint work began in the 1980’s when Aristide
started to turn his attention to harmonic maps, and later submanifold geometry.

Before I start describing Aristide’s research topics, it isworth saying a little
about his attitude and way of working, as far as I could understand and learn from
him. He read thoroughly, and did not confine his attention to papers strictly related
to his current research interests. For example, I remember along conversation with
him about a book on mechanics he was reading not long before his death. When he
began a new research topic, he would read quite deeply all around the subject. Then

∗An extended version of a talk given at theGiornata di Geometria in memoria di Aristide Saniniheld at
the Politecnico di Torino on 27 June 2008.
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he would start computing using his own methods (for instance, he could handle very
long calculations with moving frames). At this stage, he began writing research notes
on which he would base a series of seminars. (The image on page379 gives two
examples.) Writing one or more papers on the chosen topic wasthe final step.

I am personally very fond of the technical report “Fibrati diGrassmann e ap-
plicazioni armoniche” [S33], which has been translated andpublished in this volume.
I vividly remember when he gave a series of seminars in 1988 based on these notes,
and soon afterwards I started my research under his supervision based on problems he
discussed there. This report is both a summary of his research on harmonic maps and
an example of his approach to the subject, and contains some original results.

I would divide the research of Aristide Sanini roughly as follows:

1960’s: projective-differential geometry;

1970’s: Finsler spaces;

1970-80’s: geometry of foliations;

1980-90’s: harmonic maps, Gauss maps;

1990’s: submanifolds of Lie groups.

This paper is devoted to the description of the last two periods (Sections 1, 2).

An appendix at the end of this survey reproduces part of a paper Sanini and
I wrote together in 1998 [S43]. I remember that Aristide was very happy with this,
but it remained unpublished since some time later we found out that Cecília Ferreira
had obtained a similar result [9]. But I think that our proof is simpler and since, to be
frank, most of the ideas were Aristide’s, this extract givesa concrete example of his
mathematics.

The main result can be described as follows. LetM be an oriented surface of
Euclidean spaceE3 with no umbilical point and letϕ : M → SO(3) be the function
mapping each pointx of M to the orthogonal matrix determined by the orthonormal
frame{e1,e2,e3}, wheree1 ande2 are the unit vectors of the principal directions atx.
Of course, this map can be locally identified with the Gauss map of M into the flag
manifold of triples of orthogonal one-dimensional vector subspaces ofR3 studied in
[9]. It is shown thatϕ is harmonic if and only if M is a surface of revolution for which
the product of the radius of a parallel and the curvature of a given meridian is constant
(Theorem 3).
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1. Harmonic maps, Gauss maps

1.1. Harmonic maps and deformations of metrics

I shall begin with an account of Sanini’s contributions to harmonic maps in the 1980’s.
Recall that a map of Riemannian manifoldsφ : (M,g)→ (N,g′) is harmonicif it is a
critical point of theenergy functional

E(φ) :=
1
2

∫
M

trgφ∗g′dvg ,

wheredvg denotes the volume element ofM with respect to the metricg. The real
numbere(φ) := 1

2trgφ∗g′ is calledenergy density. (See also the paper of J. Wood in this
volume [18].)

If φt is a one-parameter variation ofφ = φ0 and

v=
dφt

dt |t=0
∈ φ−1TN

is the correspondingvariation vector field of(φt) then

dE(φt)

dt |t=0
=−

∫
M
(τ(φ),v)dvg =−〈τ(φ),v〉 ,

whereτ(φ) := trgDdφ is thetension fieldof φ.

Henceτ(φ) = 0 is the Euler–Lagrange equation for the energy functionalE(φ),
andφ is harmonic if and only ifτ(φ) = 0.

The energy functional

E(φ) :=
1
2

∫
M

trgφ∗g′dvg ,

depends in an essential way on the metric.

A smooth mapφ : (M,g)→ (N,g′) is calledweakly conformalif

(1) φ∗h= λ2g

for some functionλ : M→ [0,∞) (cf. [18]).

In [S26], Sanini carried out an investigation of the conditions for the energy to
be stationary with respect to a deformation of the metric. More precisely,

1. arbitrary deformations:E is critical if and only ifdimM = 2 and φ is weakly
conformal ordimM > 2 andφ is constant.

