Rend. Sem. Mat. Univ. Pol. Torino
Voal. 67,2 (2009, 179 — 201
Sewnd Conf. Pseudo-Differential Operators

O. Liessand Y. Okada*

THE KERNEL THEOREM IN ULT RADISTRIBUTIONS:
MICROLOCAL REGULARITY OF THE KERNEL

Dedicated to Profesor Luigi Rodino onthe occasion d his 60th birthday

Abstract. In this paper we study kernels asociated with continuows operators between
spaces of Gevrey ultradistributions. The existence of such kernels has been established, in
analogy with the kernel theorem of L. Schwartz for clasdcd distributions, by H. Komatsu,
and ou aim here is to study these kernels from a microlocd point of view. The main re-
sults, which are the theorems 2, 3 below, show that there is a significant diff erence between
the results which hdd true in the case of Beurling utradistributions and the results valid for
Roumieu ultradistributions.

1. Introduction

The Schwartz kernel theorem states that the linea continuows operators T mapping
»(U) to D’ (V) arepredsely the operatorsfor which thereis x € ©'(V x U) such that

oy Tu(®)=x(¢xu), ue2U), peD(V).

(Cf. L. Schwartz, [17].) « iscdled the “kernel” of T andin this stuation we write
Tu(x) = Jy X (X, y)u(y)dy. HereU andV are open sets in R™ and R" respedively,
D (U) isthespaceof ¢’ (U ) functionsendoved with the Schwartz topdogyand o’ (W)
the spaceof distributionsonW, withW =V or W =V x U. The Schwartz theorem has
been extended to the cae of ultradistributions by H. Komatsu and bah L. Schwartz
and H. Komatsu have dso studied linea continuows operators defined on compadly
suppated distributions, respedively ultradistributions, to distributions or ultradistri-
butions. We shall consider for the moment only the distribution case. The problem
is then to consider a linea continuows operator T : £/(U) — 2'(V), where £'(U)
is the spaceof compadly suppated distributionsonU. T induces a linea contin-
uous operator on o (U) and therefore it has a distributional kernel x € »/(V x U).
The relation (1) associates a separately continuots bili nea form (¢,u) — % (¢ ® u)
on (V) x ©(U) with T whereas the initial operator defined onz’(U) is asociated
with the bilinea form (¢,u) — T(u)(¢) defined on (V) x £'(U). If we want to
understandthe dassof kernels & € »’(V x U) which correspondto linea continuous
operators£’(U) — p’(V), we may then just studythe bili nea form (¢, u) — % (¢ @ u)
asaformon o (V) x £/(U). Thishasled to a sophisticated theory of tensor products
of topdogicd vedor spaces in which the notion o “nuclea” spaces (introduced by
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A. Grothendied) plays a central role. It turns out that most common spaces of dis-
tributions or ultradistributions are nuclea and the central result concerning the kernel
theorem in distributionsis that the operator T : © (U) — 2'(V) asociated with some
% € D'(V xU) can be extended to alinea continuows operator £’(U) — o'(V) if and
only if & can beidentified in anatural way with an elementin [» (V)®z'(U)]’, where
D (V)&E'(U) is, say, the € topdogica tensor product of o (V) with £/(U). Sincethe
spaces under considerationare nuclea, we may aswell work with the Tttensor produrct.
For definitions and detail s we refer to [2] and [19]. Thereis also an interpretation of
thisin terms of ¢® functionswith distributional values.

Thetheory of tensor products of topdogicd vedor spacesis very powerful and
it explains, among aher things, why kernel theorems in Banacdh spaces of (possbly
generalized) functions must typicaly be more complicated than those in distributions
(see eg., [1] for some examples of kernel theorems in Lebesgue spaces): infinite di-
mensional Banach spaces are never nuclea. On the other hand, when one wants to
consider kernel theoremsin hyperfunctions, thiskind of approachis not usablein prac
tice since hyperfunctions have no reasonable topdogy. One may then try another ap-
proadh, which has been worked out in microlocd analysis. The central nationis this
time the “wave front set” of a distribution, ultradistribution, or hyperfunction (intro-
duced in 1969 byM. Sato for hyperfunction, [15] and in 1970 byL. Hérmander for
distributions, [3]). The main condtionisthen

2 {(x,y,0,n);xeV,yeU,n#0NWFx)=0.

