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UNIVERSAL-EXISTENTIAL AXIOM SYSTEMSFOR
GEOMETRIES EXPRESSED WITH PIERI’SISOSCELES
TRIANGLE AS SNGLE PRIMITIVE NOTION

Abstract. We prove that, building uponthe universal-existential orthogorality-based axiom
system for metric planes presented in [28], one can provide universal-existential axiom sys-
tems — expressed solely in terms of the ternary predicae I, with I (abc) standing for ‘abis
congruent to ac’, which Pieri has introduced 100 yea's ago —for metric planes, for absolute
geometry with the drcle axiom, for Euclidean planes, for Euclidean geometry with the ar-
cle akiom, for Klingenberg's generalized hyperbalic planes, for plane dementary hyperbolic
geometry, aswell asfor all the finite-dimensional versions of these geometries.

1. Introduction

Popuar acourts of the history of mathematics present the problem of the axiomatic
foundation o elementary geometry as having been solved with the pubdicaion o
Hilbert’'s[11]. The underlying assumptionin these acournsis that the problem to be
solved was that of closing certain “gaps’ in Euclid’s Elements, by offering a rigorous
founcitionfor two- or threedimensional geometry.

The history of the axiomatic foundation of geometry since 1899reveds an en-
tirely different picture. Instead of looking at an axiom system as the solution to an
axiomatizaion problem, the literature on this aubjed is concerned with questions of a
metamathematicd nature, regarding all possble acxiomatizations of that theory.

Hil bert’s axiom system for three dimensional geometry required three sorts of
individual variables, for points, lines, and panes, as well as (i) binary predicates for
point-line, point-plane, and line-plane incidence, (ii) aternary predicae for between-
ness (iii) a quaternary predicate for segment congruence, and (iv) a sexternary predi-
caefor angle mnguence

The question arose whether one could provide simpler axiomatizations for the
same theory. Amongthe many options to define smplicity (see[17] for a survey of
simplicity criteria), there ae severa purely syntactic ones, some of which ask for the
language in which the axiom system is expressed to be simple, whereas others ask for
simple aioms. When asking for ssimple languages, simpler means having primitives
(predicate end operation symbals) that are both few in number and o the lowest pos-
sible aity, where minimal arity takes precelence over scarcity of primitive symbals.
Thus a language with five binary predicaesis smpler than ore with orly one ternary
predicate. When looking at the axioms themselves, a aiterion for simplicity is to ask

*This paper was written while the aithor enjoyed the hospitdity of Tudar Zamfirescu as well as dis-
cussons with Franz Kahoff at the Mathematica Institute of the Dortmund University of Techndogy as a
Mercaor Visiting Professor suppated by the Deutsche Forschungsgemeinschaft.
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for the fewest number of quantifier alternationsin ead axiom, which is considered to
be written in prenex form. In this ense an axiom containing ony universal quantifiers
is dmpler than ore mntaininga string o universal quantifiers foll owed by a string o
existential quantifiers, and so on Anather criterion o simplicity regards the number
of quantifiers (or of variables) appeaingin eat axiom. In this snse onetries to mini-
mizethe number of variables appeaingin the axiom(s) containing the largest number
of variables. Thereis noreasonto believe that there exists for every theory an axiom
system that isthe simplest possble one acordingto al of the ebove aiteria. Itisto be
expeded that, in the simplest possble language, expressngthe axiomswill turn out to
be complicated in bah the quantifier complexity sense andin the number of quantifiers
sense.

