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MICROLOCAL REGULARITY OF THE KERNEL

Dedicated to Professor Luigi Rodino ontheoccasion of his60th birthday

Abstract. In this paper we study kernels associated with continuous operators between
spaces of Gevrey ultradistributions. The existence of such kernels has been established, in
analogy with the kernel theorem of L. Schwartz for classical distributions, by H. Komatsu,
and our aim here is to study these kernels from a microlocal point of view. The main re-
sults, which are the theorems 2, 3 below, show that there is a significant difference between
the results which hold true in the case of Beurling ultradistributions and the results valid for
Roumieu ultradistributions.

1. Introduction

The Schwartz kernel theorem states that the linear continuous operators T mapping
D (U) toD ′(V) areprecisely theoperatorsfor which thereisK ∈ D ′(V×U) such that

(1) Tu(ϕ) = K (ϕ⊗u), u∈ D (U), ϕ ∈ D (V).

(Cf. L. Schwartz, [17].) K is called the “kernel” of T and in this situation we write
Tu(x) =

∫
U K (x,y)u(y)dy. Here U and V are open sets in Rm and Rn respectively,

D (U) isthespaceof C ∞
0 (U) functionsendowedwith theSchwartz topologyandD ′(W)

thespaceof distributionsonW, withW =V or W =V×U . TheSchwartz theorem has
been extended to the case of ultradistributions by H. Komatsu and both L. Schwartz
and H. Komatsu have also studied linear continuous operators defined on compactly
supported distributions, respectively ultradistributions, to distributions or ultradistri-
butions. We shall consider for the moment only the distribution case. The problem
is then to consider a linear continuous operator T : E ′(U)→ D ′(V), where E ′(U)
is the spaceof compactly supported distributions on U . T induces a linear contin-
uous operator on D (U) and therefore it has a distributional kernel K ∈ D ′(V ×U).
The relation (1) associates a separately continuous bili near form (ϕ,u) 7→ K (ϕ⊗ u)
onD (V)×D (U) with T whereas the initial operator defined onE ′(U) is associated
with the bili near form (ϕ,u) 7→ T(u)(ϕ) defined on D (V)× E ′(U). If we want to
understandthe classof kernelsK ∈ D ′(V×U) which correspondto linear continuous
operatorsE ′(U)→D ′(V), wemay then just studythebili near form (ϕ,u) 7→ K (ϕ⊗u)
as a form onD (V)×E ′(U). This has led to a sophisticated theory of tensor products
of topological vector spaces in which the notion of “nuclear” spaces (introduced by
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A. Grothendieck) plays a central role. It turns out that most common spaces of dis-
tributions or ultradistributionsare nuclear and the central result concerning the kernel
theorem in distributions is that the operator T : D (U)→ D ′(V) associated with some
K ∈D ′(V×U) can be extended to alinear continuousoperator E ′(U)→D ′(V) if and
only if K can be identified in anatural way with an element in [D (V)⊗̂E ′(U)]′, where
D (V)⊗̂E ′(U) is, say, the ε topological tensor product of D (V) with E ′(U). Sincethe
spacesunder considerationarenuclear, wemay aswell work with theπ tensor product.
For definitions and details we refer to [2] and [19]. There is also an interpretation of
this in termsof C ∞ functionswith distributional values.

Thetheory of tensor productsof topological vector spaces isvery powerful and
it explains, among other things, why kernel theorems in Banach spaces of (possibly
generalized) functions must typically be more complicated than those in distributions
(see e.g., [1] for some examples of kernel theorems in Lebesgue spaces): infinite di-
mensional Banach spaces are never nuclear. On the other hand, when one wants to
consider kernel theoremsin hyperfunctions, thiskind of approach isnot usablein prac-
ticesincehyperfunctionshave no reasonable topology. One may then try another ap-
proach, which has been worked out in microlocal analysis. The central notion is this
time the “wave front set” of a distribution, ultradistribution, or hyperfunction (intro-
duced in 1969 byM. Sato for hyperfunction, [15] and in 1970 byL. Hörmander for
distributions, [3]). Themain condition is then

(2) {(x,y,0,η);x∈V,y∈U,η 6= 0}∩WF(K ) = /0.

When K is a distribution, WF(K ) stands for the C ∞ wave front set and if (2) holds
then microlocal analysisgivesanatural meaningto

∫
U K (x,y)u(y)dy when u∈ E ′(U).

(See [3], [20].) The same is true also in hyperfunctions if WF denotes the analytic
wavefront set: thereisanatural meaningfor

∫
U K (x,y)u(y)dy when u isareal-analytic

functional onU . Integration is then defined in terms of “ integration alongfibers” and∫
U K (x,y)u(y)dy hasameaning in hyperfunctions: see e.g., [16], [5] for details.

There is now however a fundamental difference between the two main cases
contemplated bymicrolocal analysis, thedistributional and thehyperfunctional one.

It is in fact not difficult to seethat the condition(2) is not equivalent to the fact
that K ∈ [D (V)⊗̂E ′(U)]′. This means that (2) is not a necessary condition when we
want K to define a continuous operator from E ′(U) to D ′(V). On the other hand,
it is part of the results described in [10], [11], that for hyperfunctions a reasonable
operator acting from somespaceof analytic functionals to thespaceof hyperfunctions
can only be defined in presenceof condition (2). It seemed then natural to the present
authors to look into the case of Gevrey ultradistributions and to study if microlocal
conditions of type (2) are necessary for reasonable operators in ultradistributions to
exist. It came, at least at first, as a surprise, that the answer depends on which type
of ultradistributions one is considering: for ultradistributions of Beurling type, one
may work with weaker conditions than the ones corresponding to (2), whereas for
ultradistributions of Roumieu type such conditions are also necessary: seesection 2
for the terminologyandthe theorems2, 3 for theprecisestatements.
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2. Definitionsand main results

For the convenienceof the reader, we shall now recall some of the definitions related
to Gevrey-ultradistributions. (For most of the notionsconsidered here, cf. e.g., Lions–
Magenes, vol.3, section 1.3, or [14].)

Consider s> 1, L > 0, U open in Rn and let K be a compact set in U . We shall
denoteby f 7→ | f |s,L,K thequasinorm

(3) | f |s,L,K = sup
α∈Nn

sup
x∈K

|(∂/∂x)α f (x)|

L|α|(α!)s
,

defined onC ∞(U). We further denoteby

• D s,L(K) thespaceof C ∞ functions f onRn which vanish outsideK such that for
them | f |s,L,K < ∞,

• D (s)(K) =
⋂

L>0D
s,L(K),D {s}(K) =

⋃
L>0D

s,L(K),

• D {s}(U) =
⋃

K⊂U D
{s}(K), respectively D (s)(U) =

⋃
K⊂U D

(s)(K),

• E (s)(U) = { f ∈ C ∞(U); ∀K ⋐U, ∀L > 0, | f |s,L,K < ∞}, respectively
E {s}(U) = { f ∈ C ∞(U); ∀K ⋐U, ∃L > 0, | f |s,L,K < ∞}.

Thefunctionsin E {s}(U), are called “ultradifferentiable” of Roumieu type, and
those in E (s)(U), ultradifferentiable of Beurling type, with Gevrey index s. Sincewe
shall often encounter statements for the two types of classes which are quite similar,
we now introducethe conventionthat we shall writeD ∗(U) when we give astatement
which refers to both the case ∗ = (s) and the case ∗ = {s}. The same conventionalso
applies for other spacesassociated with the two cases.

All thespacesmentioned above carry natural topologies:

• D s,L(K) is a Banach spacewhen endowed with | · |s,L,K asanorm,

• D (s)(K) is the projective limit (for “L→ 0+” ) of the spaces D s,L(K), whereas
D {s}(K) is the inductive limit (for “L→ ∞” ) of the same spaces. The spaces
D (s)(K) are FS (i.e., Fréchet-Schwartz), whereas the spaces D {s}(K) are DFS
(duals of Fréchet–Schwartz). (The topological properties of these spaces are
studied in [6].)

