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Dedicated to Professor Luigi Rodino onthe occasion d his 60th birthday

Abstract. In this article, we prove the boundedness and compadness of locdizaion opera
tors asciated with Stockwell transforms, which depend ona symbad and two windows, on
LP(R),1< p< oo,

1. Introduction

1.1. The Stockwell transform

The Stockwell transform, which wasdefined in [13], isahybrid of the Gabor transform
and the wavelet transform. For asignal f € L2(R), the Stockwell transform S f with
resped to thewindow ¢ € L1(R) NL?(R) isgiven by

(1) S¢f(b,E):(2T[)*1/2|E|/j°e*ixzf(x)q)(i(x—b))dx, beR, £cR.

More predsely,
S f(b,&) = (f,0°%),
where
@) 0°¢ = (2m)Y2g[X(E(x b)),
or

0% = (2r) Y 2M T_pDs 0,

and ( , ) is the inner product in L2(R). Here, Mg, T_, and D; are the moduation
operator, the trandation operator and the dil ation operator, defined by

(Mgh)(x) = €*h(x),
(T-6h) (%) = h(x—b),
(Dgh)(x) = [&[h(&x),

for dl x € R and al measurable functionh onR.

*This reseach has been suppated by the Natural Sciences and Engineging Reseach Courcil of
Canada.
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A grea amourt of articles use the Stockwell transform to study applied prob-
lems, covering areas as geophysics, engineaing o biomedicine (seethe referenceslist
inthe papers[9] and[14]). Some mathematicd aspeds of such atransform are studied
or expanded in the papers[2, 8, 9, 10, 11, 14].

1.2. Reoonstruction formula

In an attempt to reconstruct asignal f from its Stockwell spedrum {S, f(b,€) : b, €
R}, we have the followingresult in [8].

THEOREM 1. Let ¢ € L%(R) besuchthat ||¢ ]| 2(x) = 1 and

0 _ 2
) / WW(ET”'& <o

Then for all signds f and gin L?(R),

db
@) (f,0)2z) //Spfb{Sq,g(bE ST
where
0 o 2
® o= [ eI

and "~ denotesthe Fourier transform defined by

FQ) = (21'[)*'\'/2/ e CF (x) dx

RN
for all F in LY(RN).

REMARK 1. Theorem 1 is known as the Plancherel formula or the resolution
of the identity formulafor the one-dimensional Stockwell transform. The integrability
condtion (3) is the admisshility condtion for afunction ¢ in L?(R) to be awindow.
An important corollary of Theorem 1 isthat every signal f can be reconstructed from
its Stockwell spedrum by means of the inversionformula

© = [ e S

That the admisshility condtion (3) is a necessary condition for the inversion formula
for the Stockwell transform can be seen by letting f = g = ¢ in (4). Details can be
foundin [7].
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1.3. Localization operators

Let ¢, be measurable functions on R, o be measurable function onR?, then for all
functions f € LP(R), we define the locdi zation operator Lg ¢ y f, by

bg dbAE
A%/ch;(b,z)(%f)(b,z)w 7

[, 0.8t E.
R g

REMARK 2. The symbad can be understood as a filter of the Stockwell spec
trum. Formula (6) reconstructs the signal using the Stockwell spedrum {Syf(b,§) :
b,& € R} with resped to the windaw comporent $*%. The locdlizaion operator using
the filtered Stockwell spedrum {a(b,&)Sy f(b,&) : b,§ € R} may be defined by

Toof = f=— // O(0,8)(F,406) 2 5 90E L2E

(7) Loowf

&l

However, in order to allow some lineaity properties with resped to the windows, we
consider the locdizaion operator designed in the original way (7).

In acordancewith the diff erent choices ot the symbasa(b, &) andthe diff erent
continuiti es required, we neal to impaose diff erent condtionson ¢ and . Andthen we
obtain an operator onLP(R).

In the paper [15] by Wong, the LP-boundednessof locdi zaion operators as-
ciated to left regular representations is gudied for 1 < p < ». LP-boundednessand
LP-compadnessof two-wavelet locdizaion operators on the Weyl-Heisenberg group
can be foundin the papers [4] by Boggatto and Wong, and [3] by Boggatto, Oliaro
andWong The a@m of this paper isto give another set of resultsonthe LP-boundedness
and also LP-compadnessof the locdization operators defined by (7).

