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UNIVERSAL-EXISTENTIAL AXIOM SYSTEMS FOR

GEOMETRIES EXPRESSED WITH PIERI ’S ISOSCELES

TRIANGLE AS SINGLE PRIMITIVE NOTION

Abstract. Weprove that, building uponthe universal-existential orthogonality-based axiom
system for metric planes presented in [28], one can provide universal-existential axiom sys-
tems – expressed solely in terms of the ternary predicate I , with I(abc) standing for ‘ab is
congruent to ac’ , which Pieri has introduced 100 years ago –for metric planes, for absolute
geometry with the circle axiom, for Euclidean planes, for Euclidean geometry with the cir-
cle axiom, for Klingenberg’s generalized hyperbolic planes, for plane elementary hyperbolic
geometry, as well as for all thefinite-dimensional versions of these geometries.

1. Introduction

Popular accounts of the history of mathematics present the problem of the axiomatic
foundation of elementary geometry as having been solved with the publication of
Hilbert’s [11]. The underlyingassumption in these accounts is that the problem to be
solved was that of closing certain “gaps” in Euclid’s Elements, by offering a rigorous
foundationfor two- or three-dimensional geometry.

The history of the axiomatic foundation of geometry since1899revealsan en-
tirely different picture. Instead of looking at an axiom system as the solution to an
axiomatization problem, the literature on this subject is concerned with questionsof a
metamathematical nature, regardingall possible axiomatizationsof that theory.

Hilbert’s axiom system for three-dimensional geometry required threesorts of
individual variables, for points, lines, and planes, as well as (i) binary predicates for
point-line, point-plane, and line-plane incidence, (ii ) a ternary predicate for between-
ness, (iii ) a quaternary predicate for segment congruence, and (iv) a sexternary predi-
cate for angle congruence.

The question arose whether one could provide simpler axiomatizations for the
same theory. Among the many options to define simplicity (see[17] for a survey of
simplicity criteria), there are several purely syntactic ones, some of which ask for the
language in which the axiom system is expressed to be simple, whereasothersask for
simple axioms. When asking for simple languages, simpler means having primitives
(predicate and operation symbols) that are both few in number and of the lowest pos-
sible arity, where minimal arity takes precedenceover scarcity of primitive symbols.
Thus a language with five binary predicates is simpler than one with only one ternary
predicate. When looking at the axioms themselves, a criterion for simplicity is to ask

∗This paper was written while the author enjoyed the hospitality of Tudor Zamfirescu as well as dis-
cussions with Franz Kalhoff at the Mathematical Institute of the Dortmund University of Technology as a
Mercator Visiting Professor supported by the Deutsche Forschungsgemeinschaft.

327



328 V. Pambuccian

for the fewest number of quantifier alternations in each axiom, which is considered to
bewritten in prenex form. In this sense an axiom containing only universal quantifiers
is simpler than one containing a string of universal quantifiers followed by a string of
existential quantifiers, and so on. Another criterion of simplicity regards the number
of quantifiers(or of variables) appearingin each axiom. In this senseonetries to mini-
mizethe number of variablesappearing in the axiom(s) containing the largest number
of variables. There is no reason to believe that there exists for every theory an axiom
system that is thesimplest possibleone accordingto all of the above criteria. It is to be
expected that, in thesimplest possible language, expressingthe axiomswill t urn out to
be complicated in both thequantifier complexity sense andin thenumber of quantifiers
sense.

It is all the more remarkable that the task of achieving the utmost simplicity of
the language of Euclidean geometry was accomplished in one step, by one person, in
one paper. The person is Mario Pieri, who showed in [31] that Euclidean geometry
can be axiomatized in terms of one sort of variables, to be interpreted as points, and a
ternary relation I , with I(abc) to beread as ‘ab iscongruent to ac’ . That this is thesim-
plest possible language in which one can axiomatizeEuclidean geometry was shown
in [15, Remarks following Theorem 6] (see also [37, Theorem II .4.34]): No finite set
of binary predicateswith points as individual variables can be used to axiomatizeEu-
clidean geometry. Nor isEuclidean geometry with aunit measureor with finitely many
fixed distances axiomatizable in a language containing only binary relations with in-
dividual variables to be interpreted as points, as shown in [33] (see also [37, Theorem
II .4.67]). If the logic in which the axiom system is expressed goes beyondfirst-order
logic, by allowing the formation of denumerably infinite disjunctions of formulas, a
logic designated by Lω1ω, then the single binary relation of unit distancecan be used
to axiomatizeArchimedean ordered Euclidean geometry with the Circle Axiom — an
axiom stating that asegment with one endpoint inside and oneoutsideof a circlemust
intersect that circle.1 This was shown for the 2-dimensional case in [19] and for the
n-dimensional case, with n≥ 2 in [41] and [42]. It is also not possible to axiomatize
Euclidean geometry by means of a finite set of binary operations on points, as shown
in [4], although one can axiomatizehyperbolic geometry with points as variables by
meansof thesinglebinary operation of midpoint, as shown in [26].