• D {s}(U) is the inductive limit (for K ⊂ U) of the spaces D {s}(K), whereas
D (s)(U) is the inductive limit (again for K ⊂U) of thespacesD (s)(K).

• Weshall definetopologiesonE (s)(U) andE {s}(U) asfollows. At first wedefine
for K ⋐U and L > 0 the spaceYK,L of restrictions to K of functions in C ∞(U),
which satisfy | f |s,L,K < ∞, endowed with the topology given by the semi-norm
| · |s,L,K . Then,

E (s)(U) = lim
←−

K⋐U

lim
←−
L>0

YK,L, E
{s}(U) = lim

←−
K⋐U

lim
−→
L>0

YK,L.
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We have continuous inclusionsD ∗(U)⊂ E ∗(U) with dense image andD ∗(K)
is the subspaceof E ∗(U) (K ⊂ U) consisting of the functions with compact support
lying in K.

For a systematic study of the topological propertiesof these spaces we refer to
[13], [6]. We shall however strive to use only a minimum of results on the topological
structure of the spaces we shall consider. On the other hand, we shall consider later
a new class of spaces in which we can state results which can serve as a common
backgroundfor both theRoumieu and theBeurlingcase.

Finally, we shall denote by D {s}′(U), D (s)′(U), E {s}′(U), E (s)′(U), the strong
dual spaces (called Gevrey-ultradistributionsof Roumieu, respectively Beurling type)
of thespacesD {s}(U), D (s)(U), E {s}(U), E (s)(U).

We then also haveby duality continuousinclusions

(4) E ∗′(U)⊂ D ∗′(U).

As for integral operators, the followingremark iseasy to check (cf. [6]):

• assumeK ∈ D ∗′(V×U). Then theprescriptionT(ϕ)(ψ) = K (ψ⊗ϕ) definesa
linear continuousoperator T fromD ∗(U) toD ∗′(V).

We shall write thisas

(Tϕ)(x) =
∫

V
K (x,y)ϕ(y)dy, ϕ ∈ D ∗(U).

It ispart of the resultsproved in [6], [7], [8], that also the converseis true:

THEOREM 1 (Komatsu). a) Any linear continuous operator T : D ∗(U) →
D ∗′(V) is of form T(ϕ)(ψ) = K (ψ⊗ϕ) for someK ∈ D ∗′(V×U).

b) (See[8] , page655.) Any linear continuousoperator T : E ∗′(U)→ D ∗′(V) is
of form T(ϕ)(ψ) = K (ψ⊗ϕ) for someK ∈ D ∗′(V)⊗ε E

∗(U). (“⊗ε” is the ε-tensor
product.)

Before we can state our own results, we must still i ntroduce the notions of
Gevrey wave front sets. In order to justify them, we start from the following straight-
forward (andstandard) result, which is in fact also central in the calculations:

REMARK 1 (See e.g., [6]). Let B be a closed ball i nRn (or Rm; in the caseRm,
notationshould be changed slightly).

There are constantsc> 0,c′ > 0, such that for f ∈ C ∞
0 (B) we have

(5) sup
ξ∈Rn
| f̂ (ξ)|exp[c′(|ξ|/L)1/s]≤ c| f |s,L,B, | f |s,c′L,B ≤ c sup

ξ∈Rn
| f̂ (ξ)|exp[(|ξ|/L)1/s].

“Hats” will denote theFourier transform, which we defineby

f̂ (ξ) = F f (ξ) =
∫
Rn

f (x)exp[−i〈x,ξ〉]dx.
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The relation (5) is based on the following elementary inequality, which is valid for
d|ξ| ≥ 1:

(6) |ξ||α|exp[−d|ξ|1/s]≤ |ξ||α| inf
β
|β||β|/(d|ξ|1/s)|β| ≤ (4s)s|α|d−s|α||α|s|α|;

the last inequality is obtained by evaluating the function F(β) = |β||β|× (d|ξ|1/s)−|β|

for |β|= [s|α|]+1, where [s|α|] is the integer part of s|α|. (The factor “4s|α|” appears
becauseof the “integer part” .)

We havethe followingrelations:

• A function f ∈ C ∞
0 (Rn) lies inD {s}(Rn) precisely if there are constantsc,d > 0,

such that | f̂ (ξ)| ≤ cexp[−d|ξ|1/s].

• A function f ∈ C ∞
0 (Rn) lies in D (s)(Rn) precisely if there is c and a function

ℓ : Rn→R+ such that

(7) ∀d > 0, ∃c′ s.t. d|ξ|1/s≤ ℓ(ξ)+ c′, ∀ξ ∈ R
n,

andsuch that

(8) | f̂ (ξ)| ≤ cexp[−ℓ(ξ)], ∀ξ ∈ R
n.

• A real analytic functional u lies in E (s)′(Rn) if there are constants c,d > 0 such
that |û(ξ)| ≤ cexp[d|ξ|1/s].

• A real analytic functional u lies inE {s}′(Rn) if for every d> 0 thereisa constant
c such that |û(ξ)| ≤ cexp[d|ξ|1/s].

A useful remark is thesub-additivity of the functionξ 7→ |ξ|1/s for s≥ 1, that is,

(9) |ξ+θ|1/s≤ |ξ|1/s+ |θ|1/s, ∀ξ,θ ∈ R
n.

We now introduce the wave front sets corresponding to the ultradistribution
spacesconsidered above. (Cf., e.g., [4], [9], [14].)

DEFINITION 1. a) Let u∈ D (s)′(U) andconsider (x0,ξ0) ∈U × Ṙn. We shall
say that (x0,ξ0) /∈WF(s)(u), if we can findε > 0, v∈ E (s)′(Rn), an open convex cone
Γ which containsξ0, c> 0 and afunctionℓ as in (7) with the following properties:

(10) u≡ v on |x− x0|< ε, |v̂(ξ)| ≤ cexp[−ℓ(ξ)] for ξ ∈ Γ.

b) Let u∈ D {s}′(U). Weshall say that (x0,ξ0) /∈WF{s}(u), if we can findε > 0,

v∈ E {s}′(Rn), an open convex coneΓ which containsξ0 andc,d > 0 such that

(11) u≡ v on |x− x0|< ε, |v̂(ξ)| ≤ cexp[−d|ξ|1/s] for ξ ∈ Γ.
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The WF{s}(u), WF(s)(u) are the Gevrey wave front sets of u of Roumieu, re-
spectively Beurling, typewith Gevrey index s.

We now state the main results.

THEOREM 2. Let V×U be an open set in Rn×Rm andconsider a linear con-
tinuous map T : D {s}(U)→ D {s}′(V) given by some kernel K ∈ D {s}′(V×U). Then
the followingstatementsare equivalent:

i) T can be extended to acontinuousandlinear mapT : E {s}′(U)→ D {s}′(V).

ii ) K satisfies theGevreywavefront set condition of Roumieu type:

WF{s}(K )∩{(x,y,0,η);η 6= 0}= /0.

THEOREM 3. With V andU as before, consider a linear continuous map T :
D (s)(U)→D (s)′(V) given by some kernel K ∈D (s)′(V×U). Then thefollowingstate-
mentsare equivalent:

a) T can be extended to acontinuousandlinear mapT : E (s)′(U)→ D (s)′(V).

b) For every (x0,y0) ∈ V ×U and for all d > 0, ∃ε > 0, ∃c, ∃c1, and ∃K ′ ∈
E (s)′(V×U) such that K ′ = K on |(x,y)− (x0,y0)|< ε and

(12) |(F K ′)(ξ,η)| ≤ c1exp[−d|η|1/s] for |ξ| ≤ c|η|.

REMARK 2. A comparison of condition b) in Theorem 3 with part a) of Defi-
nition 1showsthat WF(s)(K )∩{(x,y,0,η);η 6= 0}= /0 impliesb) in the theorem. We
shall seelater on that the converseisnot true: there arekernelswhich satisfy condition
b), but do not satisfy the wave front set conditionWF(s)(K )∩{(x,y,0,η);η 6= 0}= /0.