In Sedion 2 we prove that the locdizaion operator asociated with the Stock-
well transform, with symbalsin L1(R) and windows ¢ € LP (R) and € LP(R) are
bounded linea operatorson LP(R), 1 < p < o. Herein, p’ isthe conjugate of p, such
that

1 1
(8) o o
If thesymbdsareinL"(R?), 1 <r < 2, andthe admissblewindonsd, g arein L1(R) N
L*(R), then the locdization operators are proved in Sedion 3to be bounckd linea
operatorson LP(R), r < p <r’. Sedion 4 deds with the compadnessfor symbalsin
L1(R?). Thelast sedion treds the locdi zation operators associated to the generali zed
Stockwell transform defined in [10] and [11]. Due to the dose relation between the
Stockwell transform and generali zed Stockwell transform, al our conclusions obtained
in Sedion 2, Sedion 3and Sedion 4can be gplied to these locdizaion operators.
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2. Symbolsin L*(R")

Forl<p<wm,letoc LY(R?), ¢ € LP(R)andy € LP(R). We aegoingto show that
Lo, isabounded linea operator on LP(RR).
Let us dart with the foll owing estimates:

PROPOSITION 1. For 1< p< o, lety e LP(R) andf € LP (R), where p/ isthe
conjugae of p. Then

©) 1WPE][p = (2m) Y2 [YP |1y,
and
(10) ISy (b,)] < (2~ Y2E[YP||w][p f ] -

Proof. For p= oo, thefirst equality istrivial. For p # oo, by Fubini’s theorem, we have

. 1/p
03l = { [ Itz ¥2Ei@%utex- by P o

1/p
e { [ wieix- by o)
= (20 el

Applying Holder’sinequality and (9), we have

ISyt (0.&)] = [(F.4%) < [Ifl|[[WPE 1o = (2r) 2| £ Wl

In the following we denote with | - ||gLpr)) the operator norm in the Banach
spaceB(LP) of bounded linea operatorsonLP,1 < p < oo,

We start with the result about the boundednessof Lg ¢,y onL(R).

PROPOSITION 2. Let 0 € LY(R?) and¢ € L®(R),y € LY(R). Then Lg gy :
LY(R) — L(R) isa boundd linear operator and

1
ILoswliwrmy) < o l0lllle]Wl.
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Prodf. For any f € LY(R), by (7), (2), and (10), we have

ILoowtli= [ | /[ ob.)% (b8P (x dETE’dx
[ 1e.0) <<2n> 1/2|E|||f|1||¢||m> <<zn> Y2[g] W& (x b>>|>d|bz‘fd

IN

< o200l [/ 10(b.8)]1w(E0xb) €] dbck o
— grltllole /[ 1s0.01( [ ElucEoc- bl ax) dock
= (sal0leliolalwl) 1l
which completes our proof. O

For p # 1, we have the foll owing conclusion abou the boundednessof Lg ¢ y.

PROPOSITION 3. Let 0 € LY(R?), ¢ € LP(R) andy € LP(R). Then Lggy :
LP(R) — LP(R) isa boundkd linear operator for 1 < p < e« and

ILoo.wllawrm) HGHlHdJHpIIllJHp

- 2T[
Proof. Forany f € LP(R), consider the linea functional
T LP(R) = C, g~ (9Logpyf)
By (7), we have
9 Loswf)l = I(Lopwf,0)l
JECHEYNEr R

[ Ieiisy f0.2) 800008 T

Applying Propasition 1, we have
(@ Log.of)]
[ 1o.2)1(@m 2Pl a0l ) (2r)~2E " gl W)

1
(o001 11011 gl

dock
€]

IN

which implies that T; is a continuots linea functional on L? (R), and the operator
norm

1
Tl ey < 502101l
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SinceTrg = (9,Lo .4 T), by the Riesz representation theorem, we have

1
ILoowflp=ITillgwr @ < sllolliolylWlpl e,
which establi shes the propasition. O
To sum up the two propasiti ons above, we have the foll owing theorem.

THEOREM 2. Let 0 € LY(R?), ¢ € LP(R), W € LP(R). ThenLg ¢y : LP(R) —
LP(R) isbounded linear operator for 1 < p < « and

1
ILoowllee) < S-llolll®lylIwllp-

3. SymbalsinL"(R),1<r <2

In this sadion, we study the locdization operators Lg gy for symbos o € L'(R),
1<r<2.

PROPOSITION 4. Let Y and ¢ be admissble windows, Y € L?(R) and ¢ €
L2(R), 0 € L2(R?). ThenLg ¢,y : L2(R) — L2(R) isa boundd linear operator and

1/2
1ot wlaize) (V%%WMHWM) 0]z

To provethe propasition, let us gart with the followinglemma.