If the intended interpretation of the individual variables is not points, then it is
possible to axiomatizeboth Euclidean and hyperbolic geometry with spheres as indi-
vidual variables by means of the single binary relation of sphere tangency in all finite
dimensionsn≥ 2, as shown in [24]. With linesas individual variablesone can axioma-
tizeEuclidean geometry of any finitedimensionn≥ 4, and hyperbolicgeometry of any
dimensionn≥ 2,n 6= 3, in termsof thesinglebinary predicateof lineorthogonality, as
shown in [36], [13], [23], [29], [26].

The entireliterature cited above, andmuch more, such asTarski’saxiom system
for Euclidean geometry (see[40]), as well as the research into other ternary relations
among points that can serve as single primitive notions for Euclidean geometry, such

1The geometry in question is a Euclidean geometry in which the coordinate field is both Archimedean
ordered and Euclidean, i. e. every positive element has asquare root.
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as the symmetrized version of Pieri’s relation, ‘ threepoints a,b,c form in any order
the vertices of a (possibly degenerate) isosceles triangle’ , the notion of equilaterality,
thesymmetrized perpendicularity notion, ‘ threepointsa,b,c form, in any order, a right
triangle’ , surveyed in [37, Part II] , were inspired byPieri’s1908memoir.

Recently, therehasbeen renewed interest in it, leading to its first English trans-
lation in [16, Chapter 3], and to the expository note [8]. Both [16] and [8] addressthe
questionregardingthequantifier complexity of Euclidean geometry expressed in terms
of pointsas the only individual variables, and Pieri’s ternary relation I . In [16, 3.10.6,
5.2.4] the authors mention that Pieri’s form of the Pasch axiom “ is a ΠΣΠΣ sentence
that would requiremore than fifteen lines and threehundred characters!”2, whereas in
Tarski’s formulation it is a universal-existential sentence. It is also pointed out that
“most of the complexity of Pieri’s Pasch postulate is the result of his having to sub-
stitute for the occurrences of the betweennessrelation their corresponding definitions
in terms of equidistance.” In [8, p. 141], after having expressed in formal language
some of Pieri’s axioms, we are told that “althoughit is possible to express[. . .] Pieri’s
axiomsonly by meansof [ the] primitivenotion, it would be extremely hard to dothis”
given their “growing complexity” .3 These remarks refer only to Pieri’s axioms as he
stated them, leaving open the possibilit y that a different axiom system, based on the
same notion I , would consist entirely of ∀∃-axioms, which would turn it into the sim-
plest axiomsystem according to two syntactic criteriaof simplicity: simplest language
and simplest quantifier complexity, since there can be no universal axiom system ex-
pressed in a language without operation symbols for any geometry. The aim of this
paper is to show that it is indeed possible to provide axiom systems in termsof I , con-
sisting entirely of ∀∃-axioms, by which we mean sentenceswritten in prenex form, in
which all universal quantifiers (if any) precede all existential quantifiers (if any), not
only for finite-dimensional Euclidean geometry, but for a wide range of other finite-
dimensional geometries. We caution that this fact does not imply that the complexity
of axiom systems based onPieri’s I is the same as that based onTarski’s two relations
B, with B(abc) to be read as ‘b lies between a and c’ , and≡, with ab≡ cd to be read
as ‘ab is congruent to cd’ , as there are other measuresof complexity, under which the
I -based axiom systemsvery likely havehigher complexity. Onesuch measureisthat of
thenumber of variablesor quantifiersthat each axiom requires, when written in prenex
form. Euclidean n-dimensional geometry over Euclidean ordered fields expressed in
termsof B and≡, with pointsasvariables, can be axiomatized (as shown in [18], [20])
by an axiom system, all of whose axioms are prenex sentences about at most 5 points
for n = 2, and about at most n+2 points for n≥ 3. Plane hyperbolic geometry can
be axiomatized (as shown in [25]) in the same language by means of axioms that are
prenex sentences about at most 6 points. The minimal number of variables that are
needed to axiomatizein terms of I these geometries is not known, but it is likely to be
significantly higher.