It is al the more remarkable that the task of achieving the utmost simplicity of
the language of Euclidean geometry was acamplished in ore step, by ore person, in
one paper. The person is Mario Pieri, who showed in [31] that Euclidean geometry
can be akiomatized in terms of one sort of variables, to be interpreted as points, and a
ternary relation|, with | (abc) to beread as‘abiscongruentto ac’. That thisisthesim-
plest passble language in which ore can axiomatize Euclidean geometry was hown
in [15, Remarks following Theorem 6] (see dso [37, Theorem 11.4.34]): No finite set
of binary predicates with pants as individual variables can be used to axiomatize Eu-
clidean geometry. Nor is Euclidean geometry with aunit measure or with finitely many
fixed distances axiomatizable in a language cntaining ony binary relations with in-
dividual variablesto be interpreted as points, as shown in [33] (see dso [37, Theorem
11.4.67]). If thelogic in which the axiom system is expressd goes beyond first-order
logic, by allowing the formation of denumerably infinite disunctions of formulas, a
logic designated by L, ,, then the single binary relation o unit distance can be used
to axiomatize Archimedean ordered Euclidean geometry with the Circle Axiom — an
axiom stating that a segment with ore endpdnt inside and ore outside of a drcle must
intersed that circle.! Thiswas own for the 2-dimensional case in [19] and for the
n-dimensional case, with n > 2in [41] and [42]. It isaso na possble to axiomatize
Euclidean geometry by means of a finite set of binary operations on pdnts, as shown
in [4], dthough om cah axiomatize hyperbalic geometry with pants as variables by
means of the single binary operation of midpaint, as shownin [26].

If the intended interpretation of the individual variablesis not points, then it is
posshle to axiomatize both Euclidean and hyperbolic geometry with spheres as indi-
vidual variables by means of the single binary relation o sphere tangencyin al finite
dimensionsn > 2, as shownin[24]. With linesasindividual variablesone can axioma-
tize Euclidean geometry of any finite dimensionn > 4, and hyperboli c geometry of any
dimensionn > 2,n # 3, interms of the single binary predicae of line orthogordlity, as
shownin[3€], [13], [23], [29], [26].

The antireliterature dted above, and much more, such as Tarski’s axiom system
for Euclidean geometry (see[40]), as well as the reseach into other ternary relations
among pants that can serve & dngle primitive notions for Euclidean geometry, such

1The geometry in question is a Euclidean geometry in which the cordinate field is bath Archimedean
ordered and Euclidean, i. e. every positive dement has a square roct.
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as the symmetrized version o Pieri’s relation, ‘three points a,b, ¢ form in any order
the vertices of a (possbly degenerate) isoscdes triangle’, the nation o equil aterality,
the symmetrized perpendicularity notion, ‘ threepointsa, b, c form, in any order, aright
triangle’, surveyed in [37, Part 11], were inspired by Pieri’s 1908memoir.

Recently, there has been renewed interest in it, leading to itsfirst English trans-
lationin [16, Chapter 3], and to the expository note [8]. Both [16] and [8] addressthe
guestionregardingthe quantifier complexity of Euclidean geometry expressed in terms
of paints as the only individual variables, and Pieri’sternary relation . In [16, 3.10.6,
5.2.4] the authors mention that Pieri’s form of the Pasch axiom “is a MXMX sentence
that would require more than fifteen lines and threehund-ed charaders!”2, whereas in
Tarski’'s formulation it is a universal-existential sentence. It is also panted out that
“most of the complexity of Pieri’s Pasch postulate is the result of his having to sub-
dtitute for the occurrences of the betweennessrelation their correspondng definitions
in terms of equidistance” In [8, p. 141], after having expressed in formal language
some of Pieri’s axioms, we ae told that “althoughit is possble to express|...] Pieri’'s
axioms only by means of [the] primitive nation, it would be extremely hard to dothis’
given their “growing complexity”.® These remarks refer only to Pieri’s axioms as he
stated them, leaving open the possbility that a diff erent axiom system, based onthe
same nation |, would consist entirely of V3-axioms, which would turn it into the sim-
plest axiom system acording to two syntadic criteriaof simplicity: simplest language
and simplest quantifier complexity, since there can be no uriversal axiom system ex-
presed in a language withou operation symbals for any geometry. The dam of this
paper isto show that it isindeed pasdble to provide axiom systemsin termsof |, con-
sisting entirely of V3-axioms, by which we mean sentences written in prenex form, in
which all universal quantifiers (if any) precale dl existential quantifiers (if any), not
only for finite-dimensional Euclidean geometry, but for a wide range of other finite-
dimensional geometries. We caution that this fad does not imply that the complexity
of axiom systems based onPieri’s | isthe same &s that based on Tarski’stwo relations
B, with B(ahc) to beread as ‘b lies between a and ¢’, and =, with ab= cd to be read
as‘abisconguent to cd’, as there ae other measures of complexity, under which the
| -based axiom systems very likely have higher complexity. One such measure isthat of
the number of variables or quantifiersthat ead axiom requires, when written in prenex
form. Euclidean n-dimensional geometry over Euclidean ordered fields expressed in
terms of B and =, with pantsas variables, can be axiomatized (as sownin [1§], [20))
by an axiom system, all of whose axioms are prenex sentences abou at most 5 pants
for n = 2, and abou at most n+ 2 pants for n > 3. Plane hyperbalic geometry can
be axiomatized (as shown in [25]) in the same language by means of axioms that are
prenex sentences about at most 6 pants. The minima number of variables that are
needed to axiomatizein terms of | these geometriesis not known, but it is likely to be
significantly higher.