REMARK 3. Note that, taking into account Theorem 1, the conditions ii ) and
b) in the preceding theorems may be regarded as characterizations of the respective
spaces D {s}′(V)⊗ε E

{s}(U) and D (s)′(V)⊗ε E
(s)(U), as subspaces of D {s}′(V ×U)

andD (s)′(V×U).

Thefollowingremark is immediate.

REMARK 4. Let ∗ denote (s) or {s} with s> 1, and consider χ1 ∈ D
∗(V),

χ2 ∈ D
∗(U). We denote by B1 the support of χ1 and by B2 the support of χ2. If

T : E ∗′(U)→D ∗′(V) isa linear continuousoperator, then so isT1 : E ∗′(B2)→ E
∗′(B1)

defined byT1u= χ1T(χ2u). Conversely, if all operatorsobtained in thisway are contin-
uousfor some linear operator T : E ∗′(U)→ D ∗′(V), then T is continuous. Note that if
T correspondsto akernel K (x,y), then T1 correspondsto thekernel χ1(x)χ2(y)K (x,y).
In view of this remark we may assume henceforth without loss of generality that
U = Rm, respectively that V = Rn, and that

(13) suppK ⊂ B′×B,

for some closed ballsB⊂Rm, B′ ⊂ Rn.

REMARK 5. If K ∈ D ∗′(Rn+m) satisfies (13), then suppTg⊂ B′ for every g∈
D ∗(Rm). Conversely, if suppTg⊂ B′ for every g∈ D ∗(Rm), then suppK ⊂ B′×Rm.
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3. Intermediatespacesand weight functions

In this sectionwedefinespaceswhich areintermediatebetween Roumieu andBeurling
ultradistributions. We fix a closed ball B and consider for f ∈ C ∞

0 (Rn), u∈ A ′(Rn), a
new set of quasinorms

‖ f‖s,d = sup
ξ∈Rn
| f̂ (ξ)|exp[d|ξ|1/s],

‖u‖s,d = sup
ξ∈Rn
|û(ξ)|/exp[d|ξ|1/s].(14)

(Here A ′(Rn) denotes the real-analytic functionals on Rn.) Thus formally, ‖u‖s,d =
‖u‖s,−d, but the two quasinormsrefer to different situations, so wewanted to makethe
differencevisible also notationally.

DEFINITION 2. Wedenoteby G s,d(B) thespaceof C ∞ functionsu with support
in B such that ‖u‖s,d < ∞, endowed with the norm ‖u‖s,d. In a similar way, we con-
sider the spaceG s,′

d (B) of ultradistributionsu with support in B for which ‖u‖s,d < ∞,
endowed with thenorm‖u‖s,d.

Also note that, using the estimates (5), we have for suitable constants c′,c′′, the
followingcontinuousinclusions:

(15) G s,1/L1/s
(B)⊂ D s,c′L(B)⊂ G s,c′ ′/L1/s

(B), if L > 0.

Thus(for fixed s) thespacesG s,d(B) form ascale(indexed byd> 0) of functionspaces
which isessentially equivalent with thescaleD s,L(B). For example, we have

(16) D {s}(B) = lim
−→
d>0

G s,d(B)

as locally convex spaces. (Also see[6].)

REMARK 6. When f ∈ D ∗′(Rn) hascompact support andg∈ D ∗(Rn), we can
calculate f (g) by f (g) = (2π)−n∫

Rn f̂ (ξ)ĝ(−ξ)dξ, where the integral is the standard
Lebesgue integral. (See[7].)

We now mention that G s,′
d (B) is not defined asa dual space and, in somesense,

the norms ‖u‖s,d are not optimal for duality arguments. We now state alemma that
will help usto bypassthis shortcoming. This is typically used for the cut-off multiplier
χ ∈ D (s)(B′′) for ballsB′ ⋐ B′′, satisfyingχ≡ 1 onB′.

LEMM A 1. Consider χ∈ D (s)(Rn), d > 0. Then the constantsc1 := ‖χ‖s,d and
c2 := ‖χ̂(ξ)exp[d|ξ|1/s]‖L 1(Rn) arefinite.
a) Moreover, we have

(17) ‖χ f‖s,d ≤ (2π)−nc1‖ f̂ (ξ)exp[d|ξ|1/s]‖L 1(Rn).
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b) In asimilar vein, we also have

‖χ f‖s,d ≤ (2π)−nc2‖ f‖s,d.

c) Finally, if h ismeasurable,

|(χ̂∗h)(ξ)| ≤ c2‖h(ξ)exp[−d|ξ|1/s]‖L ∞(Rn) ·exp[d|ξ|1/s].

Proof. Thefinitenessof the constantscomes from (8). For a), we have

(2π)n|F (χ f )(ξ)| ·exp[d|ξ|1/s] =
∣

∣

∣

∫
Rn

χ̂(ξ−θ) f̂ (θ)dθ
∣

∣

∣
·exp[d|ξ|1/s]

≤
∣

∣

∣

∫
Rn

χ̂(ξ−θ)exp[d|ξ−θ|1/s] · f̂ (θ)exp[d|θ|1/s]

×exp[d|ξ|1/s−d|θ|1/s−d|ξ−θ|1/s]dθ
∣

∣

∣

≤ ‖χ‖s,d · ‖ f̂ (θ)exp[d|θ|1/s]‖L 1(Rn).

Herewe used the inequality |ξ|1/s≤ |ξ−θ|1/s+ |θ|1/s. See(9).

Partsb) andc) areproved with a similar argument.

A measurable and non-negativevalued function onRn is called a weight func-
tion. A weight functionϕ(ξ) is said to besub-linear if it satisfies

sup
ξ∈Rn

(ϕ(ξ)− ε|ξ|)<+∞, for any ε > 0.

In this article, we only consider radial weight functions, and we say, by abuse of nota-
tion, that a weight function is increasingwhen it isan increasing function of |ξ|.

Now consider two sub-linear weight functionsϕ,ψ : Rn→R+ andassumethat
ψ(θ)−|ξ−θ|1/s≤ ϕ(ξ)+c, ∀ξ, ∀θ, inRn. If χ∈D (s)(Rn), then there existsa constant
c′ such that

(18) ‖(χ̂∗h)eψ‖L 1(Rn) ≤ c′‖heϕ‖L 1(Rn)

holds for any measurable function h. Indeed, the left hand side of (18) is estimated
from aboveby

∫
Rn

∫
Rn
|χ̂(θ− ξ)h(ξ)|exp[ψ(θ)]dξdθ

=

∫
Rn

∫
Rn

eψ(θ)−|ξ−θ|1/s−ϕ(ξ) · |χ̂(θ− ξ)|e|ξ−θ|1/s
· |h(ξ)|eϕ(ξ)dξdθ

≤ ec‖χ̂(θ)e|θ|
1/s
‖L 1(Rn) · ‖heϕ‖L 1(Rn).

REMARK 7. Our next lemma is similar to Lemma 1, c), but is more abstract
and therefore lessprecise. We also mention that in the proof of the lemma we con-
sider Lebesgue-spacesassociated with weights. We briefly recall the terminology. We
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assume that we are given a continuousweight function ϕ : Rn→ R+ and say that two
measurablefunctionsonRn are equivalent if they are equal except onaset of Lebesgue
measure zero. Then we denote by L 1(Rn,ϕ) the spaceof equivalence classes of mea-
surable functions on Rn for which the integral

∫
Rn | f (ξ)|exp[ϕ(ξ)]dξ is finite. The

norm on this spaceisof course

(19) f 7→ ‖ f‖L 1,ϕ =

∫
Rn
| f (ξ)|exp[ϕ(ξ)]dξ.

If L : L 1(Rn,ϕ)→ C is a linear continuous map, then there is a measurable
function h defined onRn such that L( f ) =

∫
Rn f (ξ)h(ξ)dξ, ∀ f ∈ L 1(Rn,ϕ) and we

have |h(ξ)| ≤ ‖L‖1exp[ϕ(ξ)], for almost all ξ ∈ R
n, where‖L‖1 is the norm of L as a

functional onL 1(Rn,ϕ).