The reasonswhy Pieri’s original axiom system would have such a high quanti-

2In this notation Π stands for ∀, and Σ for ∃.
3AlthoughPieri’s I is treated at length in [37, II .4], the question of the quantifier complexity of axiom

systems expressed in terms of I is not addressed.
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fier complexity if expressed solely in terms of I , i. e. by replacing the defined notions
which appear in someof the axiomsby their I -definiens, are that it usesan ∀-definition
for colli nearity in termsof I , that colli nearity showsupin thedefinition of betweenness,
andthat the axiom system containsaxiomsfor betweenness, in particular thePasch ax-
iom. Pieri’s definitions of colli nearity λ, with λ(abx) to be read as ‘points a,b, and x
are colli near (though not necessarily distinct)’ , midpoint µ, with µ(axb) to be read as
‘point x is themidpoint of thesegment ab, if a 6= b, andcoincideswith a if a= b’ , and
betweennessB, with B(axb) to beread as‘point x liesbetween pointsa andb (andmay
be equal to a or b)’ , are:

λ(abx) :⇔ (∀x′) [a= b∨ (I(axx′)∧ I(bxx′)→ x= x′)],(1)

µ(axb) :⇔ (a 6= b∨x= a)∧λ(abx)∧ I(xab),(2)

B(axb) :⇔ (∃muv) [λ(abx)∧ (µ(amb)∧ I(mua)∧ I(mva)∧µ(uxv))].(3)

Sinceno∃-definition of λ in termsof I isknown in thedimension-free case, i. e.
adefinitionthat would hold insidegeometriesin which thereisonly alower-dimension
axiom, stipulating that the dimension be≥ 2, but no upper-dimensionaxiom (see[37,
Part II] f or moreon dimension-freegeometries), Pieri’sdefinition(1) isthebest onewe
have for λ in the dimension-free case. If , however, we are interested in axiomatizing
an n-dimensional geometry in terms of I , then we do have existential definitions of λ
in termsof I : in two-dimensional geometry λ can be defined by:

(4) λ(a1a2a3) :⇔ (∃uv) [u 6= v∧
3∧

i=1

I(aiuv)],

and in the three-dimensional case, by the formula provided in [37, Theorem II .4.14].
Such definitions exist in all finite-dimensions based on the same Leibnizian idea. If
we used an ∃-definiens (such as (4)) for λ instead of (1), then (3) would turn into an
∃-definition of B in terms of I (after having replaced µ by its definiens (2)).4 We can
also ∃-definethe equidistancerelation≡ in termsof I as in [37, II .4.18] by

ab≡ cd :⇔ (∃ef ) [µ(bec)∧µ(aef )∧ I(cf d)],(5)

and then replace all occurrences of B and ≡ in an axiom system for n-dimensional
plane absolute geometry written just with B and≡ as primitive notions (such as the
axiom system A1-A9 in [37] for n= 2) to get an axiom system entirely in terms of I .
Adding

(6) I(abc)↔ ab≡ cd

to that axiom system, where≡ has been replaced by its definiens in termsof I , we get
an ∀∃-axiom system for plane absolute geometry with the Circle Axiom, in which the

4Another ∃-definition of B in terms of I can beobtained as in [37, II .4.24], by first defining the notion of
orthogonality ⊥0, by ⊥0 (abc) :⇔ (∃d) [µ(cad)∧ I(bcd)], to be read as ‘ab is perpendicular to ac’ (where
aa is considered to be perpendicular to ax for all x), and then B by B(abc) :⇔ (∃d) [λ(abc)∧ ⊥0 (bad)∧ ⊥0
(dac)].
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coordinatefield must beEuclidean. That the axiom system axiomatizesplane absolute
geometry follows from the fact that the defined notions B and≡ satisfy the required
axioms; that I has the desired interpretation follows from the axiom (6) (or the corre-
spondingtwo axioms, if wesplit the↔ occurringin (6) into← and→) describing I in
terms of ≡. That the Circle Axiom will hold as well , althoughwe did not adopt its I -
translate asan axiom, followsfrom thefact that λ(abc)→ (B(abc)∨B(bca)∨B(cab))
is a theorem of plane absolute geometry, and sincethis has to hold with our definition
of B (either (3) or theonestated in thefootnote), the coordinatefield must beEuclidean
(seeSection 4 for details). Starting from absolute geometry, we can also proceed by
addingaxiomsto obtain ∀∃-axiom systems for Euclidean and hyperbolic geometry.

