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CHARACTERISTIC INITIAL BOUNDARY VA LUE PROBLEMS

FOR SYMM ETRIZABLE SYSTEMS

Dedicated to Professor Luigi Rodino ontheoccasion of his60th birthday

Abstract. We consider an initial-boundary value problem for a linear Friedrichs symmetriz-
able system, with characteristic boundary of constant rank. Assuming that the problem is
L2 well posed, we show the regularity of the L2 solution, for sufficiently smooth data, in the
framework of anisotropic Sobolev spaces.

1. Introduction

We consider an initial boundary value problem for a linear Friedrichs symmetrizable
system, with characteristic boundary of constant rank. It is well -known that for solu-
tions of symmetric or symmetrizable hyperbolic systems with characteristic boundary
full regularity (i.e. solvabilit y in theusual Sobolev spacesHm) cannot be expected gen-
erally becauseof thepossiblelossof derivativesin thenormal directionto theboundary,
see[23, 12].

The natural spaceis the anisotropic Sobolev spaceHm
∗ , which comes from the

observation that the one-order gain of normal differentiation should be compensated
by two-order lossof tangential differentiation(cf. [4]). The theory hasbeen developed
mostly for characteristic boundaries of constant multiplicity (seethe definition in as-
sumption (B)) and maximally nonnegativeboundary conditions, see[4, 5, 11, 16, 17,
18, 19, 21].

However, there are important characteristic problemsof physical interest where
boundary conditions are not maximally nonnegative. Under the more general Kreiss-
Lopatinski condition (KL), the theory has been developed for problems satisfying the
uniform KL condition with uniformly characteristic boundaries (when the boundary
matrix hasconstant rank in aneighborhood of the boundary), see[8, 1] and references
therein.

In this paper we are interested in the problem of the regularity. We assume
the existenceof the strongL2 solution, satisfying a suitable energy estimate, without
assuming any structural assumption sufficient for existence, such as the fact that the
boundary conditions are maximally dissipative or satisfy the Kreiss–Lopatinski con-
dition. We show that this is enoughin order to get the regularity of solutions, in the
natural framework of weighted anisotropic Sobolev spaces Hm

∗ , provided the data are
sufficiently smooth. Obviously, the present results contain in particular what has been
previously obtained for maximally nonnegativeboundary conditions.

229



230 A. Morando, P. Secchi and P. Trebeschi

Let Ω be an open bounded subset of Rn (for afixed integer n≥ 2), lying locally
on one side of its smooth, connected boundary Γ := ∂Ω. For any real T > 0, we
set QT := Ω×]0,T[ and ΣT := Γ×]0,T[; in addition we define Q∞ := Ω× [0,+∞[,
Σ∞ := ∂Ω× [0,+∞[, Q := Ω×R and Σ := ∂Ω×R. We are interested in the following
initial boundary valueproblem (written in thesequel IBVP)

Lu= F, in QT(1)

Mu= G, on ΣT(2)

u|t=0 = f , in Ω,(3)

whereL is thefirst order linear partial differential operator

(4) L = ∂t +
n

∑
i=1

Ai(x, t)∂i +B(x, t),

∂t := ∂
∂t , ∂i := ∂

∂xi
, i =1, . . . ,nandAi(x, t),B(x, t) areN×N real matrix-valuedfunctions

of (x, t), for a given integer sizeN ≥ 1, defined over Q∞. Theunknown u= u(x, t) and
the data F = F(x, t), f = f (x) are real vector-valued functions with N components,
defined onQT andΩ respectively. In theboundary conditions(2), M isasmooth d×N
matrix-valued function of (x, t), defined on Σ∞, with maximal constant rank d. The
boundary datum G= G(x, t) is ad-vector valued function, defined onΣT .

Let us denote by ν(x) := (ν1(x), . . . ,νn(x)) the unit outward normal to Γ at the
point x∈ Γ; then

(5) Aν(x, t) =
n

∑
i=1

Ai(x, t)νi(x) , (x, t) ∈ Σ∞ ,

is the boundary matrix. Let P(x, t) be the orthogonal projection onto the orthogonal
complement of kerAν(x, t), denoted kerAν(x, t)⊥; it isdefined by

(6) P(x, t) =
1

2πi

∫
C(x,t)

(λ−Aν(x, t))
−1 dλ , (x, t) ∈ Σ∞ ,

whereC(x, t) is a closed rectifiable Jordan curve with positive orientation in the com-
plex plane, enclosingall and only all non-zeroeingenvaluesof Aν(x, t). Denotingagain
by P an arbitrary smooth extension onQ∞ of the aboveprojection, Pu and (I −P)u are
called respectively thenoncharacteristicandthecharacteristiccomponentsof thevec-
tor field u= u(x, t).
We study the problem (1)–(3) under the followingassumptions:

(A) The operator L is Friedrichs symmetrizable, meaning that for all (x, t) ∈ Q∞
there exists a symmetric positive definite matrix S0(x, t) such that the matrices
S0(x, t)Ai(x, t), i = 1, · · · ,n, are also real symmetric; this implies, in particular,

that the symbol A(x, t,ξ) =
n
∑

i=1
Ai(x, t)ξi is diagonalizable with real eigenvalues,

whenever (x, t,ξ) ∈ Q∞ ×R
n.
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(B) Theboundary ischaracteristic, with constant rank, namely the boundary matrix
Aν is singular on Σ∞ and has constant rank 0< r := rankAν(x, t) < N for all
(x, t) ∈ Σ∞; this assumption, together with the symmetrizabilit y of L and that Γ
is connected, yields that thenumber of negative eigenvaluesof Aν (theso-called
incomingmodes) remainsconstant on Σ∞.

