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Abstract. We mnsider an initial-boundry value problem for alinea Friedrichs symmetriz-
able system, with charaderistic boundry of constant rank. Asuuming that the problem is
L2 well posed, we show the regularity of the L2 solution, for sufficiently smooth data, in the
framework of anisotropic Sobdev spaces.

1. Introduction

We consider an initial boundry value problem for a linea Friedrichs symmetrizable
system, with charaderistic boundry of constant rank. It is well-known that for solu-
tions of symmetric or symmetrizable hyperbadlic systems with charaderistic boundiry
full regularity (i.e. solvability in the usual Sobdev spacesH™) canna be expeded gen-
eraly becaise of the possblelossof derivativesin the normal diredionto the boundary,
see[23,12].

The natural spaceis the anisotropic Sobdev spaceH.", which comes from the
observation that the one-order gain of normal diff erentiation shoud be compensated
by two-order lossof tangential diff erentiation (cf. [4]). The theory has been developed
mostly for charaderistic boundiries of constant multi plicity (seethe definitionin as-
sumption (B)) and maximally nonregative boundary condtions, see[4, 5, 11, 16, 17,
18 19, 21].

However, there ae important charaderistic problems of physicd i nterest where
boundry condtions are not maximally nonregative. Under the more general Kreiss
Lopainski condtion (KL), the theory has been developed for problems satisfying the
uniform KL condtion with uniformly charaderistic boundaries (when the boundary
matrix has constant rank in aneighbahood d the boundxry), see[8, 1] and references
therein.

In this paper we ae interested in the problem of the regularity. We assume
the existence of the strong L2 solution, satisfying a suitable energy estimate, without
asauming any structural assumption sufficient for existence, such as the fad that the
boundary conditions are maximally disspative or satisfy the Kreiss-L opatinski con-
dition. We show that thisis enoughin order to get the regularity of solutions, in the
natural framework of weighted anisotropic Sobdev spaces H", provided the data ae
sufficiently smoaoth. Obviously, the present results contain in particular what has been
previously obtained for maximally nonregative boundrry condtions.
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Let Q be an open boundkd subset of R" (for afixed integer n > 2), lyinglocdly
on ore side of its gnoath, conreded boundry I := 0Q. For any red T > 0, we
set Qr 1= Qx]0,T[ and Z1 :=T'x]0, T[; in addition we define Qo := Q X [0,400],
20 1= 0Q x [0,400[, Q:= Q xR and X := 9Q x R. We aeinterested in the foll owing
initial boundiry value problem (written in the sequel IBVP)

(1) Lu= F, in Qr
2 Mu= G, onzxt
(3) U‘IZO = f7 in Qa

where L isthefirst order linea partial diff erential operator
n

4 L=20+ ZA(X,t)OﬁB(x,t),
i=

o :=2,0= a%, i=1,...,nandAi(x,t),B(xt) areN x N red matrix-valued functions
of (x,t), for agiveninteger sizeN > 1, defined over Q.. The unknavn u = u(x,t) and
the data F = F(x,t), f = f(x) are red vedor-valued functions with N comporents,
defined onQr and Q respedively. In the boundiry condtions(2), M isasmooth d x N
matrix-valued function o (x,t), defined on X, with maximal constant rank d. The
boundry datum G = G(x,t) is ad-vedor valued function, defined onZt.

Let usdencte by v(X) := (v1(X),...,Vn(X)) the unit outward normal to I" at the
point x € I'; then

© A = 3 AKDUN) . (D) €.

is the bounday matrix. Let P(x,t) be the orthogoral projedion orto the orthogoral
complement of ker A, (x,t), denoted ker A, (x,t)*; it is defined by

(6) P(x,t) = Zim/c(m(}\A\,(x,t))ld)\, (X1) € S,

where C(x,t) is a dosed redifiable Jordan curve with pasitive orientation in the com-
plex plane, enclosingall and orly al non-zero eingenvaluesof A, (x,t). Dencdtingagain
by P an arbitrary smocth extension onQ,, of the ebove projedion, Puand (I — P)u are
cdl ed respedively the noncharacteristic and the characteristic comporentsof thevec
tor field u = u(x,t).