2. isovolumetric deformations:E is critical if and only ifdimM = 2 andφ is weakly
conformal ordimM > 2 andφ is either a homothetic immersion or constant.
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(cf. Theorem 1 in the paper of Wood in this volume [18]).

Thestress energy tensorof a mapφ : (M,g)→ (N,g′) is the tensor fieldS(φ) =
e(φ)g− φ∗g′. Its divergence is divS(φ) = −〈τ(φ),dφ〉 and, in particular, ifφ is har-
monic,S(φ) is conservative (i.e., its divergence is identically zero).

Actually, (cf. a proof of Theorem 1 in [18]), the Euler–Lagrange operator for
the variation of energy is precisely the stress energy tensor.

More generally, givenφ : (M,g)→ (N,g′) with energy densitye(φ) := 1
2trgφ∗g′,

Uhlenbeck [16] introduced them-energyfunctional

Em(φ) :=
1
2

∫
M

(
2
m

eφ

)m/2

dvg , m= dimM,

which agrees with the energy form= 2 and depends only on the conformal structure
of M. Then

dE(φ,gt)

dt |t=0
=

1
2
〈Sm(φ),h〉 , h=

dgt

dt |t=0
,

whereSm(φ) =
( 2

meφ
)m/2−1( 2

meφg−φ∗g′
)

is the analog of the stress-energy tensor.

In [S34] the following results are proved:

1. The m-energy functional Em(φ) is critical with respect to deformations of g if
and only ifφ is weakly conformal.

2. If φ is weakly conformal, thenφ is a local minimum of Em(φ).

The second part was obtained by computing the second derivative of Em(φ).

The tangent bundleTM of a Riemannian manifold(M,g) can be endowed with
a Riemannian metric, the so-called Sasaki metric, which makes the submersionπ :
TM→M Riemannian. This metric can be described as follows.

Elements ofTM are pairs(x, ẋ), with ẋ∈TxM. A local coordinate system(xi) on
M determines a local coordinate system(xi , ẋi) on TM, which associates to the vector
ẋ its components with respect to the natural basis∂i =

∂
∂xi at the pointx.

For any vector fieldX ∈ X(M), its horizontal lift XH and its vertical liftXV

are uniquely determined. This lift operation extends also to Finsler fields onM, i.e.,
to vector fields depending also on the directional variable ˙x. Thus any vector field̃Z
tangent toTM can be written uniquely as

Z̃ = Z̃H + Z̃V ,

whereZ̃H andZ̃V are the horizontal and vertical component ofZ̃ respectively.

The Sasaki metric ¯g onTM is then uniquely determined by the conditions

ḡ(XH ,YH) = ḡ(XV ,YV) = g(X,Y) , ḡ(XH ,YV) = 0, ∀X,Y ∈ X(M) .

Let TM be the tangent bundle of(M,g), endowed with the Sasaki metric ¯g.
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A vector fieldξ onM may be considered as a map

ϕξ : (M,g)→ (TM, ḡ).

A joint work Caddeo–Sanini [S31] studies conditions under which the induced metric
ϕ∗ξḡ onM is harmonic with respect tog.

This is equivalent to the requirement that the identity map id :(M,g)→ (M,ϕ∗ξḡ)
is harmonic. It turns out that this happens when:

1. ξ is a conformal vector field and M is a surface,

2. ξ is a Killing vector field and M is locally flat,

3. ξ is a Killing vector field with constant length and M has constant curvature,
dimM > 2.

Given a mapφ : (M,g)→ (N,g′), its differentialΦ is a map between the Rie-
mannian manifoldsTM andTN, endowed with their respective Sasaki metrics.

Recall that the mapφ is totally geodesicif Ddφ = 0.

ComputingD̄dΦ, whereD̄ is the metric connection onΦ∗(T(TN) induced by
the Sasaki metric onTN, it is shown in [S25] thatφ is totally geodesic if and only ifΦ
is totally geodesic.

Moreover, the tension field ofΦ at (x, ẋ) ∈ TM, τ(Φ) = tr(DdΦ), is related to
that ofφ by

(2) τ(Φ) =

{
τ(φ)+∑

i
RN(Ddφ(ẋ,ei)dφẋ)dφei

}H

+ {divDdφ)(ẋ)}V ,

whereei is an orthonormal basis atx and H (respectivelyV ) denotes the horizontal
(respectively vertical) projection.