When « is adistribution, WF(% ) stands for the ¢ wave front set and if (2) halds
then microlocd analysisgivesanatural meaningto [, & (x,y)u(y)dywhenue £'(U).
(See[3], [20].) The same is true dso in hyperfunctions if WF denates the analytic
wavefront set: thereisanatural meaningfor f; X (X,y)u(y)dy whenuisared-analytic
functional onU. Integrationis then defined in terms of “integration alongfibers’ and
Ju X (x,y)u(y)dy hasameaningin hyperfunctions: see eg., [16], [5] for details.

There is now however a fundamental diff erence between the two main cases
contemplated by microlocd analysis, the distributional and the hyperfunctional one.

Itisinfad not difficult to seethat the condtion (2) is nat equivalent to the fad
that ¥ € [p(V)®E'(U)]". This meansthat (2) is not a necessary condtion when we
want % to define a ontinuous operator from ’(U) to ©’(V). On the other hand,
it is part of the results described in [10Q], [11], that for hyperfunctions a reasonable
operator ading from some spaceof analytic functionalsto the spaceof hyperfunctions
can only be defined in presence of condtion (2). It seemed then natural to the present
authors to look into the case of Gevrey ultradistributions and to study if microlocd
condtions of type (2) are necessary for reasonable operators in ultradistributions to
exist. It came, at least at first, as a surprise, that the answer depends on which type
of ultradistributions one is considering: for ultradistributions of Beurling type, one
may work with weaker condtions than the ones correspondng to (2), whereas for
ultradistributions of Roumieu type such condtions are dso necessry: seesedion 2
for the terminology and the theorems 2, 3 for the predse statements.
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2. Definitions and main results

For the convenienceof the realer, we shall now recdl some of the definiti ons related
to Gevrey-ultradistributions. (For most of the notions considered here, cf. e.g., Lions-
Magenes, vol.3, sedion 13, or [14].)

Consider s> 1,L > 0,U openinR" andlet K be a ®mpad set in U. We shall
denoteby f — |f|s k the quasinorm

[(9/0x)%f(X)|
3 f = supsup—-—~—~
(©) [ flsLk pnx p CICOE

defined onc*(U). We further denote by

e p5L(K) the spaceof ¢ functions f on R" which vanish ousideK such that for
them |f|5,|_’K < 00,

o DO(K) =023 (K), 2 (K) = U0 DSH(K),
o {8H(U) =Ukcy 219 (K), respedively 2 (U) = Ukcy 29 (K),

e £G(U)={f ec®U);VK€U,VL >0, |f|sLk < o}, respedively
£18H(U) = {f € c®(U); VK €U, 3L > 0, [f|s k < }.

Thefunctionsin £ {8} (U), are cdled “ ultradiff erentiable” of Roumieu type, and
thasein £ (9(U), ultradifferentiable of Beurling type, with Gevrey index s. Sincewe
shall often encounter statements for the two types of classes which are quite similar,
we now introducethe conventionthat we shall write *(U) when we give astatement
which refersto bath the case x = (s) and the case x = {s}. The same conventionalso
appliesfor other spaces asociated with the two cases.

All the spaces mentioned above cary natural topdogies:
e »SL(K) isaBanad spacewhen endoved with | -|s k asanorm,

e »)(K) isthe projedive limit (for “L — 0+") of the spaces »5-(K), whereas
»18H(K) is the inductive limit (for “L — ") of the same spaces. The spaces
D (K) are FS (i.e., Frédhet-Schwartz), wheress the spaces 1 (K) are DFS
(duals of Fréchet—Schwartz). (The topdogicd properties of these spaces are
studiedin [6].)

e 08 (U) is the indutive limit (for K ¢ U) of the spaces o {8}(K), whereas
() (U) istheinductive limit (again for K ¢ U) of the spaces 0 (¥ (K).

o Weshall definetopdogiesonz (9(U) and z {} (U) asfoll ows. At first we define
for K € U andL > 0 the spaceYk | of restrictionsto K of functionsin ¢®(U),
which satisfy |f|si k < o, endaved with the topdogy gven by the semi-norm
| . |&L,K- Then,
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We have montinuowsinclusions »*(U) C £*(U) with dense image and 2 *(K)
is the subspaceof £*(U) (K C U) consisting o the functions with compad suppat
lyinginK.