The reasons why Pieri’s original axiom system would have such a high guanti-

2|n this notation M stands for v, and < for 3.
3AlthoughPieri’s | is treaed at length in [37, 11.4], the question d the quantifier complexity of axiom
systems expressed in terms of | isnot addressed.
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fier complexity if expressed solely interms of 1, i. e. by repladng the defined ndions
which appea in some of the axioms by their |-definiens, are that it uses an V-definition
for colli neaity intermsof |, that colli neaity showsupin the definition o betweenness
andthat the axiom system contains axiomsfor betweenness in particular the Pasch ax-
iom. Pieri’s definitions of colli neaity A, with A(abx) to be read as ‘points a, b, and x
are wllinea (though no necessarily distinct)’, midpaint p, with p(axb) to be read as
‘point x isthe midpadnt of the segment ab, if a # b, and coincideswitha if a=b’, and
betweennessB, with B(axb) to beread as‘ paint x lies between pantsa andb (and may
be equal toa or b)’, are;

1 Aabx) & (W) [a=bV(I(axX) Al(bxX) — x=X)],
(2 Waxb) & (a#bvx=a)AA(abx)Al(xab),
(3) B(axb) :& (Imuv)[A(abx) A (u(amb) Al(mua) Al (mva) A p(uxv))].

Sinceno 3-definition o A intermsof | isknownin the dimension-free cae, i. e.
adefinitionthat would hdd inside geometriesin which thereisonly alower-dimension
axiom, stipulating that the dimension be > 2, but no upper-dimension axiom (see[37,
Part 11] f or more on dmension-freegeometries), Pieri’s definition (1) isthe best onewe
have for A in the dimensionfree cae. If, however, we ae interested in axiomatizing
an n-dimensional geometry in terms of |, then we do have existential definitions of A
intermsof I: in two-dimensional geometry A can be defined by:

3

(4 A(a1aza3) i< (3uv) [u# VA A I(awv)],
i=1

and in the threedimensional case, by the formula provided in [37, Theorem 11.4.14).
Such definitions exist in al finite-dimensions based on the same Leibnizian idea |If
we used an 3-definiens (such as (4)) for A instead of (1), then (3) would turn into an
3-definition of B in terms of | (after having replaced by its definiens (2)).* We can
also 3-definethe equidistancerelation= intermsof | asin[37, 11.4.18] by

(5) ab=cd & (Jef)[u(bec) Ap(aef)Al(cfd)],

and then replace # occurrences of B and = in an axiom system for n-dimensional
plane asolute geometry written just with B and = as primitive nations (such as the
axiom system A1-A9in [37] for n = 2) to get an axiom system entirely in terms of 1.
Adding

(6) I (abc) «+ ab= cd

to that axiom system, where = has been replacal by its definiensin terms of |, we get
an V3-axiom system for plane absolute geometry with the Circle Axiom, in which the