Thus ([S25, Proposition 3])if φ is harmonic, thenΦ is harmonic if and only if

1. ∑i R
N(Ddφ(ẋ,ei)dφẋ)dφei = 0, for any X∈ X(M),

2. divDdφ = 0.

The Laplacian of the energy densitye(φ) can be expressed as follows (cf. [6]):

(3) ∆e(φ) = |Ddφ|2+∑
i
〈dφ(RicMei),dφei〉−∑

i, j
〈RN(dφei ,dφej)dφei ,dφej〉 ,

where Ric is the (1,1) Ricci tensor. Moreover, the energy density of a totally geodesic
map is constant. Hence, by (2), (3) and the above result [S25,Proposition 3] one gets
that if Φ is harmonic and M is compact thenφ is totally geodesic.
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In a subsequent paper, [S29], Sanini considered an isometric immersion
f : M → N. The differential of f then defines an immersionF1 : T1M → T1N be-
tween the bundles of unit tangent vectors. This is related tothe Gauss map of an
m-dimensional submanifold ofN as a map ofM into the Grassmannian ofm-planes in
N (associating to each pointx of M its tangent space atx) [13].

We add a few comments concerning the metric on the unit tangent bundlesT1M.
The unit tangent bundle is the hypersurface ofTM given by elements(x, ẋ) such that
|ẋ| = 1. It can therefore be endowed with the induced metric. In this case,T1M has
constant mean curvature ([S29, Proposition 2]).

Actually, as Sanini learned later from [11] and [10], there is a one-parameter
family of metrics onT1M making the submersionT1M → M Riemannian. We will
call these metrics “Sasaki-like metrics”. The Sasaki metric corresponds to setting the
parameter equal to 1. This is at the origin of what he later described as “a strange
result”, that I shall now discuss. He studied the harmonicity of F1 when f is not totally
geodesic andN is a space of constant curvature c. Using similar computations as in
his previous paper [S25], he showed that in this caseF1 is harmonic (with respect to
the Sasaki metrics on T1M and T1N) if and only if

1. c= 0 and f(M) is a minimal Einstein submanifold,

2. c= dimM and f(M) is a totally umbilical submanifold of N.

Actually, if one modifies the metric of the unit tangent bundle by a constant [10]
(i.e., if one considers a “Sasaki-like metric” onT1M instead – see Subsection 1.2) then
this condition becomes a relationship among this constant,the sectional curvature ofN
and the dimension ofM (see [S33, Proposition 4]1).

A submanifoldM of a Riemannian manifoldN is calledpseudoumbilicalif the
mean curvature vector is an umbilical normal section, i.e.,if AH = |H|2id, whereA
denotes the shape operator.

Also in the paper [S29], the following generalization of theRuh–Vilms Theorem
[15] was proved.

THEOREM 1 ([S29, Theorem 3]).Let N be a space of constant curvature c. If
f : M→ N is a pseudoumbilical Einstein submanifold with parallel mean curvature,
then the restriction to T1M of the vertical component of the tension fieldτ(F) of the
differential F : TM→ TN of f is orthogonal to T1N.

Conversely, if the vertical component ofτ(F)|T1M is orthogonal to T1N, then

1. the mean curvature of M is parallel,

2. the following conditions are equivalent:

(a) M is Einstein,

(b) M is pseudoumbilical,

1Here and later, I refer to the numbering in the translation printed in this volume
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3. the quadratic form

Q(X) = gN(RicM(X)−mAHX− c(m−1)X,X)

=−∑i gN(α(ei ,X),α(ei ,X))

is proportional to the metric of M, where m= dimM, α is the second fundamen-
tal form and(ei) is an orthonormal frame of M.

We will see in the next subsection that to say thatQ is proportional to the metric
is equivalent to the conformality of the Gauss map ofM into the Grassmannian of
m-planes.

1.2. Gauss maps and harmonic maps

Recall that the “classical” Gauss mapγ maps any pointx of a orientable surface im-
mersed inR3 to the unit vectorNx applied at the origin ofR3.

If (M,g) is anm-dimensional Riemannian manifold isometrically immersedin
Rn (or, more generally, a space of constant curvature), then one can define several
generalizations of the Gauss map.