LEMM A 2. Let B′ ⋐ B′′ be two balls in Rn, χ a function in D (s)(B′′) satisfying
χ ≡ 1 on B′, and d> 0. Consider two sub-linear weight functions ϕ,ψ : Rn→ R+.
Assume that

(20)
∫
Rn
|F (χ f )(ξ)|exp[ψ(ξ)]dξ≤ c1

∫
Rn
| f̂ (ξ)|exp[ϕ(ξ)]dξ, ∀ f ∈ L 2(Rn),

for some constant c1, provided the right handside in (20) is finite. Also denote by
N (B′′,ψ) theset

N (B′′,ψ) := {g∈ D (s)(B′′);
∫
Rn
|ĝ(ξ)|exp[ψ(ξ)]dξ≤ 1}.

Then there is a constant c2 such that for any v∈ D (s)′(Rn) with suppv⊂ B′ we have
that

|v̂(ξ)| ≤ c2exp[ϕ(−ξ)] sup
g∈N (B′′,ψ)

|v(g)|.

Proof. We define thespacesZ andY, Y ⊂ Z, by

Z = { f ∈ L 2(Rn);
∫
Rn
| f̂ (ξ)|exp[ϕ(ξ)]dξ < ∞},

Y = { f ∈ Z;‖ f‖s,d′ < ∞ for all d′}.

It is easy to seethat Y is dense in Z if the latter is endowed with the norm defined by
f 7→ ‖ f̂‖L 1,ϕ: if f is given in Z, then k 7→ fk = F −1(exp[−(1/k)|ξ|] f̂ ), k= 1,2, . . . is

a sequenceof functions in Y which approximates f . Now, Y ⊂ E (s)(Rn) and we also
observethat if µ∈ C ∞

0 (Rn), then F −1µ∈ Z.

It suffices to construct c2 such that

|v̂(ξ)| ≤ c2exp[ϕ(−ξ)]

holds for any v∈ D (s)′(Rn) satisfyingsuppv⊂ B′ and

(21) sup
g∈N (B′′,ψ)

|v(g)| ≤ 1.
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Now we fix such a v and consider the functional f 7→ v(χ f ), which is initially
defined onE (s)(Rn). For f ∈Y, wehave

|v(χ f )| ≤
∫
Rn
|F (χ f )(ξ)|exp[ψ(ξ)]dξ≤ c1‖ f̂‖L 1,ϕ,

where the first inequality follows from (21), and the secondfrom (20). Therefore, this
functional can be extended, by continuity, to a linear continuous functional L on Z.
Next we introducethe spaceẐ = { f ∈ L 2(Rn);

∫
Rn| f (ξ)|exp[ϕ(ξ)]dξ < ∞}, which is

the image of Z under the Fourier transform. We endow Ẑ with the norm f 7→ ‖ f‖L 1,ϕ;
this is of course the norm induced by the norm of Z if we use the Fourier transform to
identify Z and Ẑ. The map L gives rise in this way to a linear continuousmap L̂ on Ẑ
defined by L̂( f ) = L(F −1 f ).

Finally, we can apply the Hahn-Banach theorem to extend L̂ to a linear con-
tinuous map defined on the spaceL 1(Rn,ϕ) introduced in Remark 7, with the norm
not greater than c1. (Instead of applying the Hahn-Banach theorem, we can also use
the density of Z in L 1(Rn,ϕ).) It follows therefore from Remark 7, that L̂ is of form
L̂( f ) =

∫
Rn f̂ (ξ)h(ξ)dξ, for somesuitablemeasurable functionh onRn which satisfies

|h(ξ)| ≤ c1exp[ϕ(ξ)] for almost all ξ. The proof of the lemma will come to an end if
we can show that v̂(ξ) = (2π)nh(−ξ). This is the case, since

∫
Rn

µ(ξ)h(ξ)dξ = L̂(µ) = L(F −1µ) = v(χF −1µ) = v(F −1µ)

= (2π)−n
∫
Rn

v̂(−ξ)µ(ξ)dξ

for µ ∈ C ∞
0 (Rn), which means that h(ξ) and (2π)−nv̂(−ξ) coincide as distributions.

Herewe haveused the fact that suppv⊂ B′ and that χ≡ 1 onB′′.

COROLL ARY 1. There is a constant c′ for which we havethe following impli -
cation for v∈ D (s)′(Rn) satisfyingsuppv⊂ B′:

(22) |v( f )| ≤ 1 for all f ∈ D (s)(B′′) with ‖ f‖s,d ≤ 1, implies‖v‖s,2d ≤ c′.

In other words, thequasinormv 7→ ‖v‖s,2d can be estimated fromaboveby theinequal-
ity

‖v‖s,2d ≤ c′ sup
f∈M
|v( f )|

using thebounded set M = { f ∈ D (s)(B′′);‖ f‖s,d ≤ 1} in D (s)(B′′), and aconstant c′

depending only onB′, B′′, and d. Since, in the oppositedirection, we have

sup
f∈M
|v( f )| ≤ c′′‖v‖s,d/2

for some constant c′′ independent of v, it isclear that thetopology induced onE ∗′(B) as
a subspaceof D ∗′(Rn) is given as the inductive/projectivelimit of thespacesG s,′

d (B).

The corollary follows from Lemma2, if we also take into account Lemma1.
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REMARK 8. Thestatement in the corollary ismeaningful also for v∈D {s}′(Rn).
In this case, we know from the very beginning that there is a constant c′, which may
depend onv, with ‖v‖s,2d ≤ c′, and the lemma just givesan estimate by duality of the
norm ‖v‖s,2d.

We now consider asequenceof numbersCj which satisfies the condition

(23) j2 ≤Cj ,

(other conditionson the constantsCj will be introduced in a moment) and denoteby ℓ
the (increasing) function

(24) ℓ(ξ) = sup
j
( j|ξ|1/s−Cj).

REMARK 9. a) The function ℓ is well -defined since j|ξ|1/s−Cj is negative for
|ξ|< j. (This implies that the “sup” is finite for every ξ.) Somewhat morespecifically,
j|ξ|1/s−Cj ≤− j( j−|ξ|1/s) tends to−∞ for j → ∞ when ξ is fixed, and thereforewe
also seethat actually, ℓ(ξ) = max j( j|ξ|1/s−Cj), i.e., the “sup” isactually a “max” .

b) The functionℓ clearly satisfies (7).

c) Assumenow that Cj also satisfies

(25) Cj ≥ 4C[ j/2]+1, [ j/2] the integer part of j/2.

Sincek|ξ|1/s−Ck≤ 4
(

([k/2]+1)|ξ/2|1/s−C[k/2]+1
)

, we then also have

(26) ℓ(ξ)≤ 4ℓ(ξ/2).

We recall here the fact that when one defines function spaces by inequaliti es of type
| f̂ (ξ)| ≤ exp[ϕ(ξ)], then conditions of type ϕ(ξ) ≤ cϕ(ξ/2) are used (for increasing
weight functions) in relation to the requirement that the functionspacebestable under
multiplication. (When the weight functions are not increasing, the formulation of the
correspondingcondition is somewhat more involved. We shall not use c) in thispaper.
Also cf. the “ringcondition” in [12].)

The condition (23) is needed to show that the function ℓ is finite. We now
put further conditions on the constantsCj to show that we can make ℓ sub-linear and
Lipschitz-continuous. We should mention that while the fact that ℓ is sub-linear is
essential, the fact that it is Lipschitz continuous is not strictly needed in this paper.
Lipschitzianity is however needed as soonas one wants to develop a theory of pseu-
dodifferential and Fourier integral operators in spaces related to weight functions and
thereforeweshow also in thispaper that we can choosethe functionsℓ with thisprop-
erty. (See[12].)