(C) kerAν(x, t) ⊆ kerM(x, t), for all (x, t) ∈ Σ∞; moreover d = rankM(x, t) must
equal the number of negative eigenvaluesof Aν(x, t).

(D) Theorthogonal projectionP(x, t) onto kerAν(x, t)⊥, (x, t) ∈ Σ∞, can be extended
asamatrix-valuedC∞ function over Q∞.

Concerning thesolvabilit y of the IBVP (1)–(3), we state the followingwell -posedness
assumption:

(E) Existenceof theL2 weak solution. Assumethat S0, Ai ∈ Lip(Q∞) for i = 1, . . . ,n.
For all T >0 andall matricesB∈L∞(QT), there exist constantsγ0 ≥ 1 andC0 >0
such that for all F ∈ L2(QT), G∈ L2(ΣT), f ∈ L2(Ω) there existsa uniquesolu-
tion u∈ L2(QT) of (1)–(3), with data (F,G, f ), satisfying the following proper-
ties:

i. u∈C([0,T];L2(Ω));

ii . Pu|ΣT ∈ L2(ΣT);

iii . for all γ ≥ γ0 and 0< τ ≤ T the solution u enjoys the following a priori
estimate

(7)

e−2γτ‖u(τ)‖2
L2(Ω)+ γ

∫ τ

0
e−2γt‖u(t)‖2

L2(Ω)dt

+

∫ τ

0
e−2γt‖Pu|∂Ω(t)‖

2
L2(∂Ω)dt

≤C0

(
‖ f‖2

L2(Ω)
+

∫ τ

0
e−2γt

(
1
γ
‖F(t)‖2

L2(Ω)+ ‖G(t)‖2
L2(∂Ω)

)
dt

)
.

When the IBVP (1)–(3) admits an a priori estimate of type (7), with F = Lu,
G= Mu, for all τ > 0 andall sufficiently smooth functionsu, onesaysthat theproblem
isstronglyL2 well posed, see e.g. [1]. A necessary conditionfor (7) isthevalidity of the
uniformKreiss-Lopatinski condition (UKL) (an estimate of type (7) hasbeen obtained
by Rauch [13]). On the other hand, UKL is not sufficient for the well posednessand
other structural assumptionshave to be taken into account, see[1].

Finally, we require the following technical assumption that for C∞ approxima-
tionsof problem (1)–(3) onestill has the existenceof L2 solutions. This stabilit y prop-
erty holds true for maximally nonnegative boundary conditions and for uniform KL
conditions.

(F) Givenmatrices(S0,Ai ,B)∈ CT(Hσ
∗ )×CT(H

σ
∗ )×CT(H

σ−2
∗ ), whereσ≥ [n+1

2 ]+4,

enjoying properties (A)–(E), let (S(k)0 ,A(k)
i ,B(k)) be C∞ matrix-valued functions
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convergingto (S0,Ai ,B) in CT(Hσ
∗ )× CT(H

σ
∗ )× CT(H

σ−2
∗ ) as k→ ∞, andsatis-

fying properties (A)–(D). Then, for k sufficiently large, property (E) holds also

for the approximating problemswith coefficients(S(k)0 ,A(k)
i ,B(k)).

The solution of (1)–(3), considered in the statements (E), (F), must be intended in the
senseof Rauch [15]. Thismeansthat for all v∈H1(QT) such that v|ΣT

∈ (Aν(kerM))⊥

andv(T, ·) = 0 in Ω, thereholds:
∫ T

0
〈u(t),L∗v(t)〉dt =

∫ T

0
〈F(t),v(t)〉dt −

∫
ΣT

〈Aνg,v〉dσx dt +
∫

Ω
〈 f ,v(0)〉dx,

whereL∗ is the adjoint operator of L andg is a function defined onΣT such that Mg=
G. Notice also that for such a weak solution to (1)–(3), the boundary condition (2)
makes sense. Indeed, in [15, Theorem 1] it is shown that for any u ∈ L2(QT), with
Lu ∈ L2(QT), the traceof Aνu on ΣT exists in H−1/2(ΣT). Moreover, for a given
boundary matrix M(x, t) satisfyingassumption(C), there existsanother matrix M0(x, t)
such that M(x, t) = M0(x, t)Aν(x, t) for all (x, t) ∈ Σ∞. Therefore, for L2 solutions of
(1) onehas

(8) Mu= G onΣT ⇐⇒ M0Aνu|ΣT = G onΣT .

In order to studytheregularity of solutionsto theIBVP(1)–(3), thedataF, G, f need to
satisfy some compatibilit y conditions. The compatibilit y conditionsare defined in the
usual way (see[14]). Given the IBVP (1)–(3), we recursively define f (h) by formally
taking h−1 time derivativesof Lu= F , solving for ∂h

t u and evaluating it at t = 0; for
h= 0 we set f (0) := f . The compatibilit y conditionof order k ≥ 0 for the IBVP reads
as

(9)
p

∑
h=0

(
p
h

)
(∂p−h

t M)|t=0 f (h) = ∂h
t G|t=0 , onΓ , p= 0, . . . ,k.

In the framework of the preceding assumptions, we are able to prove the following
theorem.