4Ancther 3-definition of Bin terms of | can be obtained asin [37, 11.4.24], by first defining the nation of
orthogordlity Lo, by Lo (abc) :< (3d) [u(cad) Al (bed)], to be read as ‘ab is perpendicular to ac’ (where
aais considered to be perpendicular to ax for al x), and then B by B(abc) :«< (3d) [A(abc)A Lo (bad)A Lo
(dac)].
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coordinate field must be Euclidean. That the axiom system axiomatizes plane asolute
geometry follows from the fad that the defined nations B and = satisfy the required
axioms; that | has the desired interpretation foll ows from the axiom (6) (or the corre-
spondngtwo axioms, if we split the «» occurringin (6) into < and —) describing| in
terms of =. That the Circle Axiom will hold aswell, althoughwe did na adopt its |-
translate as an axiom, follows from the faa that A (abc) — (B(abc) v B(bca) v B(cab))
is atheorem of plane asolute geometry, and since this has to hdd with our definition
of B (either (3) or the one stated in the footnote), the aordinate field must be Euclidean
(seeSedion 4for details). Starting from absolute geometry, we can also proceed by
adding axiomsto oltain v3-axiom systems for Euclidean and hyperbolic geometry.

Thus, if all wewanted to know was whether absolute, Euclidean, and hyperbolic
geometry of fixed finite dimension are Y3-axiomatizable in terms of |, then the simple
observation that there is an 3-definition o A — and thus of B and= — in terms of 1,
and V3-axioms systems for these geometriesin terms of Band = 1, is all we need.

If we want to show that the V3-axiomatizability in question hdds for a wider
classof geometries, in which midpants do na necessarily exist for all pairs of paints,
then we have to adopt ancther strategy. In the process we will also oktain axiom
systems in which the axioms are dl statements refleding genuinely metric thougtts.
One can say that, unlike those obtained from an axiomatization in terms of B and =
by repladng these predicaes by their | -definiens, our axiomatizaions represent a first
step onthe road to an axiom system conceived interms of 1.

2. Metric geometries

We now turn to axiom systems expressed entirely in purely metric terms, i. e. in terms
of the quaternary equidistancerelation = or of the ternary relation L, with L (abc) to
bereadas'a, b, caretheverticesof aright trianglewithright angle & a’ (asymmetrized
notion, in which the vertex with the right angle is not singled ou, was considered in
[39)). The first such axiom system, in terms of =, with al axioms v3-sentences (and
we mnsider those in which 3=1 appeasin the acioms in this category, as every state-
ment (VX3=1y)d(X,y) can be split i nto two V3-sentences, namely (Vx3y)¢(X,y) and
d(X,y) AP(XY) — y =Y, where by X we have denoted a finite sequence of variables
X1,X2, . .. ,%n) Wasthe axiom systemin [34] for plane Euclidean geometry with arbitrary
fields of charaderistic # 2 that are not quadraticdly closed as coordinate fields. It was
followed by anather axiomatization o the same theory in [7], by an axiomatizaion
of non-dliptic metric planes in [39], and by an axiomatizaion o threedimensional
Euclidean spacesin [32]. The last axiom system of this nature was the one in [28] in
terms of | for metric planes, including the dliptic case. In the Euclidean two- and
threedimensional case, one may turn the Y3-axiom systemsin [34], [7], [32] into V3-
axiom systems in terms of Pieri’s |, by repladng = in al axioms by its definition (5)
(see[37,11.4.18)) interms of |, and adding (6) as an axiom.

Our concern will be to show that the V3-axiomatizations are possble, and na
that the axiom systems involved are independent, or that they are in any other way
optimal, as they most likely are not. Turning these into independent axiom systems
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would certainly require asignificant amourt of work.

There is a cetain expedation coming from mathematicians encourtering ax-
iom systems only at the beginning o aledure, that these ougtt to be short, contain few
axioms, and ke pleasing to the g/e and to the mind. The aurrent investigation is not
motivated by such clasgoom-use ams, but has asits objed of studythe first-order the-
ory of geometry expressed in terms of Pieri's |, and asks metamathematica questions
regarding the syntadic form of possble axiom systems for that theory.