For a systematic study o the topdogicd properties of these spaces we refer to
[13], [6]. We shall however strive to use only a minimum of results on the topdogicd
structure of the spaces we shall consider. On the other hand, we shall consider later
a new classof spaces in which we can state results which can serve s a common
badkgroundfor both the Roumieu and the Beurling case.

Finally, we shall denate by o {s(U), 2 (U), {/'(U), £(/(U), the strong
dual spaces (cdled Gevrey-ultradistributions of Roumieu, respedively Beurling type)
of the spaces 0 {8} (U), p(U), zish(U), £ (U).

We then also have by dulity continuowsinclusions
(4) £¥(U) c 2¥(U).

Asfor integral operators, the followingremark is easy to ched (cf. [6]):

e asume X € *(V xU). Then the prescription T (¢) (V) = K (VR ¢) definesa
linear continuows operator T from ©*(U) to 2* (V).

We shall writethisas
T = | K0y, o€ 2" ().
It is part of theresults proved in [6], [7], [8], that also the conwerseistrue:

THEOREM 1 (Komatsu). a) Any linear continuows operator T : »*(U) —
p*(V)isofformT(¢)(Y) = K (P ¢) for some x € ¥ (V xU).

b) (See[8], page 655) Any linear continuowsoperator T : £*(U) — ¥ (V) is
of formT(¢) (W) = K (Y ® ) for some x € D* (V) Qe E*(U). (“ ®¢" isthe e-tensor
product.)

Before we can state our own results, we must still i ntroduce the naotions of
Gevrey wave front sets. In order to justify them, we start from the foll owing straight-
forward (and standard) result, which isin fad also central in the cdculations:

REMARK 1 (See eg.,[6]). Let Bbe a dosed ball inR" (or R™; inthe cae R™,
notation shoud be changed dlightly).

There ae monstantsc > 0,¢’ > 0, such that for f € ¢’ (B) we have

(5 sup|f(&)lexp[c/(&]/L)" < clflsLe, |flscie < csup|f(€)|exp[(E]/L)"].
EeRN EeRN
“Hats’ will denate the Fourier transform, which we define by

f&) =7 1) = [ T9epl-itegldx
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The relation (5) is based on the following elementary inequality, which is valid for
dig| > 1

®  [&"exp[-d[g[*T < [g]@ igfIBI‘B‘/(dléll/s)‘B‘ < (4s)3%d =0 jor|3;

the last inequality is obtained by evaluating the function F (B) = |B|/Bl x (d|&|*/s)~IFI
for |B| = [sla|] + 1, where [s|a]] is the integer part of sja|. (The fador “4%9” appears
because of the “integer part”.)

We have the following relations:

e Afunctionf € ¢$(R") liesin o {SH(R") predsely if there ae constantsc,d > 0,
such that | ()] < cexp[—d|E[*/9).

e A function f € ¢(R") liesin »(9(R") predsdly if there is ¢ and a function
¢:R" — R, such that

) vd>0,3¢ st dEYS</(E)+C,VEERM,
and such that
8 |f(2)] < cexp[—£(8)], V& € R".

e A red analytic functional uliesin z(9'(R") if there ae constants ¢,d > 0 such
that [0(Z)| < cexp|[d|g|*/9.

e Ared anayticfunctional uliesin £ {(R") if for every d > Othereis a constant
c suchthat |G(8)| < cexp[d|&|Y/9].

A useful remark is the sub-additivity of the function€ — |&|Y/Sfor s> 1, that i,
(9) €+ 65 <[5+ (6], vEBER"

We now introduce the wave front sets correspondng to the ultradistribution
spaces considered abowe. (Cf., e.g., [4],[9], [14].)