We study the problem (1)—(3) under the foll owing assumptions:

(A) The operator L is Friedrichs symmetrizable, meaning that for all (x,t) € Q,
there exists a symmetric positive definite matrix Sy(x,t) such that the matrices
S(x,t)A(X,t), i =1,---,n, are dso red symmetric; thisimplies, in particular,

that the symbol A(x,t,&) = E Ai(x,1)&; is diagoralizable with red eigenvalues,
i<1

whenever (x,t,&) € Q,, x RN,
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(B) Theboundry ischaracteristic, with constant rank, namely the boundary matrix
A, is snguar on X, and has constant rank 0 < r := rankA(x,t) < N for all
(X,1) € Z; this asuumption, together with the symmetrizability of L and that I
isconneded, yields that the number of negative dgenvalues of A, (the so-cdled
incoming modes) remains constant on .

(C) kerAy(x,t) C kerM(x,t), for al (x,t) € Ze; moreover d = rankM(x,t) must
equal the number of negative @genvalues of A, (x,t).

(D) Theorthogoral projedionP(x,t) onto ker A, (x,t)*, (x,t) € Z, can be extended
as amatrix-valued C” function ower Q,,.

Concerning the solvahility of the IBV P (1)—(3), we state the foll owing well -posedness
assumption:

(E) Existenceof the L? weak solution. Assumethat S, A € Lip(Q,,) fori=1,....n.
Forall T >0andall matricesB € L™(Qy), there exist constantsyp > 1 andCo > 0
suchthat for all F € L?(Qr), G € L2(Z7), f € L?(Q) there exists aunique solu-

tionu € L?(Qr) of (1)~3), with data (F, G, f), satisfying the following proper-

ties:
i. ueC([o,T|;L%(Q));

i. Pus; €L?(Z7);

iii. foraly>ypandO0< 1 <T thesolution u enjoys the following a priori
estimate

T
&2 u(0)Z g +V | & )]z g o
T

@ + [ & Puaq (1) 7 g,

T (1
<G (IIfIEz<Q>+/O —_— (VHF(I)”Ez(Q)-l-HG(tNEz(m)) dt).

When the IBVP (1)—(3) admits an a priori estimate of type (7), with F = Lu,
G =My, forall T > 0andall sufficiently smooth functionsu, one saysthat the problem
isstrondy L? well posed, see eg. [1]. A necessary conditionfor (7) isthevalidity of the
uniform KreissLopatinski condtion (UKL) (an estimate of type (7) has been oktained
by Rauch [13]). On the other hand, UKL is not sufficient for the well posednessand
other structural assumptions have to be taken into acourt, see[1].

Finally, we require the foll owing technicd assumption that for C* approxima-
tions of problem (1)~(3) ore till hasthe existenceof L2 solutions. This gability prop-
erty halds true for maximally nonregative boundiry condtions and for uniform KL
condtions.

(F) Givenmatrices(S,A,B) € c1(HZ) x c1(HP) x c1(HZ2), whereo > [251]+4,
enjoying properties (A)<(E), let (S, A%, B() be C* matrix-valued functions
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convergingto (So, Ai,B) in ¢1(HO) x ¢1(HY) x c1(H2~2) ask — o, and satis-
fying properties (A)—(D). Then, for k sufficiently large, property (E) holds also
for the gpproximating roblems with coefficients (S, A¥ | B®).

The solution o (1)—(3), considered in the statements (E), (F), must be intended in the
sense of Rauch [15]. Thismeansthat for all ve HY(Qr) suchthat vi5, € (A, (kerM))*
andv(T,-) =0in Q, there halds:

/OT<u(t),L*v(t)>dt/OT<F(t),v(t)>dt/ZT(A\,g,v>d0xdt+/Q<f,v(0)>dx,

where L* isthe ajoint operator of L andgisafunction defined onZt such that Mg =
G. Notice dso that for such a we& solution to (1)—(3), the boundiry condtion (2)
makes ense. Inded, in [15, Theorem 1] it is shown that for any u € L?(Qr), with
Lu € L%(Qr), the traceof Ayu on X1 exists in H=%2(Z1). Moreover, for a given
boundry matrix M(x,t) satisfyingassumption (C), there exists another matrix Mo(x,t)
such that M(x,t) = Mo(x,t)Ay(x,t) for al (x,t) € 2. Therefore, for L? solutions of
(2) one has

(8) Mu=G onZr <= MoAuUsz, =G onZr.

In order to studythe regularity of solutionsto the IBV P (1)—(3), thedataF, G, f needto
satisfy some compatibility condtions. The compatibility condtions are defined in the
usual way (see[14]). Given the IBVP (1)~(3), we reaursively define f(" by formally
taking h — 1 time derivatives of Lu = F, solving for df'u and evaluatingit at t = O; for
h=0weset f(O := f. The compatibility condtionof order k > 0 for the IBVP reals
as

P
(9) Z (E) (atpihM)‘t:Of(h) :a{]G‘t:07 Onr, p:O,7k
h=0

In the framework of the precading assumptions, we ae ale to prove the following
theorem.