3. Universal-existential axiomatization for metric planes

Sincewe want to show that Pieri’s | can serve &s primitive notion, with V3-axiom sys-
tems, for a wide dassof geometries, we will first provide the method for obtaining
v3-axiom systemsin terms of | for non-€lli ptic metric planes. The concept of ametric
plane, intended to provide the metric skeleton o the dasdcd plane geometries (Eu-
clidean, hyperbdlic, elliptic), grew out of the work of Hessenberg, Hjelmslev, and A.
Schmidt, and was provided with a simple group-theoretic axiomatics by F. Bachmann
([2, 832, p. 33]). Other axiomatizations were presented in [39], [22], [27], and [28].
If the axioms of geometry one ams to |-axiomatize imply that every segment has a
midpant, then ore can start with the axiom system in [39] (see dsoitsformalizaionin
terms of A and = in [21]) and define by (4) (or a higher-dimensional version thereof),
(2), and (5) the two primitive nations used there, namely A and =, intermsof |.

If the axioms of the geometry one amsto |-axiomatizedo na imply that every
segment has a midpant, then we have to start with the vY3-axiom system from [28] in
termsof L. Thepredicae L isboth 2Z-definable and N-definablein termsof |, andthus
A-definablein terms of 1. The definitions are

(7) L(abc) & (3d)[a#bra#cAb#D Ac#cd Al(abd)Al(acc)
Al(cbb) Al(c'bl) Al(bed)],

(8  L(abc) & (Vbd)[a#bAa#cA(I(abbd)Al(acd)Al(bed)Al(b'ed)
AC# ¢ — 1(cbb))].

We can now procea by repladng every occurrence of L (or of — 1) in its axioms
— which we take to be written in prenex normal form, with their matrix, i. e. their
quantifier-freepart, in conjunctive normal form — by its 2-definition (7) (or by L’s
IM-definition (9)), to obtain a set of V3-sentences expressed solely intermsof 1.
Sinceit is nat clea that, inside the set of sentences thus obtained, we would
be ale to show that | has the desired interpretation, we add four axioms, the first
two of which state that the two definitions of L in terms of | are equivalent, i. e. that
the definiens of (9) implies the definiens of (7) and vice-versa (the former implication
prodicingan V3-sentence, the latter auniversal sentence), the other two of which which
describetherelation| intermsof | — whichwe consider here esan abbreviationfor its
definiensesin (7) and (9), the substitutions being made such that the resulting axioms
turn into V3-sentences in terms of |. To state these two additional axioms we first
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need severa defined naionsin termsof L, al definitions being existential. The first
defined nationisthe quaternary predicae L, with Le(abc) standingfor ‘a, b, c arethree
collinea points, with a different from b and ¢, and a, b, e are the vertices of aright
triangle with right angle & a’, while the second ndion, ¢ stands for the refledion of
apointin aline, ¢(abpmnoqdrr’uvp’) standing, in case p is nat the pale of the line
ab, for ‘point p’ is the reflecion of pin line ab’, the additional pointsin ¢ helping
to achieve the construction o the refleded pant p’ (seeFigure 1). The last defined
nation is the quaternary predicae M, with My (bac) standing for ‘a is the midpant of
the segment be, with b £ ¢, and u is a point on the perpendicular in a on ab, which is
not the pale of ab’ (which we expressby means of ¢, by stating that thereisa point u,
such that auis perpendicular bc, and such that the refledion of bin auisc).

Le(abc) & L (abe)A L (ace),
¢ (abpmnogdrr’uvp’) & a#bA(o=av L (oap))A(o=bv L (obp))
ALo(par) AQ# r ALo(mad) Aq#d
ALo(nrr’y At £ 1" ALo(P'g'r") ALm(opp) Am=#n
ALp(omn) A Ly(org’) A Ly(oar’),
My(bac) < (3mnoqgdrr’vw)[L (abu)A— L (bau)
A (aubmnagdrr’we)].

With these existentially defined nationsL, ¢, M, which we consider as abbrevi-
ations of their existential |-definiens, we can formulate the foll owing axiom, that can
be split i nto two axioms, by splitting the «» appeaingin it into «+ and —, ead an
v3-axiom:

(9) [(abc) < (Ju)b=cV (L (bac)A L (cab))V My(bac)
V(=(L (bac)A L (cab)) AMa(buc)A L (uah))].