THEOREM 1. Let m ∈ N and s= max{m, [n+1
2 ] + 5}. Assume that S0,Ai ∈

CT(Hs
∗), for i = 1, . . . ,n, and that B ∈ CT(Hs−1

∗ ) (or B ∈ CT(Hs
∗) if m= s). Assume

also that problem (1)–(3) obeys the assumptions (A)–(F). Then for all F ∈ Hm
∗ (QT),

G∈Hm(ΣT), f ∈Hm
∗ (Ω), with f (h) ∈Hm−h

∗ (Ω) for h= 1, . . . ,m, satisfyingthe compat-
ibilit y condition(9) of order m−1, theuniquesolution uto (1)–(3), with data (F,G, f ),
belongsto CT(Hm

∗ ) andPu|ΣT ∈ Hm(ΣT). Moreover u satisfies thea priori estimate

(10) ‖u‖CT(Hm
∗ )+ ‖Pu|ΣT

‖Hm(ΣT ) ≤Cm
(
||| f |||m,∗+ ‖F‖Hm

∗ (QT )+ ‖G‖Hm(ΣT )

)
,

with aconstant Cm > 0 depending only onAi ,B.

The function spaces involved in the statement above (cf. also the assumption
(F)), and the norms appearing in the energy estimate (10) are introduced in the next
section.
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2. Function spaces

For every integer m≥ 1, Hm(Ω), Hm(QT) denote the usual Sobolev spaces of order m
over Ω andQT respectively.

In order to define the anisotropic Sobolev spaces, first we need to introduce
the differential operators in tangential direction. Throughout the paper, for every j =
1,2, . . . ,n, thedifferential operator Z j is defined by

Z1 := x1∂1 , Z j := ∂ j , for j = 2, . . . ,n.

Then, for every multi -index α = (α1, . . . ,αn) ∈ N
n, the tangential differential operator

Zα of order |α|= α1+ · · ·+αn is defined bysetting

Zα := Zα1
1 . . .Zαn

n

(we also write, with thestandard multi -index notation, ∂α = ∂α1
1 . . .∂αn

n ).

We denote by R
n
+ the n-dimensional positive half-spaceRn

+ := {x= (x1,x′) ∈
R

n : x1 > 0 x′ := (x2, . . . ,xn) ∈ R
n−1}. For every positive integer m, the tangential

(or conormal) Sobolev spaceHm
tan(R

n
+) andtheanisotropic Sobolev spaceHm

∗ (R
n
+) are

defined respectively by:

Hm
tan(R

n
+) := {w∈ L2(Rn

+) : Zαw∈ L2(Rn
+) , |α| ≤ m},(11)

Hm
∗ (R

n
+) := {w∈ L2(Rn

+) : Zα∂k
1w∈ L2(Rn

+) , |α|+2k≤ m},(12)

andequipped respectively with norms

‖w‖2
Hm

tan(R
n
+)

:= ∑
|α|≤m

‖Zαw‖2
L2(Rn

+)
,(13)

‖w‖2
Hm
∗ (Rn

+)
:= ∑

|α|+2k≤m

‖Zα∂k
1w‖2

L2(Rn
+)
.(14)

To extend the definition of the above spaces to an open bounded subset Ω of R
n

(fulfilli ng the assumptions made at the beginning of the previous section), we pro-
ceed as follows. First, we take an open covering {U j}

l
j=0 of Ω such that U j ∩ Ω,

j = 1, . . . , l , are diffeomorphic to B+ := {x1 ≥ 0, |x| < 1}, with Γ corresponding to
∂B+ := {x1 = 0, |x| < 1}, andU0 ⊂⊂ Ω. Next we choose asmooth partition of unity
{ψ j}

l
j=0 subordinate to the covering{U j}

l
j=0. We say that a distribution u belongs to

Hm
tan(Ω), if and only if ψ0u∈Hm(Rn) and, for all j = 1, . . . , l , ψ ju∈ Hm

tan(R
n
+), in local

coordinates in U j . ThespaceHm
tan(Ω) is provided with thenorm

(15) ‖u‖2
Hm

tan(Ω) := ‖ψ0u‖2
Hm(Rn)+

l

∑
j=1

‖ψ ju‖
2
Hm

tan(R
n
+)
.

The anisotropic Sobolev spaceHm
∗ (Ω) isdefined in a completely similar way as theset

of distributionsu in Ω such that ψ0u∈Hm(Rn) andψ ju∈Hm
∗ (R

n
+), in local coordinates
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in U j , for all j = 1, . . . , l ; it isprovided with thenorm

(16) ‖u‖2
Hm
∗ (Ω) := ‖ψ0u‖2

Hm(Rn)+
l

∑
j=1

‖ψ ju‖
2
Hm
∗ (Rn

+)
.

The definitions of Hm
tan(Ω) and Hm

∗ (Ω) do not depend onthe choiceof the coordinate
patches{U j}

l
j=0 andthe corresponding partition of unity {ψ j}

l
j=0, and thenormsaris-

ing from different choicesof U j ,ψ j are equivalent.

For an extensivestudy of the anisotropic Sobolev spaces, we refer the reader to
[24], [20]; herewe just remark that the continuousimbeddings

(17)

Hm
tan(Ω) →֒ H p

tan(Ω) , Hm
∗ (Ω) →֒ H p

∗ (Ω) , ∀m≥ p≥ 1,

Hm(Ω) →֒ Hm
∗ (Ω) →֒ Hm

tan(Ω) , ∀m≥ 1,

Hm
∗ (Ω) →֒ H [m/2](Ω) , H1

∗ (Ω) = H1
tan(Ω)

hold true. For the sake of convenience, we also set H0
∗ (Ω) = H0

tan(Ω) = L2(Ω). The
spaces Hm

tan(Ω), Hm
∗ (Ω), endowed with their norms(15), (16), becomeHilbert spaces.

Analogously, wedefine thespacesHm
tan(QT) andHm

∗ (QT).