THEOREM 1. Let me N and s = max{m,[%51] + 5}. Assuime that S, A €
cT(HS), fori=1,...,n, andthat B € ct(H$1) (or B € cr(HS) if m=s). Asume
also that problem (1)—«3) obeys the assumptions (A)—(F). Then for all F € H™(Qr),
GeH™(Zy), f e HMN(Q), with f ¢ H™MN(Q) for h=1, ..., m, satisfying the compat-
ibility condtion (9) of order m— 1, the unique solution uto (1)—(3), with daa (F, G, f),
belongsto c7(H,") andPu; s, € H™(Z7). Moreover u satisfiesthe a priori estimate

20 [lulleram) + Pz lumesr) < C (]l + IF lumgr) + I Gllmesy) )
with a constant Cy, > 0 depending orly on A;, B.
The function spaces involved in the statement abowve (cf. also the asumption

(F)), and the norms appeaing in the energy estimate (10) are introduced in the next
sedion.
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2. Function spaces

For every integer m > 1, H™(Q), H™(Qr) denote the usual Sobdev spaces of order m
over Q and Qr respedively.

In order to define the anisotropic Sobdev spaces, first we need to introduce
the differential operatorsin tangential diredion. Throughot the paper, for every | =
1,2,...,n, thedifferential operator Z; is defined by

Z1:=x101, Zj:=0j,forj=2,...,n.

Then, for every multi-index o = (ay,...,0n) € N", the tangential diff erential operator
Z% of order |a| = 01+ -+ ap is defined by setting

28 =z Z8n

(we dso write, with the standard multi-index notation, % = 83* ...a%n).

We denote by R"} the n-dimensional positive half-spaceR" := {x = (x1,X) €
R": xg >0X = (X,...,%) € R“fl}. For every positive integer m, the tangential
(or conarmal) Sobdev spaceH{,(R"} ) andthe anisotropic Sobdev spaceH"(R'} ) are
defined respedively by:

(11) HE(RY) == {we LA(RY) : Z°we L(RY), [af <m},
(12) HM™RT) := {we L(R?) : z%kwe L2(R"), |a|+ 2k < m},

and equipped respedively with narms

(13 HW|||2-|{Qn(]RQ) = HZGWHEZ(RQ)’
la[<m

(14 WlEmgn) =Y ||Zaa§W||EZ(R1)~
|a|+2k<m

To extend the definition of the ebove spaces to an open bounad subset Q of R"
(fulfilling the asumptions made & the beginning o the previous sdion), we pro-
ceal as follows. First, we take an open covering {U;}}_, of Q such that U;nQ,
j=1,...,1, are diffeomorphic to B, := {x; > 0, |x| < 1}, with " correspondng to
0B, = {x1 =0, |X| <1}, andUp CC Q. Next we chocse asmooth partition o unity
{W;},_o subardinate to the covering {U;}._,. We say that a distribution u belongs to
HE,(Q), if and orly if Youc H™(R") and, foral j=1,...,I, yjue HE (RY), inlocd
coordinatesinUj. The spaceH/3,(Q) is provided with the norm

|
(15 ||U||z|{gn(o) = H‘-IJOU”am(Rn) + leleUHﬁgnm)-
J:

The anisotropic Sobdev spaceH["(Q) is defined in a completely simil ar way as the set
of distributionsuin Q such that You € H™(R") andyju € HM(RY ), inlocd coordinates
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inUj, foral j=1,...,1; itisprovided with the norm
2 2 I 2
(16) [ullfim(q) == lWoullfymgn) + JZlIIlIJJUIIHmM)-

The definitions of H3,(Q) and H"(Q) do na depend onthe choice of the cordinate
patches {UJ} _pandthe oorrespond ng pertition of unity {y; }J o ahdthe normsaris-
ing from dlfferent choicesof Uj, ; are equivalent.

For an extensive study o the anisotropic Sobdev spaces, we refer the reader to
[24], [20Q]; here we just remark that the continuousimbeddings

Ht’é‘n(Q) = Hfén(QL HMQ) = HP(Q), Ym>p>1,
17 HM(Q) = H(Q) = HEy(Q), vm=>1,
HMQ) = HM™2(Q), HNQ) = Hn(Q)
hald true. For the sake of convenience, we dso set HO(Q) = H2,(Q) = L2(Q). The
spaces H3,(Q), HM(Q), endaved with their norms (15), (16), become Hil bert spaces.
Analogously, we define the spaces H,,(Qr) and H'(Qr).