LEMM A 3. a) Consider a sequenceof constantsCj ≥ j2, and definea function
ρ̃ : R+→ R+ by

(27) ρ̃(τ) =

{

supj( jτ1/s−Cj), (τ ≥ 1)

supj( j−Cj), (τ < 1).
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Then ρ̃ is finite. If Cj tends to infinity quick enough andis suitably chosen, then ρ̃ is
sub-linear andLipschitz. Moreover, we may assumethat if s′ > s is fixed, then

(28) lim
τ→∞

ρ̃(τ)/τ1/s′ = 0.

b) Let ρ̃ be as in the conclusion of part a) and denote by ρ : Rn→ R+ the
functionρ(ξ) = ρ̃(|ξ|). Then ρ is sub-linear andLipschitz.

Proof. We choose asequenceof positive numbersM j ց 0, with M1 = 1. Further, we
iteratively definenumbersτ j , j ≥ 0,Cj ≥ j2, j ≥ 1, andfunctionsρ j with thefollowing
properties:

• τ0 = 0, C1 = 0, ρ1(τ) = τ1/s,

• ρ j(τ) = jτ1/s−Cj ,

• thesequence j 7→ (Cj+1−Cj) is strictly increasing,

• τ1/s
j =Cj+1−Cj , and therefore also thesequence j 7→ τ j is strictly increasing,

• j(1/s)τ−1+1/s = ρ′j(τ) ≤M j on [τ j−1,∞),

• ρ j(τ) ≥ ρ j−1(τ) for τ≥ τ j−1, ρ j(τ)≤ ρ j−1(τ) for τ≤ τ j−1.

As a preparation for this, we notice that, independently of the way we choose the
constants Cj , we shall have ρ′j(τ) ≥ ρ′j+1(τ), ∀τ. Therefore, if τ j is chosen with
ρ j(τ j ) = ρ j+1(τ j), then we have ρ j(τ) ≥ ρ j+1(τ) for τ ≤ τ j , respectively ρ j(τ) ≤
ρ j+1(τ) for τ ≥ τ j . We now return to the construction of the Cj , τ j . Note that, by
our requirements, wehave to set τ0 = 0, C1 = 0. We next note that the functionsρ j(τ)
are concave and ρ2(τ) = 2τ1/s−C2 is negative for τ > 0 small , whatever the value
of C2 > 0 may be, whereas ρ1 is positive. Moreover, when C2 increases so does τ1

given by τ1/s
1 = C2−C1 = C2 and we fix some C2 ≥ 22 so that 2(1/s)τ−1+1/s

1 ≤ M2.
This already defines ρ2 by ρ2(τ) = 2τ1/s−C2, and it is automatic that ρ′2(τ) ≤ M2

for every τ ≥ τ1. We may now assume that we have foundCj , τ j−1 and have set
ρ j = jτ1/s−Cj . In particular, ρ j(τ)≥ ρ j−1(τ) for τ≥ τ j−1 andρ′j(τ)≤M j for τ≥ τ j .

Next we fix Cj+1 ≥ ( j + 1)2, large enoughsuch that for τ1/s
j = Cj+1−Cj we have

j(1/s)τ−1+1/s
j ≤M j andset ρ j+1(τ) = ( j +1)τ1/s−Cj+1.

This concludes the construction of the numbers τ j , Cj , ρ j by iteration. If we
also want to have (28), then it suffices to chooseτ j−1 so that j(1/s)τ1/s−1≤M jτ1/s′−1

on [τ j−1,∞).

It follows for these choicesthat

(29) sup
k

ρk(τ) = ρ j(τ) on [τ j ,τ j+1] for τ≥ 1,

andwe set ρ̃(τ) = supk ρk(τ) for such τ.
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This showsthat ρ̃′(τ)→ 0 therewherethederivativeisdefined (which isexcept
the points τ = τ j ) when τ→ ∞. The sub-linearity and the Lipschitz-continuity of ρ is
then clear, so part a) of the lemmaisproved. Part b) isan immediate consequence.

LEMM A 4. Let ℓ̃ : Rn→ R+ be a functionwhich satisfies (7) and denoteM =
{ f ∈ D (s)(B2);

∫
Rn | f̂ (ξ)|exp[ℓ̃(ξ)]dξ≤ 1}. ThenM is a bounded set inD (s)(Rn).

We apply this for “ ℓ̃= ℓ′/2” , whereℓ′ will be constructed later on.

Proof. In view of thesupport conditionin thedefinition of M , weonly need to estimate
thederivativesof the elementsinM , andin fact show that for every j thereisa constant
c̃ j such that |(∂/∂x)α f (x)| ≤ c̃ j j−s|α||α|s|α|, for f ∈ M . We write for this purpose for
fixed j, α,

js|α|
∣

∣

∣

∂α

∂xα f (x)
∣

∣

∣
≤ js|α| sup

ξ∈Rn
|ξα|exp[−sj|ξ|1/s] ·

∫
Rn
| f̂ (ξ)|exp[sj|ξ|1/s]dξ

≤ |α|s|α|
∫
Rn
| f̂ (ξ)|exp[ℓ(ξ)+ lnc j ]dξ

≤ c̃ j |α|s|α|,

since|ξα|exp[−sj|ξ|1/s]≤ c′ j−s|α||α|s|α|, ∀α ∈Nn. (See, e.g., the argument for study-
ing (6). The point is that by analogy, exp[sj|ξ|1/s] ≥ (sj|ξ|1/s)s|α|/(s|α|)|α|. In the
secondinequality we haveused sj|ξ|1/s≤ ℓ(ξ)+ lnc j for some constantsc j .)

PROPOSITION 1. Fix χ ∈ D (s)(B), andconsider sequencesof constantsCj , C′j .

Assume that
∫
Rn | f̂ (ξ)|exp[2 j|ξ|1/s]dξ ≤ C2 j implies ‖χ f‖s, j ≤ C′j . (SeeLemma 1.)

Assume further that both sequences satisfy the condition lnCj ≥ j2, lnC′j ≥ j2.

We now denote by ℓ,ℓ′ : Rn→ R+ the functions ℓ(ξ) = supj( j|ξ|1/s− lnCj ),

ℓ′(ξ) = supj( j|ξ|1/s− lnC′j). Then we havethat

(30) |F (χ f )(ξ)| ≤ exp[−ℓ′(ξ)] · ‖ f̂ (ξ)expℓ(ξ)‖L 1(Rn)

and
∫
Rn
|F (χ f )(ξ)|exp[ℓ′(ξ)/2]dξ≤ ‖ f̂ (ξ)expℓ(ξ)‖L 1(Rn) ·

∫
Rn

exp[−ℓ′(ξ)/2]dξ.

Proof. It suffices to argue for the case ‖ f̂ (ξ)expℓ(ξ)‖L 1(Rn) = 1. Thus, f satisfies

‖ f̂ (ξ)exp[ j|ξ|1/s− lnCj ]‖L 1(Rn) ≤ 1, so it follows from the assumption onCj , that
‖F (χ f )(ξ)‖s, j ≤C′j for every j. This shows that

|F (χ f )(ξ)| ≤ inf
j

exp[− j|ξ|1/s+ lnC′j ] = exp[−ℓ′(ξ)].

Since exp[−ℓ′(ξ)/2] is integrable, we also obtain the last inequality.
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4. Kernelsand thespacesG s

It seemsnatural to study the integral operator Tu(x) =
∫
RmK (x,y)u(y)dy in the frame

of the spacesG s. The conditionswhich we use for K in this section are motivated by
the followingconsiderations:

• let K ∈ D (s)′(Rn+m) have compact support. Then there is d > 0 and c> 0 such
that

(31) |K̂ (ξ,η)| ≤ cexp[d(|ξ|1/s+ |η|1/s)], ∀(ξ,η) ∈ R
n+m.

• From (31), condition b) in Theorem 3 isequivalent to the following:

(32) ∀d′′, ∃d′ > 0, ∃c, s.t. |K̂ (ξ,η)| ≤ cexp[d′|ξ|1/s−d′′|η|1/s].