Let Cm([0,T];X) denote theset of all m-timescontinuously differentiablefunc-
tionsover [0,T], taking values in aBanach spaceX. We definethespaces

CT(H
m
tan) :=

m⋂
j=0

C j([0,T];Hm− j
tan (Ω)) , CT(H

m
∗ ) :=

m⋂
j=0

C j([0,T];Hm− j
∗ (Ω)) ,

equipped respectively with the norms

(18)
‖u‖2
CT(Hm

tan)
:=

m
∑
j=0

supt∈[0,T] ‖∂ j
t u(t)‖

2
Hm− j

tan (Ω)
,

‖u‖2
CT(Hm

∗ ) :=
m
∑
j=0

supt∈[0,T] ‖∂ j
t u(t)‖

2
Hm− j
∗ (Ω)

.

For the initial datum f weset

||| f |||2m,∗ :=
m

∑
j=0

‖ f ( j)‖2
Hm− j
∗ (Ω)

.

3. The scheme of the proof of Theorem 1

Theproof of Theorem 1 is madeof several steps.

In order to simpli fy the forthcoming analysis, hereafter we only consider the
case when the operator L has smooth coefficients. For the general case of coefficients
with thefiniteregularity prescribed in Theorem1, werefer thereader to [9]; thiscaseis
treated byareductionto thesmooth coefficientscase, based uponthestabilit y assump-
tion (F). Thus, from now on, we assume that S0, Ai , B are given functions in C∞(Q∞).
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Just for simplicity, we even assumethat the coefficientsAi of L aresymmetric matrices
(in this case the matrix S0 reduces to IN, the identity matrix of size N); the case of a
symmetrizableoperator can be easily reduced to thisone, just by the application of the
symmetrizer S0 to system (1) (see[9] for details).

Below, we introducethe new unknown uγ(x, t) := e−γtu(x, t) and the new data
Fγ(x, t) := e−γtF(x, t), Gγ(x, t) = e−γtG(x, t). Then problem(1)–(3) becomesequivalent
to

(19)
(γ+L)uγ = Fγ in QT ,
Muγ = Gγ onΣT ,
uγ |t=0 = f in Ω .

Let usnow summarizethemain stepsof theproof of Theorem 1.

1. We firstly consider thehomogeneous IBVP

(20)
(γ+L)uγ = Fγ inQT ,
Muγ = Gγ onΣT ,
uγ |t=0 = 0 inΩ .

We study(20), by reducing it to astationary boundary valueproblem (see(26)),
for which we deducethe tangential regularity. From the tangential regularity of
this stationary problem, wededucethetangential regularity of thehomogeneous
problem (20) (seethenext Theorem 2).

2. Westudythegeneral problem(19). The anisotropicregularity, stated in Theorem
1, isobtained in two steps.

2.i Firstly, from thetangential regularity of problem(20) above, wededucethe
anisotropic regularity of (19) at order m= 1.

2.ii Eventually, weobtain the anisotropic regularity of (19), at any order m> 1,
by an inductionargument.

3.1. The homogeneous IBVP. Tangential regular ity

In this section, we concentrate on the study of the tangential regularity of solutions
to the IBVP (19), where the initial datum f is identically zero, and the compatibilit y
conditions are fulfilled in a more restrictive form than the one given in (9). More
precisely, we consider the homogeneous IBVP (20) where, for a given integer m≥ 1,
we assumethat the dataFγ,Gγ satisfy the followingconditions:

(21) ∂h
t Fγ | t=0 = 0, ∂h

t Gγ | t=0 = 0, h= 0, . . . ,m−1.

One can prove that conditions (21) imply the compatibilit y conditions (9) of order
m−1, in the case f = 0.
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THEOREM 2. Assumethat Ai ,B, for i = 1, . . . ,n, are inC∞(Q∞), andthat prob-
lem (20) satisfies assumptions (A)–(E); then for all T > 0 andm∈ N there exist con-
stantsCm > 0 andγm, with γm ≥ γm−1, such that for all γ ≥ γm, for all Fγ ∈ Hm

tan(QT)
and all Gγ ∈Hm(ΣT) satisfying(21) theuniquesolution uγ to (20) belongsto Hm

tan(QT),
the traceof Puγ on ΣT belongsto Hm(ΣT) andthea priori estimate

(22) γ‖uγ‖
2
Hm

tan(QT )
+‖Puγ|ΣT‖

2
Hm(ΣT )

≤Cm

(1
γ
‖Fγ‖

2
Hm

tan(QT )
+ ‖Gγ‖

2
Hm(ΣT )

)

is fulfilled.

The first step to prove Theorem 2 is reducing the original mixed evolution problem
(20) to a stationary boundary value problem, where the time is allowed to span the
whole real li ne and it is treated then as an additional tangential variable. To make this
reduction, we extend the data Fγ, Gγ and the unknown uγ of (20) to all positive and
negative times, by following methods similar to those of [1, Ch.9]. In the sequel, for
the sake of simplicity, we remove the subscript γ from the unknown uγ and the data
Fγ,Gγ.