DEFINITION 1. a) Let ue »9'(U) andconsider (x2,€%) € U x R". We shall
say that (x°,&°) ¢ WF (), if we can finde > 0, v € £(9'(R"), an open corvex one
I which contains £°, ¢ > 0 and afunction/ asin (7) with the following properties:

(10) u=von |x—x0|<g V&) <cexp[-L(&) for EcT.

b) Letue »{8/(U). We shall say that (x°,€°) ¢ WF g (u), if we can finde > 0,
v e £ {s/(RM), an open corvex one ™ which contains £° andc,d > 0 such that

(11) u=von [x—x° <g [9E)| <cexp[—d[E*/F for EcT.
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The WF (g (u), WFs (u) are the Gevrey wave front sets of u of Roumieu, re-
spedively Beurling, type with Gevrey index s.
We now state the main results.

THEOREM 2. LetV x U bean oen setin R" x R™ andconsider a linear con
tinuolsmap T : 218 (U) — 218(V) given by some kenel x € »{s(V x U). Then
the foll owing statements are ejuivalent:

i) T can ke exended to acontinuowsandlinear map T : £18/(U) — o {sV(v).

ii) x satisfiesthe Geweywavefront set condtion of Roumieu type:

WFg (%) N{(x,y,0,n);n # 0} = 0.
THEOREM 3. With V andU as before, consider a linear continuolsmap T :
DO (U) — »(V) given by some kenel x € 29 (V x U). Then the foll owing state-
ments are ejuivalent:
a) T can be exended to acontinuows andlinear map T : £/ (U) — 09/ (V).

b) For evey (x°,y°) € V x U andfor all d >0, 3¢ > 0, 3¢, 3¢y, and I’ €
£ (V xU) suchthat ' = % on|(x,y) — (x°,y°)| < € and

(12) (7 x")(&,n)| < crexp[—d|n| Y] for £ < c/n|.

REMARK 2. A comparison of condtion b) in Theorem 3 with part a) of Defi-
nition 1showsthat WF) (%) N{(X,y,0,n);n # 0} = 0 implies b) in the theorem. We
shall seelater onthat the mnverseisnot true: there are kernelswhich satisfy condtion
b), but do nd satisfy the wave front set condtionWF (%) N {(x,y,0,n);n # 0} = 0.

REMARK 3. Note that, taking into acoount Theorem 1, the condtionsii) and
b) in the precaling theorems may be regarded as charaderizaions of the respedive
spaces D1 (V) @ £18H(U) and 29 (V) ®¢ £ (U), as subspaces of 218 (V x U)
and D& (V x U).

Thefollowing remark isimmediate.

REMARK 4. Let x denate (s) or {s} with s> 1, and consider X1 € D*(V),
X2 € 2*(U). We dencte by B; the suppat of x1 and by B, the suppat of xo. If
T:2*U)— »*(V)isalinea continuowsoperator, then sois Ty : £*(By) — £*(B1)
defined by Tiu=X1T (X2u). Conversely, if all operatorsobtainedinthisway are contin-
uousfor somelinea operator T : £*(U) — D*(V), then T is continuows. Note that if
T correspondsto akernel % (x,Y), then Ty correspondsto thekernel X1(X)X2(Y) X (X, ).
In view of this remark we may asaume henceforth withou loss of generality that
U =R™, respedively that V = R", and that

(13 suppx C B’ x B,
for some dosed ballsB c R™, B’ ¢ R".

REMARK 5. If & € »*(R™™) satisfies (13), then suppTg C B’ for every g €
D*(R™M). Conversely, if suppTg C B for every g € *(R™), then suppx € B’ x R™
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3. Intermediate spaces and weight functions

In this dionwe define spaceswhich are intermediate between Roumieu and Beurling
ultradistributions. We fix a dosed ball B and consider for f € ¢ (R"), ue 2'(R"), a
new set of quasinorms

I fllsa = sup |f(&)|exp[d|€[*/"],
EeRN
(14) lul[>® = sup[a(€)|/ exp[d|E[*/9).
EeRN

(Here a'(R") denotes the red-anaytic functionals on R".) Thus formally, ||uf|3% =
|lul|s—d, but the two quasinormsrefer to diff erent situations, so we wanted to make the
differencevisible dso naationally.