Most of our argumentsarebased onthe followingsimple relation:

(33) K (ψ) = (2π)−n−m
∫
Rn+m
K̂ (ξ,η)ψ̂(−ξ,−η)dξdη, ψ ∈ D (s)(Rn+m),

the integral being theLebesgue integral asabove. (SeeRemark 6.) It follows that

(34) F (Tg)(ξ) = (2π)−m
∫
Rm
K̂ (ξ,η)ĝ(−η)dη.

PROPOSITION 2. a) Let K ∈ D (s)′(Rn+m) satisfy (13) and assume that (31)
holds for somed > 0. Also consider d̃ > d. Then

(ϕ,u) 7→ (Tu)(ϕ) :=
∫
Rn+m
K̂ (ξ,η)ϕ̂(−ξ)û(−η)dξdη,

for ϕ ∈ D (s)(Rn) definesa continuousoperator T : G s,d̃(Rm)→ G s,′
d (B′).

b) Let K bea ultradistributionwith support inB′×B whichsatisfiesthe estimate

(35) |K̂ (ξ,η)| ≤ exp[d1|ξ|1/s−d2|η|1/s], for some constants d1 > 0,d2 > 0.

Also fix d3 < d2, B1 ⋑ B. Then the correspondence

g 7→ Tg(x) :=
∫

U
K (x,y)g(y)dy,

for g∈ D (s)(B1), can be extended to acontinuousoperator G s,′
d3
(B)→ G s,′

d1
(B′).

Proof. We only proveb). (Part a) is proved by similar argumentsbut is even simpler.)
We have already observed in Remark 5 that suppTg⊂ B′. When g ∈ D (s)(B1), then
F (Tg)(ξ) is given (34). We claim that wehave for somec> 0 the estimate

(36) ‖Tg‖s,d1 ≤ c‖g‖s,d3, ∀g∈ D (s)(B1).
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To provethis, we just argue as follows:

∣

∣

∣

∫
Rm
K̂ (ξ,η)ĝ(−η)dη

∣

∣

∣

≤ exp[d1|ξ|1/s]

∫
Rm

exp[−d1|ξ|1/s+d2|η|1/s]|K̂ (ξ,η)|exp[−d2|η|1/s]|ĝ(−η)|dη

and noticethat
∫
Rm

exp[−d2|η|1/s]|ĝ(−η)|dη≤ ‖g‖s,d3

∫
Rm

exp[(−d2+d3)|η|1/s]dη.

We have now proved (36) and can conclude the argument by observing that we can
approximate elementsinG s,′

d3
(B) with functionsinD (s)(B1) by convolution: wefix κ∈

D (s)(y; |y| ≤ 1) with κ̂(0) = 1 andapproximateû by κ̂(η/ j)û. Wehavethen for j large
that F −1(κ̂(·/ j))∗u ∈ D (s)(B1) and that supη exp[−d3|η|1/s]|(1− κ̂(η/ j))û(η)| → 0
as j → ∞.

REMARK 10. The proposition gives in particular the implications ii )⇒i) in
Theorem 2 and b)⇒a) in Theorem 3. SeeRemark 4 andCorollary 1.

To establish the remaining implications in the theorems 2, 3, we first prove a
lemma(part of which will beused only in section 6):

LEMM A 5. Let χ ∈ D (s)(B′), κ ∈ D (s)(B) and fix L, d. Then there isc> 0 such
that

|exp[−i〈x,ξ〉]|s,L,B = sup
α

|ξα|

L|α|(α!)s
≤ exp[c|ξ|1/s/L1/s],(37)

‖χ(x)exp[−i〈x,ξ〉]‖s,d ≤ ‖χ‖s,d exp[d|ξ|1/s],(38)

and

‖κ(y)exp[−i〈y,η〉]‖s,d ≤ ‖κ‖s,d exp[−d|η|1/s].(39)

Note that (39) is an estimate referring to the spacesG s,′
d , althoughthe function

y 7→ κ(y)exp[−i〈y,η〉] lies in D (s)(Rm).

Proof. (37) isa direct calculation.

For (38) we have to calculate supθ |F (χexp[−i〈x,ξ〉])(θ)|exp[d|θ|1/s]. Since
F (χexp[−i〈x,ξ〉])(θ) = χ̂(θ+ ξ), it suffices to observethat

sup
θ
|χ̂(θ+ ξ)|exp[d|θ|1/s]≤ sup

θ
‖χ‖s,d exp[d|θ|1/s−d|θ+ ξ|1/s]

≤ ‖χ‖s,d exp[d|ξ|1/s],
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whereweused |θ|1/s≤ |θ+ ξ|1/s+ |ξ|1/s. As for (39), we can arguesimilarly as

‖κ(y)exp[−i〈y,η〉]‖s,d = sup
θ
|κ̂(θ+η)|exp[−d|θ|1/s]

≤ sup
θ
‖κ‖s,d exp[−d|θ+η|1/s−d|θ|1/s]

≤ ‖κ‖s,d exp[−d|η|1/s].

Herewe again used (9).

We can now provethe followingconverseto part b) in Proposition 2:

PROPOSITION 3. Let K be a ultradistribution with support in B′×B. Denote
by T theoperator Tu(x) =

∫
RmK (x,y)u(y)dy. Assumethat thereare constantsc,d1,d2

and ballsB1, B2, B⋐B1,B′⋐B2, such that T can be extended to acontinuousoperator
G

s,′
d1
(B1)→ G

s,′
d2
(B2). Then theFourier transformof K satisfies the estimate

(40) |K̂ (ξ,η)| ≤ c1exp[d2|ξ|1/s−d1|η|1/s].

In particular, we have|K̂ (ξ,η)| ≤ c1exp[−d1|η|1/s/2] if |ξ| ≤ d1|η|/(2d2).

Proof. We shall obtain (40) starting from the estimate

‖T(κ(y)exp[−i〈y,η〉])‖s,d2 ≤ c2‖κ(y)exp[−i〈y,η〉]‖s,d1,

where κ ∈ D (s)(B1) is identically 1 onB. On the other hand, by fixing χ ∈ D (s)(B2)
identically oneonB′, we havethat

‖T(κ(y)exp[−i〈y,η〉])‖s,d2

= sup
ξ

exp[−d2|ξ|1/s]|Fx→ξ(T(κ(y)exp[−i〈y,η〉]))(ξ)|

= sup
ξ

exp[−d2|ξ|1/s]|K (χ(x)κ(y)exp[−i〈x,ξ〉− i〈y,η〉])|

= sup
ξ

exp[−d2|ξ|1/s]|K̂ (ξ,η)|.

The last equality follows from the fact that χ(x)κ(y) is identically one on the support
of K . By applying(39), we now obtain that

sup
ξ

exp[−d2|ξ|1/s]|K̂ (ξ,η)| ≤ c3exp[−d1|η|1/s],

which is the estimate wewanted to prove.

There isa result dual to Proposition 3which wenow consider.
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PROPOSITION 4. Let K be as in the previous proposition and assume that the
map S: G s,d1(B2)→ G

s,′
d2
(B1) such that

F (Sϕ)(η) =
∫
K̂ (−ξ,η)ϕ̂(ξ)dξ

mapsG s,d1(B2) to G s,d3(B1) andiscontinuousasa mapG s,d1(B2)→ G
s,d3(B1). Then

there isc such that

(41) |K̂ (−ξ,η)| ≤ cexp[d1|ξ|1/s−d3|η|1/s].

REMARK 11. Proposition 4can be reduced to Proposition 3 bytricks, but the
proof is rather simple and doesnot seem worth the effort thiswould require.

Proof of Proposition 4. Continuity of Smeansthat there is a constant c′ such that

(42) ‖Sϕ‖s,d3 ≤ c′‖ϕ‖s,d1, ∀ϕ ∈ G
s,d1(B2).