Thus, if all wewanted to know waswhether absolute, Euclidean, and hyperbolic
geometry of fixed finite dimensionare∀∃-axiomatizable in termsof I , then the simple
observation that there is an ∃-definition of λ — and thus of B and≡— in terms of I ,
and∀∃-axioms systems for thesegeometries in termsof B and≡ I , isall we need.

If we want to show that the ∀∃-axiomatizabilit y in question holds for a wider
classof geometries, in which midpointsdo not necessarily exist for all pairsof points,
then we have to adopt another strategy. In the process, we will also obtain axiom
systems in which the axioms are all statements reflecting genuinely metric thoughts.
One can say that, unlike those obtained from an axiomatization in terms of B and≡
by replacing these predicatesby their I -definiens, our axiomatizations represent a first
step onthe road to an axiom system conceived in termsof I .

2. Metr ic geometr ies

We now turn to axiom systemsexpressed entirely in purely metric terms, i. e. in terms
of the quaternary equidistancerelation≡ or of the ternary relation⊥, with⊥ (abc) to
bereadas‘a,b,caretheverticesof aright trianglewith right angle at a’ (asymmetrized
notion, in which the vertex with the right angle is not singled out, was considered in
[35]). The first such axiom system, in terms of ≡, with all axioms∀∃-sentences (and
we consider those in which ∃=1 appears in the axioms in this category, as every state-
ment (∀x∃=1y)ϕ(x,y) can be split i nto two ∀∃-sentences, namely (∀x∃y)ϕ(x,y) and
ϕ(x,y)∧ϕ(x,y′)→ y= y′, where by x we have denoted a finite sequenceof variables
x1,x2, . . . ,xn) wasthe axiomsystem in [34] for planeEuclidean geometry with arbitrary
fieldsof characteristic 6= 2 that arenot quadratically closed ascoordinatefields. It was
followed by another axiomatization of the same theory in [7], by an axiomatization
of non-elli ptic metric planes in [39], and by an axiomatization of three-dimensional
Euclidean spaces in [32]. The last axiom system of this nature was the one in [28] in
terms of ⊥ for metric planes, including the elli ptic case. In the Euclidean two- and
three-dimensional case, one may turn the∀∃-axiom systems in [34], [7], [32] into ∀∃-
axiom systems in terms of Pieri’s I , by replacing≡ in all axioms by its definition (5)
(see[37, II .4.18]) in termsof I , andadding(6) asan axiom.

Our concern will be to show that the ∀∃-axiomatizations are possible, and not
that the axiom systems involved are independent, or that they are in any other way
optimal, as they most likely are not. Turning these into independent axiom systems
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would certainly require asignificant amount of work.

There is a certain expectation coming from mathematicians encountering ax-
iom systemsonly at thebeginning of a lecture, that theseought to beshort, contain few
axioms, and be pleasing to the eye and to the mind. The current investigation is not
motivated bysuch classroom-use aims, but hasas itsobject of studythefirst-order the-
ory of geometry expressed in terms of Pieri’s I , and asks metamathematical questions
regardingthesyntactic form of possible axiom systems for that theory.

3. Universal-existential axiomatization for metr ic planes

Sincewe want to show that Pieri’s I can serve asprimitivenotion, with ∀∃-axiom sys-
tems, for a wide classof geometries, we will first provide the method for obtaining
∀∃-axiom systems in termsof I for non-elli ptic metric planes. The concept of ametric
plane, intended to provide the metric skeleton of the classical plane geometries (Eu-
clidean, hyperbolic, elli ptic), grew out of the work of Hessenberg, Hjelmslev, and A.
Schmidt, and was provided with a simple group-theoretic axiomaticsby F. Bachmann
([2, §3,2, p. 33]). Other axiomatizations were presented in [39], [22], [27], and [28].
If the axioms of geometry one aims to I -axiomatize imply that every segment has a
midpoint, then one can start with the axiom system in [39] (see also itsformalizationin
terms of λ and≡ in [21]) and define by (4) (or a higher-dimensional version thereof),
(2), and(5) the two primitivenotionsused there, namely λ and≡, in termsof I .