• TheGauss map into the Grassmannianwhich maps anyx∈M to the subspace
of Rn parallel toTxM, i.e.,

γ : M→Gm(n)

with Gm(n) the Grassmannian ofm-planes ofRn endowed with its canonical metric as
a symmetric space.

• The “spherical” Gauss map(defined by Chern and Lashof) is the mapping

ν : T1M⊥→ Sn−1

sending any unit normal vector to the point ofSn−1 obtained by its parallel transport to
the origin ofRn.

The harmonicity of the Gauss map can be read in term of the submanifold ge-
ometry ofM.

For example, a classical result by Chern is that an orientable surfacef : M2 →֒
Rn is harmonic if and only if the Gauss mapM→G2(n)∼= Qn−2 (complex quadric in
CPn−1) is antiholomorphic.

Moreover, Ruh and Vilms [15] proved thatγ : M→ Gm(n) is harmonic if and
only if the mean curvature vector is parallel, i.e.,∇⊥H = 0.

We refer to [S33, Theorem 4] for results of Obata on weak conformality of the
Gauss mapγ for submanifolds of spaces of constant curvature. The condition thatγ is
weakly conformal is equivalent to the fact that the quadratic form Q (see Theorem 1)
is proportional to the metric ofM, i.e.,Q(X) = ℓ2g(X,X), for anyX tangent toM, cf.
[S33].

More generally, for a submanifold of an arbitrary Riemannian manifold
f : M →֒ N one can define the following generalized Gauss maps (Jensen–Rigoli [10],
Wood [17]).
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• TheGauss map into the Grassmann bundle:

γ : M→Gm(TN)

sending any pointm to f∗(TpM) regarded as am-plane inTf (p)N, and thus a point in
the Grassmann bundleGm(TN). The latter is endowed with the one-parameter family
of metrics (the “Sasaki-like metrics” we mentioned above and which we will describe
soon).

• The“spherical” Gauss map:

ν : T1M⊥ → T1N
(x,ξ) 7→ ( f (x),ξ) .

Let O(M) be the principal bundle onM of orthonormal frames ofM endowed
with the canonical formθ = (θi), which is aRm-valued 1-form and theo(m)-valued
connection 1-formω = (ωi

j) determined by the Levi-Civita connection onM. The
Grassmann bundleGp(TM) is the associated bundle to O(M) with typical fiber the
Grassmannian ofp-planes inRm

Gp(m) =
O(m)

O(p)×O(m− p)
.

Let us consider the quadratic form on O(M)

W = ∑(θi)2+λ2∑(ωa
r )

2 ,

wherer = 1, . . . , p, a= p+1, . . . ,m andλ is a positive constant.

SinceW is O(p)×O(m− p)-invariant and vanishes on the fibers of the submer-
sion O(M)→Gp(TM), it induces a family of positive definite quadratic formsdsλ on
Gp(TM), the “Sasaki-like metrics”. The Sasaki metric onT1M corresponds top = 1
andλ = 1.

In the technical report [S33], the tension field of these generalized Gauss maps is
computed. Thus, some known results (both of Sanini and otherauthors) are computed
with a unified method.

We give an example, which I remember well, since it is relatedto the first paper
I wrote following the advice and suggestions of Sanini [3], and a later joint paper [S37].

THEOREM2. [10] The spherical Gauss mapν : T1M⊥→ T1N of a submanifold
M of a space of constant curvature N and withcodimM ≥ 2 is harmonic if and only if
the following conditions hold

1. f is minimal,

2. the second fundamental form isconformal, i.e.,

tr(AξAη) = λ〈ξ,η〉 ,

for any normal vectorsξ,η, whereλ is a function on M.
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Surfaces with conformal second fundamental form are in facthomogeneous
(even symmetric) as soon as one assumes their mean curvaturevector fieldH is parallel
in the normal bundle. Indeed,assume f: M→ Nn(c) is an isometric immersion of a
compact connected surface in an n-dimensional real space-form of constant curvature
c (with n= 4 or 5). If the second fundamental form of M is conformal and nonzero and
the mean curvature vector of M is parallel in the normal bundle, then either

1. n= 4 and M is a Veronese surface in a 4-sphere, or

2. n= 4 and M is a Clifford torus in a Euclidean 4-space, or

3. n= 5 and f is an immersion of a real projective plane into a 5-sphere, which is
factored through a Veronese surface in a suitable 4-sphere in the 5-sphere [3].