Let C™([0, T]; X) denote the set of all m-times continuously diff erentiable func-
tions over [0, T], taking valuesin a Banach spaceX. We define the spaces

c1(Hian) = ﬂC‘ (0, THHE Q). cr(HM == (NCI(0,TEHM (@),
j=0 j=0

equipped respedively with the norms
Jul2 com [0 2 o -

cor 0O o

T Htan ’
(18
Jull2

m
=™
m
CTHm' Z

For theinitial datum f we set

m
2 . Mz
1= 5 1

3. Thescheme of the proof of Theorem 1

The proof of Theorem 1 is made of several steps.

In order to simplify the forthcoming analysis, heredter we only consider the
case when the operator L has anooth coefficients. For the general case of coefficients
with thefinite regularity prescribedin Theorem 1, werefer thereader to [9]; thiscaseis
treaed by areductionto the smoath coefficients case, based uponthe stabilit y assump-
tion (F). Thus, from now on, we sssume that S, Aj, B are given functionsin C*(Q,,).
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Just for simplicity, we even assume that the mefficients A; of L are symmetric matrices
(in this case the matrix S reduces to Iy, the identity matrix of size N); the case of a
symmetrizable operator can be eaily reduced to this one, just by the gpplicaion o the
symmetrizer § to system (1) (see[9] for detail s).

Below, we introduce the new unknawn uy(x,t) := e Mu(x,t) and the new data
Fy(x,t) := e MF(x,t), Gy(x,t) = e MG(x,t). Then problem (1)—(3) becomesequivalent
to

(y+Luw =K inQr,
Uy|t=0 =f inQ.

Let us now summarizethe main steps of the proof of Theorem 1.

1. Wefirstly consider the homogeneous IBVP

Uy |t=0 =0 inQ.

We study (20), by reducingit to a stationary boundxry value problem (see(26)),
for which we deducethe tangential regularity. From the tangential regularity of
this gationary problem, we deducethe tangential regularity of the homogeneous
problem (20) (seethe next Theorem 2).

2. We studythe general problem (19). The anisotropic regularity, stated in Theorem
1, isobtained in two steps.

2.i Firdtly, fromthetangentia regularity of problem (20) above, we deducethe
anisotropic regularity of (19) at order m= 1.

2.ii Eventually, we obtain the anisotropic regularity of (19), at any order m> 1,
by an induction argument.

3.1. The homogeneous IBVP. Tangential regularity

In this sdion, we mncentrate on the study o the tangential regularity of solutions
to the IBVP (19), where the initial datum f isidenticdly zero, and the compatibility
condtions are fulfilled in a more restrictive form than the one given in (9). More
predsely, we consider the homogeneous IBVP (20) where, for a given integer m> 1,
we ssume that the data Fy, Gy satisfy the foll owing condtions:

(21) OFyt—0=0, 0'Gy1—o=0, h=0,...,m—1.
One can prove that condtions (21) imply the compatibility condtions (9) of order
m—1,inthe cae f = 0.
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THEOREM 2. Assumethat A, B, fori=1,...,n, areinC”(Q,), andthat prob-
lem (20) satisfies assumptions (A)—(E); then for all T > 0 andm € N there exst con
stants Cy > 0 andym, with ym > ym-1, such that for all y > yn, for all F, € H3,(Qr)
and dl Gy € H™(>1) satisfying (21) the unique solution u, to (20) belongsto HR,(Qr),
the trace of Puy on X1 belongsto H™(Z1) andthe a priori estimate

1
22 YIwllEm or) +IPYis Emy) < Cm(\—/||Fv||ﬁtg'n(QT) + HGVHam(zT))
isfulfilled.

The first step to prove Theorem 2 is reducing the original mixed ewolution problem
(20) to a stationary boundxry value problem, where the time is allowed to span the
wholered line and it is treaed then as an additional tangential variable. To make this
reduction, we extend the data F,, Gy and the unknowvn uy of (20) to all paositive and
negative times, by following methods gmilar to those of [1, Ch.9]. In the sequel, for
the sake of simplicity, we remove the subscript y from the unknowvn uy and the data
Fy, Gy.