Because of (21), we extend F and G through]−∞,0], by setting them equal
to zero for all negative times; then for times t > T, we extend them by “reflection” ,
following Lions–Magenes [7, Theorem 2.2]. Let us denote by F̆ and Ğ the resulting
extensionsof F andG respectively; by construction, F̆ ∈ Hm

tan(Q) and Ğ∈ Hm(Σ).
As we did for the data, the solution u to (20) is extended to all negative times,

by setting it equal to zero. To extendu also for times t > T, we exploit the assumption
(E). Moreprecisely, for every T ′ > T we consider themixed problem

(23)
(γ+L)u = F̆| ]0,T′[ in QT ′ ,

Mu = Ğ| ]0,T ′[ , onΣT ′ ,
u| t=0 = 0, in Ω

Assumption (E) yields that (23) admitsa uniquesolutionuT′ ∈C([0,T ′];L2(Ω)), such
that PuT′ ∈ L2(ΣT ′) andthe energy estimate

(24)
‖uT′(T ′)‖2

L2(Ω)
+ γ‖uT′‖2

L2(QT′ )
+ ‖PuT′ |ΣT′

‖2
L2(ΣT′ )

≤C′

(
1
γ
‖F̆| ]0,T′[‖

2
L2(QT′ )

+ ‖Ğ| ]0,T′[‖
2
L2(ΣT′ )

)

is satisfied for all γ ≥ γ′ and some constants γ′ ≥ 1 andC′ > 0 depending only on T ′

(and thenorms‖Ai‖Lip(QT ′ ), ‖B‖L∞(QT′ )
).

From theuniquenessof theL2 solution, we infer that for arbitrary T ′′ > T ′ ≥ T
we have uT ′′ = uT ′ (uT := u) over ]0,T ′[. Therefore, we may extend u beyondT, by
setting it equal to theuniquesolution of (23) over ]0,T ′[ for all T ′ > T. Thuswedefine

(25) ŭ(t) :=

{
uT ′(t) , ∀ t ∈]0,T ′[ , ∀T ′ > T ,

0, ∀ t < 0.
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Since ŭ, F̆, Ğ are all i dentically zero for negative times, we can take arbitrary smooth
extensions of the coefficients of the differential operator L and the boundary operator
M (originally defined on Q∞ and Σ∞) on Q and Σ respectively, with the only care to
preserverank Aν = r andrank M = d and kerAν ⊆ kerM for all t < 0. Thisextensions,
that we fix once and for all , are denoted again by Ai ,B,M. Moreover, we denote by L
the correspondingextension onQ of the differential operator (4).

By construction, we havethat ŭ solves theboundary valueproblem (BVP)

(26)
(γ+L)u = F̆ in Q,

Mu = Ğ, onΣ .

Using the estimate (24), for all T ′ > T, and noticing that the extended data F̆ , Ğ, as
well as the solution ŭ, vanish identically for large t > 0, we derive that ŭ enjoys the
followingestimate

(27) γ‖ŭ‖2
L2(Q)+ ‖Pŭ|Σ‖

2
L2(Σ) ≤ C̆

(
1
γ
‖F̆‖2

L2(Q)+ ‖Ğ‖2
L2(Σ)

)
,

for all γ ≥ γ̆, andsuitable constants γ̆ ≥ 1, C̆> 0.

For the sake of simplicity, in the sequel we remove the superscript from the
unknown ŭ and thedata F̆ , Ğ of (26).

Thenext step is to movefrom BVP (26) to a similar BVP posed in the (n+1)-
dimensional positive half-spaceRn+1

+ := {(x1,x′, t) : x1 > 0, (x′, t) ∈ R
n}. To make

this reduction into a problem in R
n+1
+ , we follow a standard localization procedureof

the problem (26) near the boundary of the spatial domain Ω; this is done by taking a
covering {U j}

l
j=0 of Ω and a partition of unity {ψ j}

l
j=0 subordinate to this covering,

as in Section 2. Assuming that each patch U j , j = 1, . . . , l , is sufficiently small , we can
write the resulting localized problem in the form

(28)
(γ+L)u = F inR

n+1
+ ,

Mu = G, onRn .

As a consequenceof the localization, the data F and G of the problem (28) are func-
tions in Hm

tan(R
n+1
+ ) and Hm(Rn) respectively; without lossof generality, we may also

assumethat theforcingterm F andthesolutionu aresupported in theset B+× [0,+∞[,
and the boundary datum G is supported in ∂B+× [0,+∞[. In (28)1, L is now a differ-
ential operator inR

n+1 of the form

(29) L = ∂t +
n

∑
i=1

Ai(x, t)∂i +B(x, t) ,

where the coefficientsAi ,B arematrix-valued functionsof (x, t) belongingto thespace
C∞
(0)(R

n+1
+ ) of therestrictionsontoR

n+1
+ of (matrix-valued) functionsinC∞

0 (R
n+1). Let

us remark that the boundary matrix of (28) is now −A1 | {x1=0}. It is a crucial step that
the previously described localization processcan be performed in such a way that A1
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has the following block structure

(30) A1(x, t) =

(
AI ,I

1 AI ,II
1

AII ,I
1 AII ,II

1

)
, (x, t) ∈R

n+1
+ ,

where AI ,I
1 ,AI ,II

1 ,AII ,I
1 ,AII ,II

1 are respectively r × r, r × (N− r), (N− r)× r, (N− r)×

(N− r) sub-matrices. Moreover, AI ,I
1 (x, t) is invertible over the support of u(x, t) and

we have

(31) AI ,II
1 = 0, AII ,I

1 = 0, AII ,II
1 = 0, in {x1 = 0}×R

n
x′,t .

In view of assumption (C), we may even assume that the matrix M in the boundary
condition(28)2 is just M = (Id,0), where Id is the identity matrix of sized. According
to (30), let usdecomposetheunknown u asu= (uI ,uII ); then wehavePu= (uI ,0).