Submanifolds with conformal second fundamental form are related with a wi-
dely studied class of immersed submanifolds, theisotropic immersions. An immersion
f : M →֒ M̄ is said to be isotropic if for anyx∈M, we have‖α(v,v)‖ = λ(x)‖v‖2 for
anyv∈ TxM, whereλ is a positive smooth function onM (the isotropy function).

The main link between the above classes of submanifolds is the following: if
f : M →֒ M̄ has conformal second fundamental form and assuming that the codimen-
sion is p= 1

2m(m+1), then f is isotropic and the isotropy function coincides with the
conformality function[S37].

I am also in some way linked personally to the next paper Sanini wrote on Gauss
maps, since I helped him to write it in English [S38]. In this paper, he studies the
Gauss mapγ : (M,g)→ (Gm(n),Γ) and considers submanifolds satisfying the weaker
property that the tension field of the Gauss mapγ is orthogonal to its image, i.e.,τγ ⊥
im(γ). This is equivalent to the stress energy tensor ofγ having zero divergence (cf. [1])
and is characterized by the condition

∑
i

α(ei ,X) ·∇⊥ei
H = 0,

whereH is the mean curvature vector field and(ei) is an orthonormal frame ofM.

In particular,if M compact and orientable then‖H‖ constant.

A detailed study is carried out for surfaces inRn or more generally in spaces
of constant curvature withτγ ⊥ im(γ). For example it is shown thatthe surfaces
M2 ⊆ N3(c) satisfying∑i α(ei ,X) ·∇⊥ei

H = 0 with ∇⊥H 6= 0 are ruled by geodesics
intersecting orthogonally a plane curve L of constant curvature in N3(c). For c= 0
they are round cones.

2. Submanifolds of Lie groups

In the second half of the 1990’s, Sanini started to turn his attention to submanifold
geometry in Lie groups.
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In particular, he considered the Heisenberg group

H3 =









1 x z
0 1 y
0 0 1


 : x,y,z∈ R






endowed with the left invariant Riemannian metric

ds2 = dx2+dy2+(dz− xdy)2 .

The Heisenberg group(H3,ds2), although diffeomorphic toR3, has a very different
behavior from the point of view of its Riemannian (sub)manifold geometry. Indeed
H3 is a nilpotent Lie group admitting large classes of both minimal and constant mean
curvature surfaces.

A remarkable property, explicitly proved in [S41], is that,however,H3 does not
admit totally umbilical surfaces.

The (generalized) Gauss mapγ : M→ Gm(TH3) of a surfaceM of the Heisen-
berg groupH3 was examined in [S41].

Using the above property, it is proved thatthe Gauss mapγ is conformal if
and only if M is minimal. Moreover, a characterization of a surfaceM with constant
mean curvature having vertically harmonic Gauss map is given. Namely, in caseM
is minimal, it is a surface having the same analytical representation inR3 as a plane
parallel to the axis of revolution ofH3. In caseM has nonvanishing constant mean
curvature,M is a “round cylinder” (in the above sense) with rulings parallel to the
axis of revolution ofH3. Vertically harmonic means that the vertical component of the
tension field with respect to the submersionG2(TH3)→M vanishes.

In a joint paper with Piu [S42] they consider surfaces in the Heisenberg group
(H3,ds2) of the formS= expuXexpvY, (u,v) ∈R2, where

X =




0 a c
0 0 b
0 0 0


 and Y =




0 α γ
0 0 β
0 0 0




are two linearly independent vectors tangent toH3 at the identity. They prove that

1. S is a minimal surface with Gauss mapγ vertically harmonic if and only if
[X,Y] = 0 (which is equivalent to aβ−αb= 0).

2. S is a minimal surface withγ harmonic if and only if[X,Y] = 0 and the one-
parameter subgroupσ(u) = expuX either is a geodesic of H3, or has torsion
equal to zero (i.e., a2+b2− c2 = 0).