This axiom states that | (abc) holdsif and orly if b= ¢, or aisthe paeof linebc (i. e.
both ab and ac are perpendiculars from a to bc), or a is the midpant of bc, or aisnot
the padle of line bc, andthe foat of the perpendicular from a to bc is the midpant u of
the segment bc.

Let 3 denote the axiom system, with all axioms V3-sentences, for metric planes
from [28], in which al occurrences of | have been replacel by their |-definiens in
such away that all axiomsturn ou to be vV3-sentences (some axioms will be dropped
altogether, being implicit in the definition of L), to which the four axioms mentioned
abowe ae aded. If we consider the aiom system formed by the | -trand ations of the
axiomsfrom[28] as L -axioms (which we can do bytrandating badk into the language
of L every occurrenceof (9) or (7), given that we have two axioms telling us that the
two definitions are equivalent), then we know that | must have its intended interpre-
tation and that all models must be metric planes. The two axioms into which (9) has
been split now tell us that | must have the intended interpretation as well, given that
it is equivalent to its definiens, in which we now know the meaning o L. Thus, all
models of > are metric planesand | has the intended interpretation.
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Figure 1: Therefledion o p intheline ab obtained by means of ¢

4. Universal-existential axiomatizationsfor several geometries

Startingwith Z, we can providev3-axiom systemsin termsof | for awide range of two-
dimensional and, more generally, for finite dimensional geometries. First, let us note
that finite-dimensional metric geometries — first axiomatized, for the 3-dimensional
case, by Ahrens [1], then, for the n-dimensional case by Kinder [12], and, for the
dimension-free cae, by Ewald [5] and simplified by Heimbedk [9], and J. T. Smith
[38], from where axiom systems for the n-dimensional case can be obtained by adding
axioms fixing the dimension — can be aiomatized in terms of | by means of V3-
axioms, by stating that every planeis a metric plane ((n— 1)-dimensional flats can be
defined by two diff erent pointsu andv intermsof | by statingthat a point p belongsto
theflat if and only if I (pwv); inside (n— 1)-dimensional flats one can definein the same
manner, by means of two different points belongng to the (n— 1)-dimensional flat,
(n— 2)-dimensional flats, and so on, urtil we get, by means of existential definitions,
to 2-dimensional flats) and that the dimension o the whole spaceis n. Plane metric-
Euclidean geometry (see[2, §121]) can be aiomatized by adding an axiom stating
the existenceof aredangle (AxiomRin[2, §6,7]), and Euclidean planesby addingthe
axiom (additionin the indices beingmoduo 3)

3 3
(10) (Vayapag) (3uv) [(u #VA /\I(a;uv)) Vv <A|(Ua&+1)>] ,

i=1 i=1

stating that every triangle has a drcumcenter.
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Metric planes with freemohility, a theory whose models have been described
algebraicdly in [3], can be V3-axiomatized by addingto Z two axioms: one stating the
existence of the midpant of any given segment, i. e.:

(11 (Vabw)(3c) [u# vAl(aw) Al (bw) Aa#b— | (cab) Al (cuv)],

and ore stating that one can lay off any given segment on any line emanatingfrom one
of the endpdnts of the segment, i. e.:

(12 (Vabcuv)(3d) [u#£ vAl(aw) Al (cuv) Aa# ¢ — 1 (dw) Al (abd)].

Hil bert planesin which the Circle Axiom halds, i. e. models of the plane axioms
of groupsl, 11, 111 of Hilbert’s[11] (or of axiomsA1-A9in[37]) together withthe Circle
Axiom (CA in [37, p. 15]), the mordinate fields of which must be Euclidean, can be
V3-axiomatized by addingto ZU {(11),(12)} two axioms: one stating the uniqueness
of the perpendicular from a point outside of aline to that line, in order to exclude the
elli ptic case, and the other stating that, given two nondegenerate and norrconguent
segments ab and ac, there must be aright triangle having ore of them as hypaenuse
andthe other as sde, i. e.:

(13) (Vabc)(3u)[a=bva=cVI(abc)V (I(abuA L (cau)) Vv (I(acu)A L (bau))].