If the axiomsof the geometry one aims to I -axiomatizedo not imply that every
segment has a midpoint, then we have to start with the∀∃-axiom system from [28] in
termsof ⊥. Thepredicate⊥ isboth Σ-definable andΠ-definablein termsof I , andthus
∆-definable in termsof I . Thedefinitionsare

⊥ (abc) :⇔ (∃b′c′) [a 6= b∧a 6= c∧b 6= b′∧c 6= c′∧ I(abb′)∧ I(acc′)(7)

∧I(cbb′)∧ I(c′bb′)∧ I(bcc′)],

⊥ (abc) :⇔ (∀b′c′) [a 6= b∧a 6= c∧ (I(abb′)∧ I(acc′)∧ I(bcc′)∧ I(b′cc′)(8)

∧c 6= c′→ I(cbb′))].

We can now proceed by replacing every occurrence of ⊥ (or of ¬ ⊥) in its axioms
— which we take to be written in prenex normal form, with their matrix, i. e. their
quantifier-freepart, in conjunctive normal form — by its Σ-definition (7) (or by ⊥’s
Π-definition(9)), to obtain a set of ∀∃-sentencesexpressed solely in termsof I .

Since it is not clear that, inside the set of sentences thus obtained, we would
be able to show that I has the desired interpretation, we add four axioms, the first
two of which state that the two definitions of ⊥ in terms of I are equivalent, i. e. that
the definiens of (9) implies the definiens of (7) and vice-versa (the former implication
producingan∀∃-sentence, thelatter auniversal sentence), theother two of whichwhich
describetherelationI in termsof ⊥— which we consider here asan abbreviationfor its
definienses in (7) and (9), the substitutions being made such that the resulting axioms
turn into ∀∃-sentences in terms of I . To state these two additional axioms we first
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need several defined notions in terms of ⊥, all definitions being existential. The first
defined notion is thequaternary predicateL, with Le(abc) standingfor ‘a,b,c are three
colli near points, with a different from b and c, and a,b,e are the vertices of a right
triangle with right angle at a’ , while the second notion, ϕ stands for the reflection of
a point in a line, ϕ(abpmnoqq′rr ′uvp′) standing, in case p is not the pole of the line
ab, for ‘point p′ is the reflection of p in line ab’ , the additional points in ϕ helping
to achieve the construction of the reflected point p′ (seeFigure 1). The last defined
notion is the quaternary predicate M, with Mu(bac) standing for ‘a is the midpoint of
the segment bc, with b 6= c, and u is a point on the perpendicular in a on ab, which is
not thepole of ab’ (which we expressby meansof ϕ, by stating that there isa point u,
such that au is perpendicular bc, andsuch that the reflection of b in au isc).

Le(abc) :⇔ ⊥ (abe)∧⊥ (ace),

ϕ(abpmnoqq′rr ′uvp′) :⇔ a 6= b∧ (o= a∨⊥ (oap))∧ (o= b∨⊥ (obp))

∧Lo(pqr)∧q 6= r ∧Lo(mqq′)∧q 6= q′

∧Lo(nrr ′)∧ r 6= r ′∧Lo(p
′q′r ′)∧Lm(opp′)∧m 6= n

∧Lp(omn)∧Lu(orq′)∧Lv(oqr ′),

Mu(bac) :⇔ (∃mnoqq′rr ′vw) [⊥ (abu)∧¬⊥ (bau)

∧ϕ(aubmnaqq′rr ′vwc)].

With these existentially defined notionsL, ϕ, M, which we consider asabbrevi-
ations of their existential I -definiens, we can formulate the following axiom, that can
be split i nto two axioms, by splitti ng the↔ appearing in it into← and→, each an
∀∃-axiom:

I(abc) ↔ (∃u) [b= c∨ (⊥ (bac)∧⊥ (cab))∨Mu(bac)(9)

∨(¬(⊥ (bac)∧⊥ (cab))∧Ma(buc)∧⊥ (uab))].