LEMMA 1. Let ¢ and ¢ be admissble windows, Y € L2(R) and ¢ € L3(R),
0 € L®(R?). ThenLg ¢y : L>(R) — L2(R) isa bounckd linear operator and

[Loswllerzr)) < vCoCy [[O]le.
Proof. For any f, g€ L2(R), by (7) and Holder’s inequality, we have

[LobasiboSaB

HM|/|%szH%mbzPEf

ol ([ 15108225 (| mammee®)™

By Theorem 1, we have

|(L0¢’q»’fvg)|

(Logwf,0)l

IN

IN

IN

lo]le(cp) % (cy) ™2 1 2ll g2
= VGCy [loll[Ifll2llgll2
which completes the proof. O
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Proof of Propasition 4. For any fixed f € L?(R), admissble windaws ¢, ¢ € L2(R),
we define alinea map from LY(R?) NL*(R?) to L?(R) by

T(G) - LO'7¢7ljJ f .

From the ebovelemmawe have

(19 IT(0)]l2 < /CoCyll fll2]|O]co5

andlet p= 2 in Theorem 2, we have

12 IT@ < (55 fld@lalvlz) ol

Applyinginterpolationtheory, see[1] for instance, we have

IT(9)ll2

IN

1 1/2
uﬁmmfmfﬂ(EJWﬂmmwu) o]z
1/2

(V%QWmeu> 11202

By the definition of T (o), we have
1/2
(Vo 101zl

ILogwfll2 < [fll2]lo]l2:

Thusthe proof is complete. O

THEOREM 3. Let Y and ¢ be admissble windows, ¢ € LY(R) N L*(R) and
¢ € LY(R)NL®(R). Let o € L"(R?),1 < r < 2. Then there exsts a urique bounced
linear operator Lg ¢ ¢ : LP(R) — LP(R) for all p € [r,r’] such that

(13) ILoswllaLr) <M1~ M3|o|lp,

where 1 2. VCoCy &
My = (5l 0llellwlis) " (M5 01l wl2) "

M= (= l0lalulle) (“__Mmmwm)

Proof. Let T be the bili nea mapping from {L(R?) NL?(R?)} x {LY(R)NL%(R)} to
LY(R)NL?(R), defined by

(14 T(o,f) =Loguwf.

U

By Propasition 2and Propaostion 31, we have

1
IT(0, Dl < oIl 5.
C
IT(0, Dllo < Y2

[ll2llwll2l[o]l2]| f]l2-
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By the multi-linea interpolationtheory, seeSedion 101 in [5] for reference, we get a
unique bounced linea operator T (o, f) : L"(R?) x L"(R) — L"(R) such that

(15 IT(0, H)lIr < Mdlia|e[IF]r,

where

M= (10l 1l) (2 o )

1—0(+0(71 or a=2 2
1 2 r - r

By the definition o T in (14), we have

with

V&Cy

(19 Losulowmy < (510l ||w|\1) (X ||¢||2||¢H2)/H0Hr-

Sincethe ajoint of Lg ¢,y iS L5133, S0 Lo.g.y iSabounded linea map onL" (R), with
its operator norm

HL07¢7UJHB(U’(R = ||LC—7TF¢||B L"(R))
an < (Z00wls) ™ (S g ulz) o

Using an interpalation o (16) and (17), we havethat, for any p € [r,r'],

1-9
ILo.o.wllBLem)) <My M3lollp.

Lo.8 1 o e (1))
r o p rp ror

with

4. Compact operators

Inthis sdion, we studythe compadnessof thelocdizaion ogeratorsLg ¢y : LP(R) —
LP(R). We start with asimple case:

LEMMA 2. For 1< p< o, let ¢ € LP(R), o andy be compactly supparted
andcontinuows. Then Lg ¢ ¢ : LP(R) — LP(R) is compact.

Proof. To prove that Lg ¢,y is compag, it is enoughto show that the image of any
bouncdkd sequence has a convergent subsequence. Let {fj}‘f:l be asequence of func-
tionsin LP(R) such that

[ fillp <1, i=12,....

Becaise o is compadly suppated, we may assume that

o(b,&)=0,  forall (b,&) suchthat (|b]>+ [€|?)Y/% > M.
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From Propasition 1and the fad that  is continuows, we have

WA (| < (2m) Y2(E] W]l

(Sp f7) (0, 8)] < (210~ Y2| £ ol |EY Pl < (20~ Y2E VP[] -
Therefore

Lo fj(X)]
[sbosmorats

db
< //DGR lo(b,&)|((2m) 1/2|E|1/p”¢” )21~ Y2IE[|]]o) |E(|£
E|<M
< §T|\‘1>|hof|\llJ||m//be]R (b, &)||E|/Pdb dE

[El<M

< Ly
< S=MTPIly Wl

foral j=1,2,.... Thusthe sequence{L ¢y fj}{_4 isuniformly bounced.