DEFINITION 2. We denate by G S9(B) the space of ¢ functions u with suppat
in B such that ||u||sg < o, endowed with the norm |jul|sq. In asimilar way, we con-
sider the space g 3'(B) of ultradistributions u with suppa't in B for which ||u||3% < oo,
endowed with the norm ||u||3¢.

Also nate that, using the estimates (5), we have for suitable mnstants ¢/, ¢/ the
following continuowsinclusions:

(15 G (B) c 3L (B)  ¢5¢/M(B), if L > 0.

Thus (for fixed s) the spaces g 39(B) form ascae (indexed byd > 0) of functionspaces
which is esentially equivalent with the scae »S4(B). For example, we have

(16) % (B) =limg>‘(B)
d>0

aslocdly convex spaces. (Also see[6].)

REMARK 6. When f € ©*(R") has compad suppatandg € 2*(R"), we can
cdculate f(g) by f(g) = (2)™" fzn f(§)§(—&)dE, where the integral is the standard
Lebesgueintegral. (See[7].)

We now mentionthat 6§’ (B) is not defined as adual space ad, in some sense,
the norms ||u||39 are not optimal for duality arguments. We now state alemma that
will help usto bypassthis shortcoming. Thisistypicdly used for the aut-off multiplier
X € 2 (B") for ballsB' € B, satisfyingx = 1 onB'.

LEMMA 1. Consider x € (9(R"), d > 0. Then the cnstantsc; := |X||sq and
C2 = ||X(€) exp[d|&|/9][| .1gn) arefinite.
a) Moreover, we have

(17) IXfllsa < (2r)~"ea|f (&) exp[dIE] %] .1 am).
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b) In asimilar vein, we also have
IXfllsa < (20 "c2|| fsa-
c) Finally, if hismeasurable,
|(%*h)(8)] < cal|h(E) exp[—dI&[*/|| .o (an) - expdE[*T.

Proaof. Thefinitenessof the constants comes from (8). For a), we have
(@17 (x)(8)]-epldlel? = | [ %&-0)f(0)de|-eplal&l
<| [ %(&~©)explale 8- f(B) explale|*/]

x exp[d[&[*/°— d[6|/*— d[§ — 6" Tde|
< IIxllsa- [1F(8) expld|e*/F |z

Here we used the inequality |&|Y/S < |€ — 6]Y/S+ |B|%/S. See(9).
Parts b) and c) are proved with a similar argument. O

A measurable and nonnegative valued function onRR" is cdled aweight func-
tion. A weight function ¢(§) is said to be sub-linea if it satisfies

sup(§(&) —€l&|) < oo, foranye >D0.
EcRN

In this article, we only consider radial weight functions, and we say, by abuse of nota-
tion, that aweight functionisincreasingwhen it isan incressing function o |§|.

Now consider two sub-linea weight functions¢, : R" — R, and assume that
W(B) —|E—B|Y/S< (&) +c, V&, 8, inR". If x € » (& (R"), then there existsa constant
¢’ such that
(18 (% * )€Y agm) < € [[M€®(| 1)

halds for any measurable function h. Indeed, the left hand side of (18) is estimated
from abowve by

[ CRNGIEE O
:/ / gVO-1E-0°-0(®) |12 £)|e-01"" . |n(E)|e?@dEd
RN JRN
~ 1/s
< &% (6)€" [l 21ggn) - Hhe¢||L1(R”)'

REMARK 7. Our next lemmais smilar to Lemma 1, ¢), but is more astrad
and therefore lesspredse. We dso mention that in the proof of the lemma we con-
sider Lebesgue-spaces asciated with weights. We briefly recdl the terminology. We
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asaume that we ae given a continuows weight function : R" — R, and say that two
measurablefunctionsonR" are eguivalent if they are equal except onaset of Lebesgue
measure z&o. Then we denate by £1(R",¢) the spaceof equivalence dasses of mea
surable functions on R" for which the integral [pn|f(§)|exp[$(§)]dE is finite. The
norm onthis aceis of course

(19 folfllsg = [ IT@)eplo@)]ce.