Becaise of (21), we extend F and G through] — 0, 0], by setting them equal
to zero for al negative times; then for timest > T, we extend them by “refledion”,
following Lions-Magenes [7, Theorem 2.2]. Let us denote by F and G the resulting
extensionsof F and G respedively; by construction, F € H7, (Q) and G € H™(S).

Aswe did for the data, the solution u to (20) is extended to all negative times,
by setting it equal to zero. To extend u also for timest > T, we exploit the assumption
(E). More predsely, for every T’ > T we consider the mixed problem

(Y+Lu =Fpr inQr,
(23) Mu = GHO,T’[’ onZys,
U‘ t=0 - 0, in Q

Assumption (E) yields that (23) admits a unique solution urs € C([0,T'];L?(Q)), such
that Puy/ € L2(Z7/) andthe energy estimate

HUT’ (T/)HEZ(Q) +VHUT’ HEZ(QT,) + HPUT/ | Zq HE?(ZT/)

24 L o "
< (S1Fi0ilEagp + IS10m s, )

is stisfied for all y>y and some constantsy > 1 and C' > 0 depending orly on T’

(andthe norms [|Ail[Lipqp)» IIBllL=(@p)-

From the uniquenessof the L? solution, we infer that for arbitrary T > T’ > T
we have upr = uys (Ut = u) over |0, T’[. Therefore, we may extend u beyond T, by
settingit equal to the unique solution o (23) over |0, T'[ for all T/ > T. Thuswe define

) TLVT >T
(25) d(t) - Ur (t)7 vt 6]07 [a v > 3
0, Vt<O.
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Sinced, F, G are dl i denticdly zero for negative times, we can take abitrary smooth
extensions of the wefficients of the differential operator L and the boundary operator
M (originaly defined on Q. and Z.,) on Q and X respedively, with the only care to
preserverank A, =r andrank M = d and kerA, C kerM for al t < 0. Thisextensions,
that we fix once and for all, are denoted again by A;, B,M. Moreover, we denote by L
the correspondngextension onQ of the diff erential operator (4).

By construction, we have that U solves the boundiry value problem (BVP)

(y+Lu = F inQ,
(26) Mu = G, onZ.
Using the estimate (24), for all T’ > T, and ndicing that the extended data F, G, as
well as the solution 4, vanish identicdly for larget > 0, we derive that U enjoys the
following estimate

o o (1 . o
@7 VI g + 1Py < C (S Ra g+ I61Ea )

for all y >, and suitable onstantsy > 1, C > 0.

For the sake of simplicity, in the sequel we remove the superscript from the
unknawn U and the data F, G of (26).

The next step isto move from BVP (26) to asimilar BVP posed in the (n+ 1)-
dimensional positive half-spaceRT™ := {(x1,X,t) : X1 > 0, (X,t) € R"}. To make
this reduction into a problem in Rfrl, we follow a standard locdization procedure of
the problem (26) nea the boundxry of the spatial domain Q; thisis dore by taking a
covering {U,-}'J-:0 of Q and a partition o unity {Lle}'j:O subardinate to this covering,
asin Sedion 2 Asumingthat ead patch Uj, j = 1,...,1, is aufficiently small, we can
write the resulting locdized problem in the form

(y+Lu = F inRY
(28) Mu = G onR".

3

As a mnsequence of the locdizaion, the data F and G of the problem (28) are func-
tionsin H (RT) and HM(RM) respedively; without lossof generdlity, we may also
assume that theforcingterm F andthe solutionu are suppatedinthe set B, x [0, 4o,
and the boundxry datum G is suppated in dB, x [0, +oo[. In (28)1, L isnow adiffer-
ential operator in R™1 of the form

(29) L=0d+ _im (x,1)di +B(x.t),

where the wefficients A;, B are matrix-valued functions of (x,t) belongngto the space
Clp) (R4 of therestrictionsonto R of (matrix-valued) functionsin Cg (R™1). Let
us remark that the boundary matrix of (28) isnow —Ay | (x,—oy- It isa aucia step that

the previoudly described locdizaion processcan be performed in such a way that Ay
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has the foll owing Hock structure

Al AL

where A'l",A'l’II ,Ag",Ag’" are respedively r xr, r x (N—r), (N—r) xr, (N—r) x

(N —r) sub-matrices. Moreover, A'l’I (x,t) isinvertible over the suppat of u(x,t) and
we have
(31) Al =0, Al'=0, A" =0 in {x=0}xR,
In view of assumption (C), we may even assume that the matrix M in the boundiry
condtion (28), isjust M = (I4,0), where I isthe identity matrix of sized. According
to (30), let us decompose the unknavnu asu = (u',u"); then we have Pu = (u',0).
Following the aguments of [3], one can prove that a locd courterpart of the
global estimate (27), asociated to the stationary problem (26), can be atached to the
locd problem (28). More predsely, there exist constants Cy > 0 and yp > 1 such that
for al ¢ € L2(RT1), suppatedin B x [0, 4], such that Ld € L2(RT) andy > vo,
we have