Following the arguments of [3], one can prove that a local counterpart of the
global estimate (27), associated to the stationary problem (26), can be attached to the
local problem (28). More precisely, there exist constantsC0 > 0 and γ0 ≥ 1 such that
for all ϕ ∈ L2(Rn+1

+ ), supported in B+× [0,+∞[, such that Lϕ ∈ L2(Rn+1
+ ) and γ ≥ γ0,

we have

(32)

γ‖ϕ‖2
L2(Rn+1

+ )
+ ‖ϕI

| {x1=0}‖
2
L2(Rn)

≤C0

(
1
γ
‖(γ+L)ϕ‖2

L2(Rn+1
+ )

+ ‖Mϕ| {x1=0}‖
2
L2(Rn)

)
.

Regular ity of the stationary problem (28)

The analysis performed in the previous section shows that the tangential regularity of
the homogeneous IBVP (20) can be deduced from the study of the regularity of the
stationary BVP (28).

For this stationary problem, we are able to show that if thedataF andG belong
to Hm

tan(R
n+1
+ ) and Hm(Rn) respectively, and the L2 a priori estimate (32) is fulfilled,

then the L2 solution of the problem (28) belongs to Hm
tan(R

n+1
+ ), the traceof its non-

characteristic part uI belongsto Hm(Rn) and the estimateof order m

(33) γ ‖u‖2
Hm

tan(R
n+1
+ )

+‖uI
|{x1=0}‖

2
Hm(Rn) ≤Cm

(
1
γ
‖F‖2

Hm
tan(R

n+1
+ )

+‖G‖2
Hm(Rn)

)

is satisfied with some constantsCm > 0, γm ≥ 1 and for all γ ≥ γm.

Then we recover the tangential regularity of the solution u to problem (26),
posed on Q = Ω ×R, and we find an associated estimate of order m analogous to
(33). Recalli ng that the solution u to (26) is the extension of the solution uγ of the
homogeneous IBVP (20), from the tangential regularity of u we can now derive the
tangential regularity of uγ, namely that uγ ∈ Hm

tan(QT) and Puγ | ΣT ∈ Hm(ΣT). To get
the energyestimate(22), weobservethat the extended data F̆ andĞ aredefined in such
a way that

‖F̆‖Hm
tan(Q) ≤C‖Fγ‖Hm

tan(QT ), ‖Ğ‖Hm(Σ) ≤C‖Gγ‖Hm(ΣT ) ,
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with positive constant C independent of Fγ, Gγ and γ.

In order to prove the announced tangential regularity of the BVP (28), we adapt the
classical technique of Friedrichs’ molli fiers to our setting. More precisely, following
Nishitani andTakayama[10], weintroduce a “tangential” molli fier Jε well suited to the
tangential Sobolev spaces. Let χ be afunction in C∞

0 (R
n+1). For all 0< ε < 1, we set

χε(y) := ε−(n+1)χ(y/ε). We defineJε : L2(Rn+1
+ )→ L2(Rn+1

+ ) by

(34) Jεw(x) :=
∫
Rn+1

w(x1e−y1,x′− y′)e−y1/2χε(y)dy,

which differs from the one introduced in Rauch [15] by the factor e−y1/2. UsingJε we
follow the same lines in Tartakoff [ 22], Nishitani and Takayama [10] to get regularity
of theweak solutionu.

Starting from a classical characterization of the ordinary Sobolev spaces given
in [6, Theorem 2.4.1], the following characterization of tangential Sobolev spaces
Hm

tan(R
n+1
+ ) by meansof Jε can beproved.

PROPOSITION 1. Assumethat χ ∈C∞
0 (R

n+1) satisfiesthefollowingconditions:

χ̂(ξ) = O(|ξ|p) asξ → 0, for some p∈ N;(35)

χ̂(tξ) = 0, for all t ∈ R , impliesξ = 0.(36)

Then for all m∈N with m< p, we havethat u∈ Hm
tan(R

n+1
+ ) if and only if

a. u∈ Hm−1
tan (Rn+1

+ );

b.
∫ 1

0
‖Jεu‖2

L2(Rn+1
+ )

ε−2m
(

1+ δ2

ε2

)−1dε
ε is uniformly bounded for 0< δ ≤ 1.

In view of Proposition 1, showing that the solution u ∈ Hm−1
tan (Rn+1

+ ) of (28) actually
belongs to Hm

tan(R
n+1
+ ) amounts to provide auniform bound, with respect to δ, for the

integral quantity appearing in b., computed for the molli fied solution Jεu. To get this
bound, the schemeis the following:

1. We noticethat Jεu solves the followingBVP

(37)
(γ+L)Jεu= JεF +[L,Jε]u, inR

n+1
+ ,

MJεu= Gε , onRn ,

where [L,Jε] is the commutator between the operators L and Jε, and Gε is a
suitable boundary datum that can be computed from the original datum G and
the functionχε involved in (34) (see[9]).

2. Since the BVP (37) is the same as (28), with data JεF + [L,Jε]u and Gε, the L2

estimate (32) applied to (37) gives that theL2 norm of Jεu can be estimated by

(38)

γ ‖Jεu‖2
L2(Rn+1

+ )
+ ‖JεuI

|{x1=0}‖
2
L2(Rn)

≤C0

(
1
γ
‖JεF +[L,Jε]u‖

2
L2(Rn+1

+ )
+ ‖Gε‖

2
L2(Rn)

)
.
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3. From theprecedingestimate, we immediately derive, for the integral quantity in
b. andthe analogousintegral quantity associated to thetraceof noncharacteristic
part of thesolution, the following bound

(39)

γ
∫ 1

0
‖Jεu‖2

L2(Rn+1
+ )

ε−2m
(

1+ δ2

ε2

)−1dε
ε

+
∫ 1

0
‖JεuI

|{x1=0}‖
2
L2(Rn)

ε−2m
(

1+ δ2

ε2

)−1dε
ε

≤C0

(
1
γ

∫ 1

0
‖JεF‖2

L2(Rn+1
+ )

ε−2m
(

1+ δ2

ε2

)−1dε
ε

+
1
γ

∫ 1

0
‖[L,Jε]u‖2

L2(Rn+1
+ )

ε−2m
(

1+ δ2

ε2

)−1dε
ε

+
∫ 1

0
‖Gε‖

2
L2(Rn)

ε−2m
(

1+ δ2

ε2

)−1dε
ε

)
.