Moreover, if σ(u) is not a geodesic and has vanishing torsion, then the ruled
surfaceS1 generated by principal normal lines is flat alongσ(u).
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Appendix. A surface of revolution of a remarkable type

Let M be an oriented surface of Euclidean spaceE3 with no umbilical point. Re-
call from the introduction that one can consider the mapϕ : M→ SO(3) mapping each
pointx of M to the orthogonal matrix determined by the orthonormal frame{e1,e2,e3},
wheree1 ande2 are the unit vectors of the principal directions atx. This map can be
locally identified with the Gauss map ofM into the flag manifold of triples of orthogo-
nal one dimensional vector subspaces. The compact Lie groupSO(3) is endowed with
a biinvariant metricg′.

The following result will be proven.

THEOREM 3. The mapϕ : (M,g)→ (SO(3),g′) is harmonic if and only if M
is a surface of revolution for which the product of the radiusof a parallel and the
curvature of a given meridian is constant.

As a first step, the surfaces of revolution satisfying the above condition will
be constructed explicitly. One gets a family of surfaces as the general solution of an
ordinary differential equation of second order. Observe that, for instance, spheres are
not in this family (but round cones and cylinders are).

The next step will be to show that the surfaces constructed inthe previuos sec-
tion are the only surfaces for whichϕ is harmonic.

Observe that by Pluzhnikov’s Theorem [14], a mappingf of a Riemannian man-
ifold (M,g) into a Lie groupG, endowed with a biinvariant metricg′, is harmonic if
and only if the formf ∗θ has null divergence, wheref ∗θ is the induced form onM by
the Maurer–Cartan formθ onG, cf. also [4].

Surfaces of revolution withφ harmonic

Let M be a surface inE3, generated by revolution of the meridian curve(x(u),0,z(u)),
x(u)> 0, along thezaxis. We assume that the meridian curve is referred to arc length,
hence(x′)2+(z′)2 = 1. Thus the surfaceM is parametrized by

P(u,v) = (x(u)cosv, x(u)sinv, z(u)) .

A unit normal vector ise3 =(−z′ cosv,−z′ sinv,x′). The first fundamental form is given
by

(4) ds2 = du2+ x2dv2

and the principal curvatures are

α11 = α(e1,e1) = x′z′′− x′′z′, (curvature of the meridian),
α22 = α(e2,e2) = z′/x,

wheree1 = Pu , e2 = Pv/|Pv| is an orthonormal frame of the tangent space andα is the
second fundamental form.



Some research topics of Aristide Sanini 389

SetX := (e1,e2,e3) (where theei are thought as column vectors), the induced form by
the Maurer–Cartan formθ of SO(3) is given by

ϕ∗θ = X−1dX

=




e1

e2

e3




{(

de1

du
de2

du
de3

du

)
du+

(
de1

dv
de2

dv
de3

dv

)
dv

}

=




0 0 x′′z′− x′z′′

0 0 0
x′z′′− x′′z′ 0 0


du+




0 −x′ 0
x′ 0 −z′

0 z′ 0


dv.

(5)

The divergence of a 1-formβ = ∑βidxi is given by

δβ =−∑gi j ∇ j βi =−∑gi j {∂ jβi−Γk
ji βk},

whereg is the Riemannian metric andΓ are the Christoffel symbols.

Using (4), one getsΓ1
11 = Γ2

11 = Γ2
22 = 0 andΓ1

22 =−xx′.

The condition thatϕ∗θ has null divergence can be read off by the only equation

∂u(x
′z′′− x′′z′)+

x′

x
(x′z′′− x′′z′) = 0,

which is equivalent to

(6) ∂u{x(x′z′′− x′′z′)}= 0.

Hence we have the following

LEMMA 1. The only surfaces of revolution M for which the mapϕ : (M,g)→
(SO(3),g′) is harmonic are the ones for which the product of the radius ofa parallel
and the curvature of a given meridian is constant.

If the meridian has equationy= 0, z= f (x), the above condition is equivalent
to the second order ordinary differential equation

f ′′

(1+ f ′2)
3
2

=
k
x

(k constant),

whose solutions (depending on the constantsk andc> 0) are

f (x) =±
∫

log(cxk)√
1− log2(cxk)

dx.