We shall apply this for the family of functionsϕξ̃ defined by

ϕξ̃(x) := χ(x)e−i〈x,ξ̃〉,

whereχ∈ D (s)(V) isafixed functionwith theproperty that χ≡ 1 onB′. Notethat then
ϕ̂ξ̃(ξ) = χ̂(ξ+ ξ̃), so we also haveF (Sϕξ̃)(η) =

∫
K̂ (−ξ,η)ϕ̂ξ̃(ξ)dξ =

∫
K̂ (−ξ,η)χ̂

(ξ+ ξ̃)dξ. Now, since χ ≡ 1 on B′, F (Sϕξ̃)(η) is just K̂ (ξ̃,η). It follows from the
continuity of S that

(43) sup
η
|K̂ (ξ̃,η)|exp[d3|η|1/s]≤ c′‖ϕξ̃‖s,d1.

We can also write thisas

(44) |K̂ (ξ̃,η)| ≤ cexp[d1|ξ̃|1/s−d3|η|1/s],

if we also use (38) for ‖ϕξ̃‖s,d1.

5. Proof of Theorem 3

In this sectionwe apply Proposition 3to prove a)⇒b) inTheorem3. For theimplication
b)⇒a), seeRemark 10.

As a preparation, we choose balls B2 ⋑ B1 ⋑ B′ in R
n and consider the spaces

X,Yd, where X is the space{v∈ D (s)′(Rn);suppv⊂ B′} andYd = G s,′
d (B1) = {v;supp

v⊂ B1, ‖v‖s,d < ∞}. The spaces Yd are clearly Banach spaces with the natural norm
and the inclusionsYd ⊂Yd′ are continuousfor d < d′. Moreover, X ⊂Y :=

⋃
dYd. We

endow X with the topology induced byD (s)′(Rn) and also Y with the inductive limit
topology byY = lim

−→d
Yd. It is then, in the terminology of [2], a LF-space.

We havethe followingresult:
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PROPOSITION 5. a) The inclusionY ⊂ D (s)′(Rn) is continuous.

b) The inclusionX ⊂Y iscontinuous.

Proof. In all the argument we fix some χ ∈ D (s)(B1) which is identically one on B′.
Whenever werefer in the argument which followsto someresult obtained in aprevious
section in which a cut-off f unction isused, it will be thisone.

a) Let us first show that the inclusions Yd ⊂ D
(s)′(Rn) are continuous. As-

sume then that v 7→ ‖v‖q is a continuous semi-norm onD (s)′(Rn). There is no lossof
generality to assume that it has the form ‖v‖q = supf∈M |v( f )| for some bounded set

M ⊂ D (s)(Rn). It follows that there exists a ball B̃ such that M ⊂ D (s)(B̃) and such
that M is bounded in thespaceG s,d(B̃) for every d > 0.

Then from Lemma 1 b), we can seethat the set N = {χ f ; f ∈ M } is bounded
in G s,d(B2) for every d > 0, and for v∈Yd we have

‖v‖q = sup
f∈M
|v( f )| = sup

f∈M
|v(χ f )|= sup

g∈N
|v(g)|

≤ ‖v‖s,d · sup
g∈N
‖g‖s,2d ·

∫
Rn

exp[−d|ξ|1/s]dξ.

Here we used Remark 6 for the last inequality. Since the second and the last factor
in the right hand side are bounded, the inclusion Yd → D

(s)′(Rn) is continuous, as
claimed.

b) Now let U ⊂Y be a convex set such that its intersectionwith thespaceYd is
a neighborhood of the origin for every d > 0. This means in particular that for every
j we can find a constant c′′j > 0 such that {v∈ Yj ;‖v‖s, j ≤ c′′j } ⊂ U . (The constants
c′′j will have to be, in general, small .) We now choose constants c j such that |h(ξ)| ≤
c j exp[ j|ξ|1/s] implies that |(χ̂ ∗ h)(ξ)| ≤ 2− jc′′2 j exp[2 j|ξ|1/s]. (SeeLemma 1.) Note
that c j must be small compared with c′′2 j .

By using Corollary 1 we also see that there are constants Cj such that if v ∈
G

s,′
d (B1) and if f ∈ L 2(Rn), ‖ f‖s, j ≤ Cj implies |v( f )| ≤ 1, then ‖v‖s,2 j ≤ c′′2 j and

hencev ∈ U . The constants Cj will t ypically be large and oncewe have foundsuch
constants, wemay increase them still further. We then assumethat they are larger than
max(1/c j ,exp[ j2]).

Next, we now consider an increasing sequence of positive constants C′j for
which the numbers lnC′j satisfy (23) and for which we also have that for the sequence

Cj chosen above, it follows from
∫
Rn | f̂ (ξ)|exp[2 j|ξ|1/s]dξ ≤ C2 j that |F (χ f )(ξ)| ≤

C′j exp[− j|ξ|1/s]. Again this can be obtained using Lemma1. (In all thisargument we
denote “large constants” by capital lettersand“small ” ones, by small l etters.)

We now denote ℓ(ξ) = supj [ j|ξ|1/s− lnCj ], ℓ′(ξ) = supj [ j|ξ|1/s− lnC′j ] and

considerM = { f ∈ D (s)(B2);
∫
Rn | f̂ (ξ)|exp[ℓ′(ξ)/2]dξ≤ 1}. M is then aboundedset

in D (s)(Rn): seeLemma4.

For a fixed positive constant c̃, it followsthat theset

W = {v∈ X; |v( f )| ≤ c̃, ∀ f ∈M }



The kernel theorem in ultradistributions 197

isaneighborhood of theorigin in X. To concludethe argument it will t hereforesuffice
to show that W ⊂ U if c̃ is chosen suitably.

Assume then that v∈W, which means in particular that v∈ G s,′
d (B′) for some

d, sinceX =
⋃

dG
s,′
d (B′) asvector spaces.

Since|v( f )| ≤ c̃ for all f ∈M it followscombiningProposition 1with Lemma
2 that |v̂(ξ)| ≤ c′′c̃exp[ℓ(ξ)] for some constant c′′ which dependsonly on ℓ and ℓ′. We
now put on c̃ the condition c′′c̃≤ 1. Sincewe also know that |v̂(ξ)| ≤Cexp[d|ξ|1/s]
for someC andd, we concludethat

(45) |v̂(ξ)| ≤ exp[min(ℓ(ξ),d|ξ|1/s+ lnC)], ∀ξ ∈ R
n.

Note that the constantsC and d depend onv. Now we choose anatural number k >
d+1. If |ξ|1/s is large enough, say, larger than lnC+ lnCk, it follows that

d|ξ|1/s+ lnC≤ k|ξ|1/s−|ξ|1/s− lnCk+ lnCk+ lnC≤ k|ξ|1/s− lnCk.

This showsthat there is σ, which also dependsonv, such that

|v̂(ξ)| ≤ max
j=1,...,σ

exp[ j|ξ|1/s− lnCj ].

Indeed, for |ξ|1/s≥ lnC+ lnCk, this is trueby what wesaw before if we assumeσ≥ k,
and for |ξ|1/s ≤ lnC+ lnCk, we have that j|ξ|1/s− lnCj ≤ j(lnC+ lnCk)− lnCj →
−∞, with j → ∞ (uniformly for the vectors ξ under consideration), such that ℓ(ξ) ≤
supj≤ j0( j|ξ|1/s− lnCj), for some j0.

We can now find measurable functions h j , j = 1, . . . ,σ, such that v̂ = ∑σ
j=1h j

andsuch that |h j(ξ)| ≤ c j exp[ j|ξ|1/s]. Multiplyingwj = F
−1h j with the cut-off f unc-

tion χ, weobtain in thisway ultradistributionsv j = χwj , j = 1, . . . ,σ, such that |v̂ j(ξ)|
≤ 2− jc′′2 j exp[2 j|ξ|1/s] and such that v = ∑σ

j=1v j . Since the ultradistributions 2 jv j lie
inU andU isconvex andcontainstheorigin, it followsthat v∈U . Thisconcludesthe
proof.