V||¢|||_z Rn+1 +||¢ | (= O}|||_2 RN)

(32 )
o S0+ L0z, + MO o1 P )

Regularity of the stationary problem (28)

The analysis performed in the previous ®dion shows that the tangentia regularity of
the homogeneous IBVP (20) can be deduced from the study o the regularity of the
stationary BV P (28).

For this dationary problem, we ae aleto show that if the dataF and G belong
to HT,(RT1) and HM(R™) respedively, and the L? a priori estimate (32) is fulfilled,
then the L? solution o the problem (28) belongs to HT,(RT™), the traceof its non-
charaderistic part u' belongsto H™(R") and the estimate of order m

(33 VHUH m (&™) Ul oy lfiman) <Cm( HFH m (R +||G||HmR"))

is stisfied with some constantsCry, > 0, ym > 1 andfor all y > ym.

Then we recover the tangential regularity of the solution u to problem (26),
posed on Q = Q x R, and we find an associated estimate of order m analogots to
(33). Recdling that the solution u to (26) is the extension o the solution uy of the
homogeneous IBVP (20), from the tangential regularity of u we can now derive the
tangential regularity of uy, namely that u, € HZ,(Qr) and Puy s, € H™(Z1). To get
the energy estimate (22), we observethat the extended dataF and G are defined in such
away that

IFlnm @ <ClIFlhm©r):  IGlamz) < ClIGyIumes;y)
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with paositive constant C independent of Fy, Gy andy.

In order to prove the annourced tangential regularity of the BVP (28), we aapt the
clasdcd technique of Friedrichs mollifiers to our setting. More predsely, following
Nishitani and Takayama[10], weintroduce a ‘tangential” mollifier J well suited to the
tangential Sobdev spaces. Let x be afunctionin CS°(R“+1). Foral 0<e <1, weset
Xe(y) := &~ (M Dx(y/e). We define J : L2(RT™) — L2(RTHY) by

(39 JeW(X) := /IR n+1w(xle*yl,x’ —y)e Y12 (y)dy,

which differs from the one introduced in Rauch [15] by the fadtor e Y1/2, Using J; we
follow the same lines in Tartakoff [ 22], Nishitani and Takayama[10] to get regularity
of the we& solutionu.

Starting from a dasdcd charaderizaion o the ordinary Sobdev spaces given
in [6, Theorem 2.4.1], the following charaderization of tangential Sobdev spaces
HZ,(RT) by means of J; can be proved.

PROPOSITION 1. Assumethat x € C (R"1) satisfies the foll owing conditions:
(39 X(&) =O([g|") as¢ — 0, for somep € N;

(36) X(t&) =0, forallt e R, implies§ = 0.
Then for all m e N with m < p, we havethat u € H (RT™) if and orly if

a. ue HE (R,

1 -1
b. / ||Jsu||iz(R,H1)e*2m (1+ S—i) % isuniformly bounced for 0 < & < 1.
0 +

In view of Propasition 1, showing that the solution u € H{Z, 1 (RT™) of (28) adually
belongs to HT,(RT1) amourtsto provide auniform bound with resped to 3, for the
integral quantity appeaingin b., computed for the molli fied solution Jsu. To get this
bound the schemeis the foll owing:

1. We naticethat J:u solvesthe following BVP

37) (Y+L)Ju=JF + L, &Ju, inRT*,
MJEu=Gg, onR",

where [L,Je] is the commutator between the operators L and J, and G is a
suitable boundry datum that can be computed from the original datum G and
the functionxe involved in (34) (see[9)]).

2. Sincethe BVP (37) is the same & (28), with data J;F + [L, JeJu and G¢, the L2
estimate (32) applied to (37) gives that the L2 norm of J.u can be estimated by

V96Ul g3y + 1960 540y 2

39) 1
<G (9||JsF - (L Ul e + |G8||52<R“>) :
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3. From the preceding estimate, we immediately derive, for the integral quantity in

b. andthe analogousintegral quantity associated to thetraceof noncharaderistic
part of the solution, the following bound

1 -1
_ & de
V[ IR0, a2 (14 5) %
1
2 de
+/ 19et oy P22 (14 5) L

19
(39) <Gy ( [ 1012, e (14 2)

2 &) tde
42 LIl g (14 5)

! - 2\ "lde
+ ) 1Gelganz ™ (14 %) ?)'