Thisaxiom states that I(abc) holds if and only if b= c, or a is the poleof line bc (i. e.
both ab and ac are perpendiculars from a to bc), or a is the midpoint of bc, or a is not
the pole of line bc, and the foot of the perpendicular from a to bc is the midpoint u of
the segment bc.

Let Σ denotethe axiom system, with all axioms∀∃-sentences, for metric planes
from [28], in which all occurrences of ⊥ have been replaced by their I -definiens in
such a way that all axioms turn out to be∀∃-sentences (some axioms will be dropped
altogether, being implicit in the definition of ⊥), to which the four axioms mentioned
above are added. If we consider the axiom system formed by the I -translations of the
axiomsfrom [28] as⊥-axioms(which we can do bytranslating back into the language
of ⊥ every occurrenceof (9) or (7), given that we have two axioms telli ng us that the
two definitions are equivalent), then we know that ⊥ must have its intended interpre-
tation and that all models must be metric planes. The two axioms into which (9) has
been split now tell us that I must have the intended interpretation as well , given that
it is equivalent to its definiens, in which we now know the meaning of ⊥. Thus, all
modelsof Σ aremetric planesand I has the intended interpretation.
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p′q′ r′

no ba m

rpq

Figure1: Thereflection of p in the line abobtained bymeansof ϕ

4. Universal-existential axiomatizationsfor several geometr ies

Startingwith Σ, we can provide∀∃-axiomsystemsin termsof I for awiderangeof two-
dimensional and, more generally, for finite dimensional geometries. First, let us note
that finite-dimensional metric geometries — first axiomatized, for the 3-dimensional
case, by Ahrens [1], then, for the n-dimensional case by Kinder [12], and, for the
dimension-free case, by Ewald [5] and simplified by Heimbeck [9], and J. T. Smith
[38], from where axiom systemsfor then-dimensional case can beobtained byadding
axioms fixing the dimension — can be axiomatized in terms of I by means of ∀∃-
axioms, by stating that every plane is a metric plane ((n−1)-dimensional flats can be
defined by two different pointsu andv in termsof I by stating that apoint p belongsto
theflat if and only if I(puv); inside(n−1)-dimensional flatsone can definein thesame
manner, by means of two different points belonging to the (n− 1)-dimensional flat,
(n−2)-dimensional flats, and so on, until we get, by means of existential definitions,
to 2-dimensional flats) and that the dimension of the whole spaceis n. Plane metric-
Euclidean geometry (see[2, §12,1]) can be axiomatized by adding an axiom stating
the existenceof arectangle(Axiom R in [2, §6,7]), andEuclidean planesby addingthe
axiom (addition in the indicesbeingmodulo 3)

(10) (∀a1a2a3)(∃uv)

[(

u 6= v∧
3∧

i=1

I(aiuv)

)

∨

(

3∧

i=1

I(uaiai+1)

)]

,

stating that every trianglehasa circumcenter.
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Metric planes with freemobilit y, a theory whose models have been described
algebraically in [3], can be∀∃-axiomatized byaddingto Σ two axioms: onestating the
existenceof themidpoint of any given segment, i. e.:

(11) (∀abuv)(∃c) [u 6= v∧ I(auv)∧ I(buv)∧a 6= b→ I(cab)∧ I(cuv)],

and onestating that one can lay off any given segment onany line emanatingfrom one
of the endpointsof thesegment, i. e.:

(12) (∀abcuv)(∃d) [u 6= v∧ I(auv)∧ I(cuv)∧a 6= c→ I(duv)∧ I(abd)].

Hilbert planesin which theCircleAxiom holds, i. e. modelsof theplane axioms
of groupsI, II , III of Hilbert’s[11] (or of axiomsA1-A9 in [37]) together with theCircle
Axiom (CA in [37, p. 15]), the coordinate fields of which must be Euclidean, can be
∀∃-axiomatized by adding to Σ∪{(11),(12)} two axioms: one stating the uniqueness
of the perpendicular from a point outside of a line to that line, in order to exclude the
elli ptic case, and the other stating that, given two non-degenerate and non-congruent
segments ab and ac, there must be aright triangle having one of them as hypotenuse
and theother as side, i. e.:

(13) (∀abc)(∃u) [a= b∨a= c∨ I(abc)∨ (I(abu)∧⊥ (cau))∨ (I(acu)∧⊥ (bau))].