If L: 2YR",¢) — C isalinea continuows map, then there is a measurable
function h defined on R" such that L(f) = fn f(§)N(E)dE, Vf € L1(R",¢) and we
have |h(€)| < |IL||1exp[®(E)], for dmost all & € R", where ||L||1 isthenormof L asa
functional on £1(R", ¢).

LEMMA 2. Let B' € B” betwo bdlsinR", x afunctionin 0 (9 (B") satisfying
Xx=1onB, and d> 0. Consider two sub-linear weight functions ¢, : R" — R,..
Assume that

@) [ 17 xEIePwEIdE < [ [fE)epbEdE v e LXRY,

for some constant c;, provided the right handside in (20) is finite. Also dencte by
A (B, ) the set

A (B',4) = {g€ 29(B); [ 6(6)] expl(®)]c < 1}.

Then there is a constant ¢, such that for any ve 2 (9'(R") with suppv C B’ we have
that

[V(&)| < coexp[d(—€)] sup |v(g)].
gen (B”, W)

Proof. We definethe spacesZ andY,Y C Z, by

z= {1 e c2®; [ f@)]eplo@)]dE <=},
Y ={f eZ|f|sa <o forall d'}.

Itiseasy to seethat Y is densein Z if the latter is endaoved with the norm defined by
f||f]|,14: if fisgiveninZ, thenk — fyx = 7 ~Hexp[—(1/K)|&|]T), k=1,2,... is
a sequence of functionsin Y which approximates f. Now, Y ¢ (9 (R") and we dso
observethat if pe cg(R"), then 7 ~tue Z.

It sufficesto construct ¢, such that

IV(&)] < coexp[dp(—8)]
holdsfor any v e » (8 (R") satisfying suppv C B' and

(21) sup  |v(g)| <1
gea (B”,0)
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Now we fix such av and consider the functional f — v(xf), whichisinitialy
defined onz (9 (R"). For f €Y, we have

VDI < [ 17 (XF) )| elb(@)1dE < el 2.

where the first inequality foll ows from (21), and the secondfrom (20). Therefore, this
functional can be extended, by continuity, to a linea continuouws functional L on Z.
Next we introduwcethe spaceZ = { f € £2(R"); fgn|f (&) exp[0(&)]dE < o}, which is
the image of Z under the Fourier transform. We endow Z with the norm f || f|| .1 Iy
thisis of coursethe norm induced by the norm of Z if we use the Fourier transform to
identify Z and Z. The map L givesrise in this way to alinea continuots map L onZ
defined by L(f) = L(# ~1f).

Finally, we can apply the Hahn-Banach theorem to extend L to a linea con-
tinuous map defined on the space £1(R", ¢) introduced in Remark 7, with the norm
not greaer than c;. (Instead of applying the Hahn-Banach theorem, we can also use
the density of Z in £ LR, ¢).) It follows therefore from Remark 7, that L isof form

L(f) = fen f(E)(E)dE, for some suitable measurable functionh on R™ which satisfies
[h(€)| < crexp[$p(§)] for amost al &. The proof of the lemmawill come to an end if
we can show that V(&) = (2m)"h(—&). Thisisthe case, since

[ HENEIE =L = L ) = vixs 0 = v(r )
— ™" [ A-2uE)aE

for pe ¢z’ (R"), which means that h(§) and (2rm)~"J(—&) coincide &s distributions.
Here we have used the fad that suppv C B’ andthat x = 1 onB". O

COROLLARY 1. Thereis a constant ¢’ for which we have the following impli-
cationfor v e » (9 (R") satisfying suppv C B':

(22 |v(f)| <1forall f € 2 (B")with | f|sq <1, implies|v|[5* < ¢.
In other words, the quasinormv — ||v||$29 can e estimated from aboveby the inequa -

ity
Iv]|®?¢ < ¢ suplv(f)|
feu

usingthebounad set 7 = {f € 2(&(B"); || f||sa < 1} in 09 (B"), and aconstant ¢
depending oy onB’, B”, and d Since in the oppdaite diredion, we have

sup [v(f)| < ¢[[v[[>9/?
fem

for some constant ¢ independent of v, it isclear that thetopdogyinduced one *’(B) as
a subspaceof »*(R") is given as the inductive/projedivelimit of the spaces 6 3'(B).