SinceF € HT (RT) andG € HM(R"), thefirst andthe last integralsintheright-
hand side of (39) can be estimated byHFH m (R and HGHHm R) respedively.

It remains to provide auniform estimate for the middle integra invalving the
commutator [L, Je]Ju. For this term we get the foll owing estimate

1

_ d

L0, 2 (14 5)

1

d

(40) <c/ 3eulZ e 2 (1) E
HOPIUIZ g 1 g, + CIF Iy i

The estimate (40) is obtained by treding separately the diff erent contributionsto
the commutator [L, Js] asociated to the diff erent termsin the expresdon (29) of
L (see[9] for detail 5). The terms of the the commutator involving the tangential
derivatives [Ai0;, J], fori = 2,...,n (nate that [d;,J¢] = 0) and the zeo-th order
term [B, J¢] are estimated by uising[10, Lemma9.2]. Theterm [A101, J], involv-
ing the normal derivative 01, needs a more caeful analysis, to estimate it, it is
essential to make use of the structure (30), (32) of the boundary matrix in (28).

Actualy, by inverting Al in (28);, we can write 41U as the sum of spacetime
tangential derivatives by

01U = AZu+R,

n |
AZu= —(AH)1 <6u'+ A-Z-u) + A oqut
! { h ,Zz iZj 1
R=(A}')"1(F —yu—Bu)".

Here, we use the fad that, if a matrix A vanishes on {x; = 0}, we can write
Ad1u = HZyu, where H is a suitable matrix; this trick transforms some normal
derivativesinto tangential derivatives.

where
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Combiningtheinequaliti es (39) and (40), and arguing byfiniteinduction onmto
estimate || uHth;El(RTl) in theright-hand side of (40), we get the desired uriform
bounds of the integrals

1 -1
2 —2m 3\ ~de
J 13eulz e (14 )

1 -1
| 2 -2 3\ Tde
/O HJSU‘{Xlzo}HLZ(Rn)S m (]—Jr g) &

appeaingin the left-hand side of (39). From this, in view of Propasition 1and
[6, Theorem 2.4.1], we conclude that u € HT (RT) and u' € H™(R"). The a
priori estimate (33) is deduced from (39), by foll owing the same aguments.

3.2. Thenonhomogeneous IBVP. Casem=1

For nonhamogeneous IBV P, we mean the problem (1)—(3) wherethe initial datum f is
different from zero.

As annourced before, we firstly prove the statement of Theorem 1 for m= 1,
namely we provethat, under the essumptions (A)—(F), forall F ¢ H1(Qr), Ge H(Z7)
and f € HY(Q), with (1) € L%(Q), satisfying the compatibility condtionM_ofjaq =
Gjt—o, the unique solution u to (1)~3), with data (F,G, f), belongs to cr(HY) and
Pus, € HY(=1); moreover, there exists a constant C; > 0 such that u satisfies the a
priori estimate

(4D ey IPUsy ey <Co (Tl +IF Iz o)+ Gz )-

To this end, we gproximate the data with regularized functions stisfying ore more
compatibility condtion. In this regard we get the following result, for the proof of
which we refer to [9] and the references therein.

LEMMA 1. Asaume that problem (1)—(3) obeys the assumptions (A)—(E). Let
F eHX(Qr), GeH(Zr), f e HY(Q), with (1) € L2(Q), suchthat Mo fjaq = Gy—o.
Then there exst i € H3(Qr), Gk € H3(Z1), fi € H3(Q), such that Myi_o fk = Gy
Mo+ Mi—o " = 8:Gyro 0NOQ, andsuch that Fy — F in H1(Qr), Gk — Gin
HL(S7), fc — finHY(Q), f1P — 1 inL2(Q), ask — +o.

Giventhefunctions g, Gy, fk asin Lemma 1, wefirst cdculate throughequation
Lu = R, U—g = fi, theinitia time derivatives fk(l) € H?(Q), fk<2) € HY(Q). Thenwe
take afunctionwy € H3(Qr) such that
1 2
Wit—o = fk, OtWit—o = fé ), O Wigr—o = f|£ )
Noticethat thisyields

(42 (Lwk)jt—0 = Fxt=0, 0t (Lwi)t—0 = 0tFq—o-
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Now we look for a solution uy of problem (1)—(3), with data F, Gy, fk, of the form
Uk = Vi + Wk, where v is lutionto

Lvk = R — Lw, in Qr
(43) Mvy = Gy — Mwy, onzt
Vk\t:O =0, in Q.