To seethat this axiom system, with axiomsvery far removed from those of the
axiom systems in [11] and [37], axiomatize Hilbert planes in which the Circle Ax-
iom holds, it is enoughto check that, in all non-elli ptic models of Σ∪ {(11),(12)},
described algebraically in [3], the axiom (13) implies that the coordinate field is Eu-
clidean, and thus the modelsare thosedescribed algebraically in [30].

To seethis, we need to succinctly present the basic elements of the algebraic
description of metric planeswith freemobilit y.

Let K be aPythagorean field, i. e. every sum of squares is a square, and no
square is −1, and k an element of K. By the affine-metric plane A(K,k) (cf. [10,
p.215]) over thefield K with themetric constant k wemean theprojectiveplaneP(K)
over the field K from which the line [0,0,1], as well as all the points on it have been
removed (and denote by A(K) the remaining point-set), for whose points of the form
(x,y,1) we shall write (x,y), and say that such a point is incident with a line [u,v,w] if
and only if

(14) xu+ yv+w= 0,

together with a notion of orthogonality, the lines [u,v,w] and [u′,v′,w′] being orthogo-
nal if and only if

(15) uu′+ vv′+ kww′ = 0.

If K is an ordered field, then one can order A(K) in theusual way.

The algebraic characterization of metric planes with freemobilit y consists in
specifyinga point-set E of an affine-metric planeA(K,k), which is the universeof the
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metric plane, andwhose algebraic description isvery intricate andis themain result in
[3].

The congruenceof two segmentsab andcd will begiven bytheusual Euclidean
formula (a1−b1)

2+(a2−b2)
2 = (c1−d1)

2+(c2−d2)
2 if E ⊂ A(K,0), and by

(16)
F(a,b)2

Q(a)Q(b)
=

F(c,d)2

Q(c)Q(d)
,

if E⊂A(K,k) with k 6= 0, whereF(x,y)= k(x1y1+x2y2)+1, Q(x) =F(x,x), andx=
(x1,x2),y = (y1,y2).

Themetric plane can alwaysberepresentedsuch that it containsthepoint (0,0),
andisan embedded subplaneof an affine-metricplane, i. e. it containswith every point
all the linesof theprojective-metric plane that are incident with it.

Suppose now that M is a metric plane with freemobilit y in which (13) holds,
and let E be itspoint set, K the coordinatefield of theprojective-metric planein which
it isembedded, andk be itsmetric constant.

Regardlessof whether k 6= 0 or k = 0, the fact that segments (0,0)(x,0) and
(0,0)(0,y) are, whenever x 6= ±y, such that one can be the hypotenuse and the other
the sideof a right triangle, imply that

(17) x2− y2 ∈ K2 or y2− x2 ∈ K2
.

If a,b,c are threepoints such that there isaright trianglewith ac ashypotenuse andab
as side, then we writeab< ac.

We can thus define abetweennessrelation for colli near points a,b,c in M, by
stipulating that B0(abc) holds if and only if a= b or b= c or ab< ac and cb< ca. If
a,b, andc are colli near, then one and only oneof B0(abc), B0(bca), andB0(cab) must
hold. This can be seen, in case they are distinct points, by coordinatizingM so that
a= (0,0), b= (0,x), and c= (0,y), and noticing, in the case in which k is 0, that one
of thesystemsx2−y2∈K2 andx2−(y−x)2∈ K2, y2−x2 ∈K2 andy2−(y−x)2 ∈K2,
and (y− x)2− x2 ∈ K2 and (y− x)2− y2 ∈ K2 must hold. This follows from the fact
that (17) must hold for any of thepairs involved, andthe cases in which thedifferences
of squares of the three involved pairs do not have a pair of difference listed in the
systems above, lead to the the conclusion that the sum of two non-zero squares is 0,
contradicting the Pythagorean natureof K. Analogously in case the metric constant is
6= 0.