To seethat this axiom system, with axioms very far removed from those of the
axiom systems in [11] and [37], axiomatize Hilbert planes in which the Circle Ax-
iom halds, it is enoughto ched that, in al non-élliptic models of U {(11),(12)},
described algebraicdly in [3], the aiom (13) implies that the coordinate field is Eu-
clidean, and thus the models are those described algebraicaly in [30].

To seethis, we nedal to sucdnctly present the basic dements of the dgebraic
description d metric planes with freemobhility.

Let K be aPythagorean field, i. e. every sum of squares is a square, and no
square is —1, and k an element of K. By the affine-metric plane 2(K,k) (cf. [10,
p.215]) over the field K with the metric constant k we mean the projedive plane B (K)
over the field K from which the line [0,0, 1], as well as all the points on it have been
removed (and denote by 2A(K) the remaining pant-set), for whase paints of the form
(x,y,1) we shall write (x,y), and say that such a paint isincident with aline [u,v,w] if
and orly if

(14 XU+ yv+w=0,

together with anation o orthogorality, the lines [u,v,w] and [U/,V,w/] being orthogo
nal if and orly if

(15 ud +w + kww = 0.

If K isan ordered field, then ore can order 2(K) in the usual way.

The dgebraic charaderization of metric planes with free mobility consists in
spedfyingapoint-set E of an affine-metric plane 2((K, k), which is the universe of the



336 V. Pambucdian

metric plane, and whase dgebraic descriptionis very intricate andis the main result in
(3].

The congruenceof two segmentsab and cd will be given bythe usual Euclidean
formula (a; — by)2 + (a2 — bp)? = (c1 — d1)? + (c2 — dp)? if E C A(K,0), and by

16 F(ab)?2  F(c,d)?

Q@Q(b)  Q(e)Q(d)’
if EC A(K,k) withk#£ 0, whereF (x,y) = k(x1y1 +Xx2y2) +1, Q(X) =F(x,X), andx =
(XlaXZ)ay = (ylayZ)'

Themetric plane can always be represented such that it containsthe point (0, 0),
andisan embedded subpane of an affine-metric planeg, i. e. it containswith every point
all thelines of the projedive-metric plane that are incident with it.

Suppase now that 91 is a metric plane with freemobhility in which (13) halds,
andlet E beitspoint set, K the coordinatefield of the projedive-metric planein which
it is embedded, and k be its metric constant.

Regardless of whether k # 0 or k = 0, the fad that segments (0,0)(x,0) and
(0,0)(0,y) are, whenever x # +y, such that one can be the hypaenuse and the other
the side of aright triangle, imply that

(17) X —y?eK2ory?—x? e K2

If a,b,c arethreepoints auch that thereisaright triangle with ac as hypaenuse and ab
as dde, then we write ab < ac.

We can thus define abetweennessrelation for collinea points a, b, c in 9t, by
stipulating that Bp(abc) haldsif and oy if a=borb=corab< acandcb < ca. If
a, b, and c are alli nea, then ore and orly one of Bp(alc), Bp(bca), and Bp(cab) must
hold. This can be seen, in case they are distinct paints, by coordinatizing 9t so that
a=(0,0), b= (0,x), andc = (0,y), and ndicing, in the cae in which k is 0, that one
of thesystemsx? —y? € K2 andx? — (y— x)2 € K2, y? —x? € K? andy? — (y—x)? € K2,
and (y —x)? — x? € K2 and (y — x)? — y? € K2 must hod. This follows from the fad
that (17) must hold for any of the pairsinvolved, andthe casesin which the diff erences
of squares of the threeinvolved pairs do nd have apair of difference listed in the
systems abowe, lea to the the conclusion that the sum of two nonzero squares is 0,
contradicting the Pythagorean nature of K. Analogowsly in case the metric constant is
#0.