We have now proved Proposition 5and turn to the proof of Theorem 3. Recall
that we may assume that suppK ⊂ B′×B, with B and B′ closed balls in Rm, respec-
tively Rn. (SeeRemark 4.) Let us then assume that T : D (s)′(Rm)→ D (s)′(Rn) is a
continuous operator such that the restriction to D (s)(Rm) is given by the kernel K .
Since the inclusionsG s,′

d (B)→ D (s)′(Rn) are continuous we obtain for every d > 0 a
continuousmap (denoted again T) T : G s,′

d (B)→ D (s)′(Rn) andconsider χ ∈ D (s)(B2)

which is identically one on B′. On G s,′
d (B) the operator T coincides with χT, so in

particular it is trivial that T defines a continuous operator T : G s,′
d (B)→ X. By part

b) of Proposition 5, it also defines a continuous operator T : G s,′
d (B)→ Y. It follows

therefore from Grothendieck’s theorem which we recall i n a moment, that there is d′

with T(G s,′
d (B)) ⊂Yd′ and such that the map T : G s,′

d (B)→ Yd′ is continuous. At this
moment we can essentially apply Proposition 3to concludethe argument.
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THEOREM 4 (Grothendieck, [2]). Let · · · → Xi → Xi+1→ ··· be a sequenceof
Fréchet spaces and continuous maps. Denote by X the inductive limit of the spaces
Xi , by fi : Xi → X the natural maps andconsider a continuous linear map T : F → X
where F is a Fréchet space. Assume that X is Hausdorff. Then there is an index i0

such that T(F) ⊂ fi0(Xi0). Moreover if f i0 is injective, then there is a continuousmap

T0 : F → Xi0 such that T is factorized into F
T0
−→ Xi0

fi0−→ X.

6. Proof of Theorem 2

In this section we prove the implication i)⇒ii ) in Theorem 2. For the implication
ii )⇒i), seeRemark 10.

PROPOSITION 6. Let S:D {s}(B)→D {s}(B′) bea continuousintegral operator
associated with a kernel K with support in B′×B, B,B′, balls in Rm, respectively
Rn, and fix d > 0. Then there is d′ > 0 such that S induces a continuous operator
G s,d(B)→ G s,d′(B′).

Proof. Using (16), we have a continuousoperator from a Banach spaceto a countable
inductive limit of Banach spaces:

G s,d(B)→ lim
−→
d>0

G s,d(B)
S
−→ lim
−→
j∈N

G s, j(B′),

where the first map is the standard inclusion given by the definition of an inductive
limit. Then the conclusion follows from Theorem 4.

Proof of Theorem2. The assumption is that Tu(x) =
∫
K (x,y)u(y)dy is a linear con-

tinuousoperator E {s}′(U)→D {s}′(V). Sincewe can multiply with cut-off f unctionsin
thex and in they variables, there isagain nolossof generality to assumethat U =Rm,
V =Rn andthat suppK ⊂B′×B for two ballsB′ ⊂Rn, B⊂Rm. By duality, weobtain
then a continuousoperator S: D {s}(Rn)→ E {s}(Rm) defined by

ϕ(x) 7→ (Sϕ)(y) =
∫
K (x,y)ϕ(x)dx.

From the support condition, the image of S is included in D {s}(B), and S becomes a
continuousoperator

S: D {s}(B′)→ D {s}(B),

sincethe topology of D {s}(B) is equal to the one induced by the inclusionD {s}(B) ⊂
E {s}(Rm). It follows therefore from Proposition 6 that if we fix d′ > 0, then there is
d > 0 such that S inducesa continuousoperator G s,d′(B′)→ G s,d(B). The conclusion
in the theorem is then a consequenceof Proposition 4.
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7. An exampleand some comments

In this sectionwe give an exampleof a distributionwhich satisfies condition b) in the-
orem 3, but doesnot satisfy awavefront set condition of form WF(s)(K )∩{(x,y,0,η);
η 6= 0}= /0.

We shall work for n= m= 1, onV×U = T2 = T×T, T the one-dimensional
torus. Since we are dealing with a non-quasianalytic setup, there is no real lossof
generality in doing so. (We say something about this in Remark 12 below.) On the
other hand, working onthe torusmakes the example alittl e bit simpler.

We denote exp[−k1+1/s/ j], for j ∈ N, k∈ N, by a jk and define the distribution
K onT2 by

(46) K (x,y) = (2π)−2
∞

∑
j ,k=1

a jk exp[i( jx+ ky)].

(The numbers a jk are thus the Fourier coefficients of K and convergence in (46) is
in the spaceof classical distributions.) It is immediate that K defines a continuous
operator L : D (s)′(T)→ D (s)′(T) by

(47) Lu= (2π)−1
∞

∑
j=1

b j exp[i j x], b j =
∞

∑
k=1

a jkû(−k)

where û(k) = u(exp[−iyk]) aretheFourier coefficientsof u andandconvergencein the
first part of (47) is in thespaceof ultradistributions.

We claim that we have

PROPOSITION 7. Let K be the kernel defined by (46). Then there is (x0,y0)
∈ T2 such that ((x0,y0),(0,1)) ∈WF(s)(K ). (Also seeRemark 13 below.)

ThusK definesa continuousoperator D (s)′(T)→ D (s)′(T), but wedo not have
WF(s)(K )∩{(x,y,0,η);x∈ T,y∈ T,η 6= 0}= /0.

To proveProposition 7, wefirst state

PROPOSITION 8. Consider w∈ D (s)′(T2) andsuppose that for some (x0,y0),
((x0,y0),(0,1)) /∈WF(s)(w). Then thereisε > 0 such that if χ∈ D (s)(R2) is supported
in an ε-neighborhood of (x0,y0), then |F (χw)(ξ,η)| ≤ exp[−ℓ(ξ,η)] for some sub-
linear function ℓ as in (7) when (ξ,η) is in a suitably small conic neighborhood of
(0,1).

The proof of this proposition is straightforward and is similar e.g., to the proof
of lemma1.7.3 in [14]. We omit details.

We can now prove Proposition 7. In fact, arguing by contradiction and using
the preceding proposition, we can find a partition of unity formed of functions χi ,
i = 1, . . . ,σ, in D (s)(T2) such that for some conic neighborhoodΓ of (0,1) in R2 and
some function ℓ as in (7) we have |F (χiK )(ξ,η)| ≤ exp[−ℓ(ξ,η)] for (ξ,η) ∈ Γ and
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i = 1, . . . ,σ. Sincea jk =∑σ
i=1F (χiK )( j,k) it would follow that |a jk| ≤ σexp[−ℓ( j,k)]

when ( j,k) ∈ Γ, which is false.

REMARK 12. We have argued on the torus but we can now also immediately
obtain from thisan exampleof a kernel K ′ defined onR×R which satisfies condition
b), but not thewavefront set relationWF(s)(K )∩{(x,y,0,η);x∈R,y∈R,η 6= 0}= /0.
To simpli fy notations, we first observe that after a translation onthe torus, it follows
from above that there are kernels which define linear continuous maps D (s)′(T)→
D (s)′(T), but with ((0,0),(0,1)) ∈ WF(s)(K ). Next, pick ψ ∈ D (s)(R2) which has
support in a small neighborhood of 0∈ R2 with ψ≡ 1 in a still smaller neighborhood
of 0. If K ∈ D ′(T2) is the one just introduced above, then K ′ = ψK has a natural
interpretation as a distribution onR2. SinceK gave rise to a linear continuous op-
erator D (s)′(T)→ D (s)′(T), K ′ defines in a natural way a linear continuous operator
D (s)′(R)→ D (s)′(R). It clearly doesnot satisfy thewave front set conditionwewould
like to have.

REMARK 13. With asmall extra effort, we canshow that actually ((0,0), (0,1))
∈WF(s)(K ), K theonedefined in (46). To provethisit isessential that the coefficients
a jk arepositive. We leave the details to the reader.

REMARK 14. The argumentsin thispaper can in principlebe extended to more
general classesof non-quasianalyticultradistributionsbut wehavenot tried to work out
such cases.
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