Let us denote again Uy, = e uy, Viy = e Vv and so on Then (43) isequivalent to

(Y+L)Viy =Ry — (Y+ L)Wy,  inQr
(44) Mviy = Giy — Mwiy, on St
ka‘tzo = 07 in Q.

We eaily verify that (42) yields
(Fy— (Y4 L)wiy) t=o=0, O (Fy— (Y4 L)wiy) t—0 =0
andMi—ofiaa = Gyi=0, tMji=0fiao +Mji—o fé‘la)g = 0tGyr—o yield
(Gky — MWiy)jt—0 = 0, 8t(Gky — MWy)ji—0 = 0.

Thus the data of problem (44) obey condtions (21) for h = 0,1; then we may apply
to (44) Theorem 2 for y large enoughand find vik € HZ,(Qr), with Pvs, € H?(Z7).
Accordingly, we infer that uy € H3,(Qr) < cr(H2) and Puys, € H2(Zr). Moreover
Uk € L2(Qr) solves

Luk = F, in Qr
(45) Mu, = Gy, on >t
Uyt=0 = fk, in Q.

Arguing as in the previous sdion, we take a ®vering {Uj}lj:O of Q and a related
partition o unity {qu}'j:O, and we reduce problem (45) into a correspondng prob-
lem posed in the positive half-spaceR", with new data F, € H3(R" x]0,T|), Gk €
H3(R"™1x]0,T]), fk € H3(R"), and boundry matrix M = (14,0). We dso write
the similar problem solved by the first order derivatives Zuy = (Z1Uy, .. .,Zn+1Uk) €
Hin(Qr) = HY(Qr) (Where Zn, 1 = d;). Since @umption (E) is sttisfied, applying
the apriori estimate (7) to a diff erence of solutions u, — ug of those problems readily
gives
[[Uic = Unll o 2y + IP(U= Un) sy [[H1csq)

< C (11— fulllze + IFc= Fullu o) + 1= Gnllrzy) )

From Lemma 1, we infer that {uc} is a Cauchy sequencein cr(H}) and {Puys, }
is a Cauchy sequencein HY(Zt). Therefore there exists afunctionin ¢ (H2) which
is the limit of {ux}. Passng to the limit in (45) as k — o, we seethat this function
is a solution to (1)«(3). The uniquenessof the L? solution yields u € ¢7(H}) and
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Pus; € H1(Zr). Applyingthe apriori estimate (7) to the solution uy of (45) and its
first order derivatives, and passng to the limit finally gives (41). This completes the
proof of Theorem 1 for m= 1in the cae of C” coefficients. Aswe drealy said, here
wedo nd ded with the cae of lessregular coefficients, for which thereader isreferred
to [9, Sed. 5].

3.3. The nonhomogeneous IBVP. Proaof for m> 2

Without entering in too many details (we still refer to [9, Sed. 6] for a more exten-
sive discusson), we briefly describe the diff erent steps of the prodf, for the reader’'s
convenience

We proceal by finite induction onm. Asaume that Theorem 1 is valid upto
m—1. Let f e HM(Q), F € HM(Qr), G € H™(Z7), with £ € HM™k(Q), with k =
1,...,m. Asaume dso that the compatibility condtions (9) hold at the order m— 1. By
the inductive hypathesis there exists a unique solution u of problem (1)—(3) such that
ue cr(HML).

In order to show that u € ¢t (HJ"), we have to increase the regularity of u by
order one, that is by ore more tangential derivative and, if mis even, aso by ore
more normal derivative. This can be dore asin [16, 17], with the small change of the
elimination o the auxili ary system (introducedin [16, 17]) asin[2, 19]. At every step,
we can estimate some derivatives of u throughequations, where in the right-hand side
we can pu other derivativesof u that have dready been estimated at previous deps. The
reason why the main ideain [16] works, even though lere we do nd have maximally
nonregative boundxry condtions, is that for the increase of regularity we cmnsider the
problem of the type of (1)—(3), solved by the purely tangential derivatives, where we
can use the inductive asssumption, and aher systems of equations lved by the mixed
tangential and namal derivatives where the boundiry matrix vanishes identicdly, so
that no boundry condtionis needed and we can apply an energy method, uncer the
assumption o the symmetrizeble system.
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