Let € be any pasitive number. Since ) is compadly suppated and continuots,
it i s therefore uniformly continuows. So there exists 8; > 0, such that

W) —w(y)l<e,  forany|x—y| <.
Letd= mm{ } Thenforany [x—y| <6, |§| <M,
B

"4(y)l
(2m)~H2[E ][ W(E(x— b)) — € W(E(Y - b))

W4 (x) —

< (2n>1/2|z|(léxil\w(w—b))—w<z<y—b>>!+!éxi—éyﬂlw(ay—b)ﬂ)
< (2m) M2E(WEX— b)) — W(E(Y — b))|+ [x— YI[E][W]])
< (2 Y2E| (e + [|w]|€),

andthusfor any x,y € R such that [x—y| < 9,
(Lo, wf')( ) = (Logw i)yl

dbdg
;) bE(x —
< //Eb%wbzn% (016200~ 4°3)| T
dbdg
< /ﬁ,iﬂﬁﬂ (b)) (2 1/2|z|1/p||¢||w) (2 e+ s ) T
< s loTu0l MR+ [yl

Zﬂ%,w
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So {Lo,¢wfj}{_4 is equicontinuows on R. Therefore for every compad subset K of
R, the Ascoli-Arzeatheorem ensures that {Lo ¢,y fj}{_; has a subsequencethat cor
verges uniformly on K. Thus by the Cantor diagoral procedure, we can find a subse-
quence{Lq ¢,y fj, }c; cOnverging pantwise to afunctiong onR. By (7) and (2), and
the inequality (10), we have

p
(Lana )P < (21 H101)° [ 10052 PuE(x— b))l bk )

Denate the function onthe left hand side of the ebowe inequality by h. By Hdlder's
inequality, we have

[ 1hoolax

= ¢ (/] loto.2)l1& Plu(E(x—b)| dock) "ox

= cf( [] ot leEx—b)) dod)" ox

[bl2-+[€[2<M2

C/(//(|0(b,E)IIEI1/p|llJ(E(xfb))| dde // 1pdbdz L

[b|2+[E[2<M2

IN

= C(2mv?)P/? ([|a(b, &) pllwllp)P < o,

where C is the constant ((2m)~2|¢||y)P. So by Lebesgue's dominated convergence
theorem, the sequence {|Lq ¢4 fj.|P}r, convergesto |g|P in L1Y(R) ask — «. And
thus,

L0 fii (%) = 90IP < 2°(ILo g Fi (1P +[9(x)P) < 2°*h(x),
and |Lg¢,y fj, — 9|P convergesto 0 pdntwise, so by the Lebesgue's dominated con-
vergencetheorem, [ |Lg ¢,y fj, (X) — 9(x)|Pdx convergesto 0. Thus {Lg ¢,y fj, } i1 COM
vergesto gin LP(R). ThereforeLg ¢ y iS compad. O

PROPOSITION 5. For 1< p < , let 0 € LY(R?) andy € LP(R), € LP(R).
Thenlg gy : LP(R) — LP(R) is compact.

Proof. Forany 0,7 € L1(R2), ¢ € LP(R) andy, @< LP(R), by (7) and Theorem 2, we
have

ILoo.w — Lrowllrm) = ILotoullLem)
< @m Ho—t)alo)lyllwlp.

A

and

ILo.o.w — Logollaerm) = ILosu—olarr(m)
2 oll1| 0]l plIw — @] p-

IN
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By the above lemma, and the fadt that Co(R?) is densein L1(R?), and Co(R) is dense
in LP(R) for 1 < p < o, and the fad that the set of compad operators is closed in
B(LP(R)), the propasition hdds. O

THEOREM 4. Under the same hypothesesona, ¢, ) as Theorem 2, the boundd
linear operator Lg ¢y : LP(R) — LP(R) iscompact for 1 < p < oo,

Proaof. From the previous propasition, we only need to show that the conclusion hdds
for p=co. Infad, the operator Lg ¢y : L”(R) — L”(R) is the ajoint of the opera-
tor L5 5. : LY(R) — LY(R), which is compad by Propasition 5 Thus by the duality
property, Lo ¢,y : L*(R) — L*(RR) is compad. O

5. Localization operatorsasociated with the modified Stockwell transform
In the papers[10, 11], the modified Stockwell transform is defined by

(§N0.8 = @0 [ 100 e e HExb))x

(189 (f,05%),

where _
0¥ (x) = & [€|/59 (& (x— b)) = EY/5 104 (b, €) (x).
The connedion between the modified Stockwell transform and Stockwell transform is

S =€ s 1(bE).

Andso thelocdization operatorsasociated with the modified Stockwell transform can
be expresed by

Lso‘ b,& dde
@ f // (0,€)( Sif )(0,€) s |E|2/s
o(b - — dbdg
//RZ (b, &) (&S f(b.E) (8] 1¢b’2>|g|<w -1

[[ o251 0. %
= L0,¢,L|J f.

So our results in this paper can be extended to the locdizaion operators associated
with the modified Stockwell transform.
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