The aorollary follows from Lemma 2, if we dso takeinto acoun Lemmal.
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REMARK 8. Thestatement inthe corollary ismeaningful also forve o {S/(R").
In this case, we know from the very beginning that there is a constant ¢/, which may
depend onv, with ||v||$2 < ¢/, and the lemma just gives an estimate by duality of the
norm ||v|[$2.

We now consider a sequence of numbers C; which setisfies the condition
(23) ?<c,

(other condtions onthe mnstants C; will be introduced in a moment) and denote by ¢
the (increasing) function

(24) 1163 =sj4p<1|z|l/5—cj>-

REMARK 9. @) Thefunction/ is well-defined since j|&|%/S — C; is negative for
|&| < j. (Thisimpliesthat the “sup” isfinite for every £.) Somewhat more spedficdly,
jIE[YS—Cj < —j(j — |&|*/S) tendsto —oo for j — o when € isfixed, and therefore we
also seethat agually, /(&) = max;(j|&|¥/S—C;), i.e., the “sup’ isadualy a “max”.

b) The function ¢ clealy satisfies (7).

c) Assume now that C; also satisfies

(25 Cj > 4Cij2)+1,1i/2] the integer part of j/2.
Sincek|€|Y/S— Gy < 4(([k/2] + 1)|&/2//5— C/z41) , we then also have
(26) (&) <4L(E/2).

We recdl here the fad that when one defines function spaces by inequaliti es of type
1f(8)| < exp[0(£)], then conditions of type ¢(&) < cd(&/2) are used (for increasing
weight functions) in relation to the requirement that the function spacebe stable under
multiplication. (When the weight functions are not increasing, the formulation o the
correspondng condtionis omewhat more involved. We shall not use ¢) in this paper.
Also cf. the “ring condtion” in[12].)

The oondtion (23) is nealed to show that the function £ is finite. We now
put further condtions on the mnstants C; to show that we can make ¢ sub-linea and
Lipschitz-continuows. We shoud mention that while the fad that ¢ is ub-linea is
essential, the fad that it is Lipschitz continuows is not strictly needed in this paper.
Lipschitzianity is however nealed as oon as one wants to develop a theory of pseu-
dodfferential and Fourier integral operatorsin spaces related to weight functions and
therefore we show also in this paper that we can choose the functions ¢ with this prop-
erty. (See[12].)

LEMMA 3. a) Consider a sequenceof constantsC;j > j2, and define a function
6 . RJr — R+ by
sup; (jT/°-Cj), (1>1)

@0 hn) = {supju ) (<),
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Then p isfinite. If C; tends to infinity quick enough ands suitably chosen, then p is
sub-linear andLipschitz. Moreover, we may assumethat if s > sis fixed, then

(28) lim p(1) /1Y% =0.

T—0

b) Let p be as in the conclusion o part a) and cenate by p : R" — R, the
functionp(§) = p(|§]). Then p is sub-linear andLipschitz

Proof. We choose asequenceof positive numbers Mj ~\, 0, with M1 = 1. Further, we
iteratively define numberst;, j > 0,Cj > iZi>1, andfunctionsp; with thefoll owing
properties:

e 10=0,C; =0, p1(1) =15,
° pj('[) = jTl/s—Cj,

the sequence j — (Cj11—C;) is drictly increasing,

TJ-l/S = Cj;1—C;j, andtherefore dso the sequence j — 1 is drictly increasing,

j(1/s)T Mo = pi (1) < Mj ontj_1,m),
e pj(T) > pj_1(1) fort > 1j_1, Pj(1) < pj_1(1) fort < 1j_1.