Observe that, fork = 0 one gets the round cone and, with an obvious change of vari-
ables, the round cylinder.
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The general case of surfaces withφ harmonic

Let M be a surface ofE3, with no umbilical point. Using the same notations as in
[2], at any pointx∈M one has an orthonormal frame{e1,e2,e3}, wheree3 is the unit
normal vector ande1,e2 are the unit vectors of the principal directions. In terms of
differential forms (ifx is the position vector field,ωi the dual forms toei andωi

j are the

connections forms, withωi
j +ω j

i = 0) one has

dx= ω1e1+ω2e2,

de1 = ω2
1e2+ω3

1e3,

de2 = ω1
2e1+ω3

2e3,

de3 = ω1
3e1+ω2

3e2.

In particular, one has the structure equations

(7) dω1 =−ω1
2∧ω2, dω2 =−ω2

1∧ω1.

We set

(8) ω2
1 = hω1+ kω2, ω3

1 = aω1, ω3
2 = cω2,

wherea,c (with a> c) are the principal curvatures ofM at x and

H =
1
2
(a+ c), K = ac

are the mean curvature and the Gaussian curvature, respectively. The Gauss and Co-
dazzi equations read

(9) K = ac= h2− k1−h2− k2,

(10) c1 = (a− c)k, a2 = (a− c)h,

where, here and in the sequel,h2 = e2(h) and so on. Further, one has

(11) [e1,e2] = ∇e1e2−∇e2e1 =−he1− ke2.

If ϕ denotes the map fromM to SO(3) given by the orthonormal frame{e1,e2,e3}, then
the 1-formϕ∗θ with values inso(3), induced by the Maurer–Cartan form onSO(3) is
given by

ϕ∗θ =




e1

e2

e3


(de1de2de3) = ωα

β(e1)ω1+ωα
β(e2)ω2.(12)

Using the Hodge∗ operator, we get

(13) ∗ϕ∗θ =−ωα
β(e2)ω1+ωα

β(e1)ω2.
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Thusϕ is harmonic if and only ifδϕ∗θd∗ϕ∗θ = 0. Explicitly,

(14) −d
(

ωα
β(e2)

)
∧ω1+ωα

β(e2)ω1
2∧ω2+d

(
ωα

β(e1)
)
∧ω2−ωα

β(e1)ω2
1∧ω1 = 0.

Setting
α = 1, β = 2; α = 1, β = 3; α = 2, β = 3,

respectively, and using (8), we get the following conditions expressing the harmonicity
of ϕ:

(15) h1+ k2 = 0,

(16) a1+ak= 0,

(17) c2− ch= 0.

Note that (15) is equivalent to the fact that the codifferential of the connection formω2
1

vanishes. Using the above, equations (10), (11) and

[e1,e2](a) =−ha1− ka2, [e1,e2](c) =−hc1− kc2,

we get the equations

(18) ch1 =−(a+ c)hk, ak2 = (a+ c)hk.

When multiplied bya andc respectively, and added, using (15), these imply

(19) (c2−a2)hk= 0.

SinceM has no umbilical point, one cannot havea= c. If c=−a (i.e.,M is minimal),
by (18) one would haveh1 = k2 = 0 and hence, by (10), (16) and (17),h= k= 0, thus
a= c= 0, by (9).

Hence in order that (18) hold, we must havehk= 0. We consider the caseh= 0
(the other is similar and actually equivalent). Forh= 0 the integral curves of the field
e1 are geodesics inM. Thus they are plane curves, since they are curvature lines (cf. for
instance [8, page 140] or [5, page 152]). Moreover, by (10), (17) and (18), it follows
thata2 = c2 = k2 = 0, which means that the integral curves of the fielde2 are circles.
Indeed, if∇ denotes the Levi-Civita connection ofE3, we have

∇e2e2 =−ke1+ ce3, ∇e2∇e2e2 =−(k2+ c2)e2,

which implies that the curvature lines tangent toe2 are plane curves and have constant
curvature

√
k2+ c2.

Thus the surfaces for whichϕ is harmonic are of revolution. To end the proof
of the theorem, we show that the product of the principal curvaturea and the radius
1/
√

k2+ c2 of the circle is constant.
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We already remarked that

e2

(
a√

k2+ c2

)
= 0.

Moreover, by (16), (10) and (9), we have

e1

(
a√

k2+ c2

)
= a1(k

2+ c2)−1/2−a(k2+ c2)−3/2(kk1+ cc1)

= (k2+ c2)−3/2(−ak(k2+ c2)−ak(−ac− k2)−ac(a− c)k
)

= 0,

proving the constancy.
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