SinceF ∈Hm
tan(R

n+1
+ ) andG∈Hm(Rn), thefirst andthelast integralsin theright-

handsideof (39) can be estimated by‖F‖2
Hm

tan(R
n+1
+ )

and‖G‖2
Hm(Rn) respectively.

It remains to provide auniform estimate for the middle integral involving the
commutator [L,Jε]u. For this term weget the followingestimate

(40)

∫ 1

0
‖[L,Jε]u‖2

L2(Rn+1
+ )

ε−2m
(

1+ δ2

ε2

)−1dε
ε

≤C
∫ 1

0
‖Jεu‖2

L2(Rn+1
+ )

ε−2m
(

1+ δ2

ε2

)−1dε
ε

+Cγ2‖u‖2
Hm−1

tan (Rn+1
+ )

+C‖F‖2
Hm

tan(R
n+1
+ )

.

The estimate(40) isobtained bytreatingseparately thedifferent contributionsto
the commutator [L,Jε] associated to the different terms in the expression(29) of
L (see[9] for details). The termsof the the commutator involving the tangential
derivatives [Ai∂i ,Jε], for i = 2, . . . ,n (note that [∂t ,Jε] = 0) and the zero-th order
term [B,Jε] are estimated by using [10, Lemma9.2]. Theterm [A1∂1,Jε], involv-
ing the normal derivative ∂1, needs a more careful analysis; to estimate it, it is
essential to make use of the structure (30), (31) of the boundary matrix in (28).
Actually, by inverting AI ,I

1 in (28)1, we can write ∂1uI as the sum of space-time
tangential derivativesby

∂1uI = ΛZu+R,

where

ΛZu=−(AI ,I
1 )−1



(

∂tuI +
n

∑
j=2

A jZ ju

)I

+AI ,II
1 ∂1uII


 ,

R= (AI ,I
1 )−1(F − γu−Bu)I .

Here, we use the fact that, if a matrix A vanishes on {x1 = 0}, we can write
A∂1u = HZ1u, where H is a suitable matrix; this trick transforms some normal
derivativesinto tangential derivatives.
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Combiningtheinequaliti es(39) and(40), andarguing byfiniteinduction onm to
estimate‖u‖Hm−1

tan (Rn+1
+ ) in theright-handsideof (40), weget thedesired uniform

boundsof the integrals

∫ 1

0
‖Jεu‖2

L2(Rn+1
+ )

ε−2m
(

1+ δ2

ε2

)−1dε
ε ,

∫ 1

0
‖JεuI

|{x1=0}‖
2
L2(Rn)

ε−2m
(

1+ δ2

ε2

)−1dε
ε ,

appearing in the left-hand side of (39). From this, in view of Proposition 1and
[6, Theorem 2.4.1], we conclude that u ∈ Hm

tan(R
n+1
+ ) and uI ∈ Hm(Rn). The a

priori estimate (33) isdeduced from (39), by followingthe same arguments.

3.2. The nonhomogeneous IBVP. Casem= 1

For nonhomogeneous IBVP, we mean theproblem (1)–(3) where the initial datum f is
different from zero.

As announced before, we firstly prove the statement of Theorem 1 for m= 1,
namely weprovethat, under the assumptions(A)–(F), for all F ∈H1

∗ (QT), G∈H1(ΣT)
and f ∈ H1

∗ (Ω), with f (1) ∈ L2(Ω), satisfying the compatibilit y conditionM|t=0 f|∂Ω =

G|t=0, the unique solution u to (1)–(3), with data (F,G, f ), belongs to CT(H1
∗ ) and

Pu|ΣT
∈ H1(ΣT); moreover, there exists a constant C1 > 0 such that u satisfies the a

priori estimate

(41) ‖u‖
CT(H1

∗ )
+‖Pu|ΣT

‖H1(ΣT )
≤C1

(
||| f |||1,∗+‖F‖H1

∗ (QT )
+‖G‖H1(ΣT )

)
.

To this end, we approximate the data with regularized functions satisfying one more
compatibilit y condition. In this regard we get the following result, for the proof of
which we refer to [9] and the referencestherein.

LEMM A 1. Assume that problem (1)–(3) obeys the assumptions (A)–(E). Let
F ∈H1

∗ (QT), G∈H1(ΣT), f ∈H1
∗ (Ω), with f (1) ∈ L2(Ω), such that M|t=0 f|∂Ω = G|t=0.

Then there exist Fk ∈ H3(QT), Gk ∈ H3(ΣT), fk ∈ H3(Ω), such that M|t=0 fk = Gk|t=0,

∂tM|t=0 fk+M|t=0 f (1)k = ∂tGk|t=0 on∂Ω, andsuch that Fk → F in H1
∗ (QT), Gk → G in

H1(ΣT), fk → f in H1
∗ (Ω), f (1)k → f (1) in L2(Ω), ask→+∞.