Regardlessof whether k = 0 or k 6= 0, the foot of the orthogonal li ne through
(a,0) (apoint in E) to theline [−λ,1,0] (alinewhich belongstoM for any λ∈K, since
this linepasses throughthepoint (0,0), and this isapoint in E, andM containsall the
lines passing througha point of M) has coordinates ( a

1+λ2 ,
aλ

1+λ2 ), as can be computed

using (14) and (15). For λ = a, we get that ( a2

1+a2 ,0) ∈ E, and thus, since1+a2 ∈ K2,

we have that, for some b∈ K \ {0}, (b2
,0) ∈ E, and thus also ( b2λ

1+λ2 ,0) ∈ E, for any
λ ∈ K.
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Wewant to show that K must beEuclidean. Weknow that K isPythagorean, so
K can beordered. If it can beordered in auniqueway, then it isEuclidean, andwe are
done. SupposeK can be ordered in at least two ways, the ordersbeing denoted by<1

and <2. Each of these orders defines a betweennessrelation in M, which we denote
by B1 and B2. Sincein these ordered planes the hypotenuse is larger than the side of a
right triangle, we must havethat,

(18) If B0(abc) then Bi(abc) for i = 1,2.

Sincethe two orders<1 and<2 are different, there must be aλ ∈ K, such that λ >1 0
and λ <2 0, and thus such that λb2

>1 0 and λb2
<2 0 for some b ∈ K, for which

(b2,0) ∈ E, thus B2((λb2,0)(0,0)(b2,0)) holds, but B1((λb2,0)(0,0)(b2,0)) does not
hold. Exactly one of B0(xyz), B0(yzx), and B0(zxy) must hold for the points x =
(λb2,0), y= (0,0), and z= (λb2,0) and thus, by (18), for precisely the same ordered
triple, theB1 andB2 relationsmust hold aswell , a contradiction.

This showsthat K can beordered in only oneway, andthusmust be aEuclidean
field.

The betweennessrelation as defined by B0 is now seen to satisfy all universal
properties that the betweennessrelationsatisfies in absolutegeometry. The only prop-
erty we thus need to show it satisfies as well i s the Pasch axiom. If k 6= 0, then we
know from themain result in [3], namely [3, Satz 6.2], that M is the intersection of all
the metric hulls (see[3, §5] or [6] for a definition of the notion of metric bull ) of M.
However, sinceK has a unique order, there is only one metric hull and that one must
beour M. Themetric hull it self does satisfy thePasch axiom (see[6, §1,5] or [3, §5]),
andwe aredone.

If k is 0, then the set of coordinates of the points of E form, as shown in [2,
§19,3, Satz 7], a submoduleof K with all totally integer-majorizable elementsas mul-
tipliers(an element x of K iscalled totally integer-majorizable if there existsan integer
m such that −m≤ x≤m holds for every order < of K). Since the Pasch axiom asks
for the existenceof somec := λ ·a+(1−λ) ·b, wherea andb are in E, and 0< λ < 1,
and the order is unique, c must be in E whenever a and b are in E, and thus the Pasch
axiom holds in thiscase aswell .

Addingto thisaxiom system the axiom (10) onegetsan axiom system for plane
Euclidean geometry with Euclidean fields as coordinate fields. Higher finite dimen-
sional versionsof thisgeometry are easily obtained by thesamemethodmentioned for
finite-dimensional metric geometries.

To get Klingenberg’sgeneralized hyperbolic planes (see[2, §14]) one needs to
add an axiom stating that there are limiting parallel li nes, a statement which can be
expressed asan existential statement in termsof ⊥, by meansof Bergau’scriterion(see
[2, §14,2, p. 224]), thus, using (7), as an existential statement in terms of I , as well as
an axiom stating that from apoint to a line there arenomorethan two limiting parallel
lines, which can be written, using Bergau’s criterion, as an ∀∃-statement. Adding an
axiom statingthat every segment hasamidpoint onegetsthe elementary version of hy-
perbolic geometry, coordinatized byEuclidean fields, first axiomatized byHilbert [11,
AnhangIII] . To get higher-dimensional versionsof these axiom systemsfor thespaces
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axiomatized in [14] and for higher-dimensional hyperbolic geometry over Euclidean
fields we use the same methodmentioned in the case of finite-dimensional metric ge-
ometries.

As mentioned earlier, for all geometries in which all segmentshave midpoints,
one obtains axiom systems with fewer variables in their axioms by starting with the
axiom system for non-elli ptic metric planesproposed bySörensen [39], rather than the
one in [28], and replacing therein every occurrence of ≡ with its definiens in (5) in
termsof I (replacingab≡ ac with I(abc) throughout) and λ by its I -definiens in (4).

It is not known whether the dimension-freeversionsof the geometrieswe have
considered allow ∀∃-axiomatizationsin termsof I .
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