Regardlessof whether k =0 or k # 0, the foot of the orthogoral li ne through
(a,0) (apaintin E) totheline[—A, 1,0] (alinewhich belongsto 9t for any A € K, since
thisline passes throughthe point (0,0), andthisisapointin E, and 91 contains al the

lines passng througha point of 91) has coordinates (ﬁa)\z, &), as can be computed

using (14) and (15). For A = a, we get that (%,0) € E, andthus, sincel+a? € K2,

we have that, for some b € K\ {0}, (b?,0) € E, and thus also (%,O) € E, for any
AeK.
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We want to show that K must be Euclidean. We know that K is Pythagorean, so
K can be ordered. If it can be ordered in aunique way, then it i s Euclidean, and we ae
dore. Suppce K can be ordered in at least two ways, the orders being denoted by <1
and <. Each of these orders defines a betweennessrelation in 9t, which we denote
by B; and B,. Sincein these ordered planes the hypaenuseis larger than the side of a
right triangle, we must have that,

(18 If Bo(abc) then B;(abc) fori=1,2.

Sincethe two orders <; and < are diff erent, there must be aA € K, suchthat A >, 0
and A <5 0, and thus such that Ab? >1 0 and Ab? <, 0 for some b € K, for which
(b?,0) € E, thus Bx((Ab?,0)(0,0)(b?,0)) hdds, but By((Ab?,0)(0,0)(b? 0)) does not
hold. Exadly one of Bp(xyz), Bo(yzx), and Bo(zxy) must hald for the points x =
(Ab?,0), y = (0,0), and z= (Ab?,0) and thus, by (18), for predsely the same ordered
triple, the B, and B relations must hold as well, a contradiction.

This showsthat K can be ordered in only one way, andthus must be aEuclidean
field.

The betweennessrelation as defined by Bg is now seen to satisfy al universal
properties that the betweennessrel ation satisfies in absolute geometry. The only prop-
erty we thus need to show it satisfies as well i s the Pasch axiom. If k # 0, then we
know from the main result in [3], namely [3, Satz 6.2], that 9t is the intersedion o all
the metric hulls (see[3, 85] or [6] for a definition o the nation o metric bull) of 9.
However, since K has a unique order, there is only one metric hull and that one must
be our 9. The metric hull it self does satisfy the Pasch axiom (see[6, 81,5] or [3, §9)),
andwe aedore.

If kis O, then the set of coordinates of the paints of E form, as shown in [2,
8193, Satz 7], asubmodue of K with all totally integer-majorizable dements as mul-
tipliers (an element x of K is cdl ed totally integer-majorizableif there exists an integer
m such that —m < x < m holds for every order < of K). Sincethe Pasch axiom asks
for the existenceof somec:=A-a+(1—A)-b,whereaandbareinE, and 0< A < 1,
and the order is unique, c must bein E whenever a and b arein E, and thus the Pasch
axiom holdsin this case aswell.

Addingto this axiom system the axiom (10) one gets an axiom system for plane
Euclidean geometry with Euclidean fields as coordinate fields. Higher finite dimen-
sional versions of this geometry are eaily obtained by the same method mentioned for
finite-dimensional metric geometries.

To get Klingenberg's generalized hyperbalic planes (see[2, §14]) one needsto
add an axiom stating that there ae limiting paral el lines, a statement which can be
expressed as an existential statement in termsof L, by means of Bergau’scriterion (see
[2, 8142, p. 224), thus, using (7), as an existential statement in terms of |, as well as
an axiom stating that from a paoint to aline there ae no more than two limiting parall el
lines, which can be written, using Bergau's criterion, as an V3-statement. Adding an
axiom stating that every segment has amidpaint one getsthe dementary version o hy-
perbalic geometry, coordinatized by Euclidean fields, first axiomatized by Hilbert [11,
Anhanglll] . To get higher-dimensional versions of these axiom systemsfor the spaces
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axiomatized in [14] and for higher-dimensional hyperbolic geometry over Euclidean
fields we use the same method mentioned in the case of finite-dimensional metric ge-
ometries.

Asmentioned ealier, for all geometriesin which all segments have midpants,
one obtains axiom systems with fewer variables in their axioms by starting with the
axiom system for non-€lli ptic metric planes propased by Sorensen [39], rather than the
onein [28], and repladng therein every occurrence of = with its definiensin (5) in
termsof | (repladngab = ac with | (abc) throughou) and A by its | -definiensin (4).

It is not known whether the dimension-freeversions of the geometries we have
considered all ow V3-axiomatizaionsin termsof |.
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