Given thefunctionsFk,Gk, fk asin Lemma1, wefirst calculatethroughequation

Lu= Fk,u|t=0 = fk, the initial time derivatives f (1)k ∈ H2(Ω), f (2)k ∈ H1(Ω). Then we
take afunctionwk ∈ H3(QT) such that

wk|t=0 = fk , ∂twk|t=0 = f (1)k , ∂2
ttwk|t=0 = f (2)k .

Noticethat thisyields

(42) (Lwk)|t=0 = Fk|t=0 , ∂t(Lwk)|t=0 = ∂tFk|t=0 .
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Now we look for a solution uk of problem (1)–(3), with data Fk,Gk, fk, of the form
uk = vk+wk, wherevk is solution to

(43)
Lvk = Fk−Lwk, in QT

Mvk = Gk−Mwk, on ΣT

vk|t=0 = 0, in Ω.

Let usdenote again ukγ = e−γtuk, vkγ = e−γtvk andso on. Then (43) isequivalent to

(44)
(γ+L)vkγ = Fkγ − (γ+L)wkγ, in QT

Mvkγ = Gkγ −Mwkγ, on ΣT

vkγ|t=0 = 0, in Ω.

We easily verify that (42) yields
(
Fkγ − (γ+L)wkγ

)
|t=0 = 0, ∂t

(
Fkγ − (γ+L)wkγ

)
|t=0 = 0

andM|t=0 fk|∂Ω = Gk|t=0, ∂tM|t=0 fk|∂Ω +M|t=0 f (1)k|∂Ω = ∂tGk|t=0 yield

(Gkγ −Mwkγ)|t=0 = 0, ∂t(Gkγ −Mwkγ)|t=0 = 0.

Thus the data of problem (44) obey conditions (21) for h = 0,1; then we may apply
to (44) Theorem 2 for γ large enoughand find vk ∈ H2

tan(QT), with Pvk|ΣT
∈ H2(ΣT).

Accordingly, we infer that uk ∈ H2
tan(QT) →֒ CT(H1

∗ ) andPuk|ΣT
∈ H2(ΣT). Moreover

uk ∈ L2(QT) solves

(45)
Luk = Fk, in QT

Muk = Gk, on ΣT

uk|t=0 = fk, in Ω.

Arguing as in the previous section, we take a covering {U j}
l
j=0 of Ω and a related

partition of unity {ψ j}
l
j=0, and we reduce problem (45) into a corresponding prob-

lem posed in the positive half-spaceRn
+, with new data Fk ∈ H3(Rn

+×]0,T[), Gk ∈
H3(Rn−1×]0,T[), fk ∈ H3(Rn

+), and boundary matrix M = (Id,0). We also write
the similar problem solved by the first order derivatives Zuk = (Z1uk, . . . ,Zn+1uk) ∈
H1

tan(QT) = H1
∗ (QT) (where Zn+1 = ∂t). Since assumption (E) is satisfied, applying

the apriori estimate (7) to a differenceof solutions uh−uk of those problems readily
gives

‖uk−uh‖CT(H1
∗ )
+ ‖P(uk−uh)|ΣT

‖H1(ΣT )

≤C
(
||| fk− fh|||1,∗+ ‖Fk−Fh‖H1

∗ (QT )
+ ‖Gk−Gh‖H1(ΣT )

)
.

From Lemma 1, we infer that {uk} is a Cauchy sequence in CT(H1
∗ ) and {Puk|ΣT

}

is a Cauchy sequencein H1(ΣT). Therefore there exists a function in CT(H1
∗ ) which

is the limit of {uk}. Passing to the limit in (45) as k → ∞, we seethat this function
is a solution to (1)–(3). The uniquenessof the L2 solution yields u ∈ CT(H1

∗ ) and
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Pu|ΣT ∈ H1(ΣT). Applying the apriori estimate (7) to the solution uk of (45) and its
first order derivatives, and passing to the limit finally gives (41). This completes the
proof of Theorem 1 for m= 1 in the case of C∞ coefficients. As we already said, here
wedo not deal with the caseof lessregular coefficients, for which thereader is referred
to [9, Sect. 5].

3.3. The nonhomogeneous IBVP. Proof for m≥ 2

Without entering in too many details (we still refer to [9, Sect. 6] for a more exten-
sive discussion), we briefly describe the different steps of the proof, for the reader’s
convenience.

We proceed by finite induction onm. Assume that Theorem 1 is valid up to
m− 1. Let f ∈ Hm

∗ (Ω), F ∈ Hm
∗ (QT), G ∈ Hm(ΣT), with f (k) ∈ Hm−k

∗ (Ω), with k =
1, . . . ,m. Assume also that the compatibilit y conditions(9) hold at theorder m−1. By
the inductive hypothesis there exists a unique solution u of problem (1)–(3) such that
u∈ CT(Hm−1

∗ ).

In order to show that u ∈ CT(Hm
∗ ), we have to increase the regularity of u by

order one, that is by one more tangential derivative and, if m is even, also by one
more normal derivative. This can be done as in [16, 17], with the small change of the
elimination of the auxili ary system (introduced in [16, 17]) as in [2, 19]. At every step,
we can estimate some derivativesof u throughequations, where in the right-handside
we can put other derivativesof u that have already beenestimatedat previous steps. The
reason why the main ideain [16] works, even though here we do not have maximally
nonnegativeboundary conditions, is that for the increase of regularity we consider the
problem of the type of (1)–(3), solved by the purely tangential derivatives, where we
can use the inductive assumption, and other systemsof equations solved by the mixed
tangential and normal derivatives where the boundary matrix vanishes identically, so
that no boundary condition is needed and we can apply an energy method, under the
assumption of thesymmetrizablesystem.
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