As a preparation for this, we natice that, independently of the way we dhoose the
constants Cj, we shall have pj(t) > pj 4(T), V1. Therefore, if 1 is chosen with
Pj(Tj) = Pj+1(T)), then we have pj(T) > pj11(T) for T < 1}, respedively pj(1) <
Pj+1(t) for T > 1. We now return to the construction o the Cj, t;. Note that, by
our requirements, we have to set 1o = 0, C; = 0. We next note that the functions pj (1)
are ooncave and pz(1) = 2tY/s_ Gy is negative for T > 0 small, whatever the value
of C; > 0 may be, whereas p; is positive. Moreover, when C, increases © does 1;
given by T+/° = C, — C; = C; and we fix some G, > 22 so that 2(1/s)1, -5 < M,
This alrealy defines p, by pa(T) = 2t/ — Cp, and it is automatic that p5H(T) < Ma
for every T > 11. We may now assume that we have foundC;j, t;_1 and have set
pj = jT¥/S—C;. In particular, pj(t) > pj_1(1) for 1> 1j_1 and P} (1) < Mj fort >1;.
Next we fix Cj11 > (j + 1)2, large enoughsuch that for le/s = Cj;+1 —Cj we have
J(1/9T, Y < My andset pj1(1) = (j + DTS- Gy,

This concludes the construction o the numbers tj, Cj, p;j by iteration. If we
also want to have (28), then it sufficesto chocse Tj_1 so that j(1/s)T/s~1 < MjTV/s 1
on([tj_1,).

It followsfor these choices that

(29 suppk(t) = pj(T) ontj,Tj41] fort > 1,
k

and we set p(1) = sup, pk(T) for such .
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This showsthat p/(1) — O there where the derivativeis defined (which is except
the points T = 1j) when T — . The sub-lineaity and the Lipschitz-cortinuity of p is
then clea, so part a) of the lemmais proved. Part b) isan immediate consequence. [

LEMMA 4. Let /:R" — R beafunctionwhich satisfies (7) and cenote 0 =
{f € DO (Byp); fan|T(E)|exp[f(§)]dE < 1}. Then o isa boundd setin oS (R").

We goply thisfor “/ = ¢//2", where ¢’ will be constructed later on.

Prodf. Inview of the suppat condtioninthedefinition o 2/ , we only need to estimate
the derivativesof the dementsin o/ , andinfad show that for every j thereisa constant
& such that |(9/0x)% f (x)| < & j~S%|asi9l, for f € ar . We write for this purpose for
fixed j, a,

o A
islal islal a _<ilz|l/sy. i1z11/s
ol S 00| < 1% sup &% exp —sile - [ 1 (@)]expisilel*“Ic

EeRN
<laPel [ 1f(2)lexp[t(2) + Inci]d
RN

< &lafl,

since|&%|exp[—sj|&|Y9] < ¢ j~Sl|a[sl, Va € N". (See e.g., the agument for study-
ing (6). The paint is that by analogy, exp[sj|&|Y/s] > (sj|€|Y/5)5% /(s|a])l®l. In the
secondinequality we have used sj|&|Y/S < ¢(£) + Inc;j for some congtantsc;.) O

PROPOSITION 1. Fix X € »(¥(B), andconsider sequences of constantsCj, C.
Assume that [gn | f(E)|exp[2]|E|Y/9dE < Cpj implies ||xf|lsj < Cj. (SeeLemna 1)
Asaume further that both sequences satisfy the condtionInC; > j2,InCj > j2.

We now denate by £,¢' : R" — R, the functions ¢(§) = supj(j|E|l/Sf InC;j),
¢'(€) = sup;(j|€[*/*—InC}). Then we havethat
(30 |7 (XF)(&)] < exp[€'(8)] - | (&) expe(&)]] .1(em)

and
17 )@ exple'(€)/2108 < | (&) expe(&) | xsn- [, expl—¢/E)/20E.
Proof. It suffices to argue for the cae ||f(E)exp£(E)||L1(Rn) = 1. Thus, f satisfies
|| (&) explj|E|*/s — INGj]|| ;1) < 1, so it follows from the sssumption onC;j, that
|7 (XF)(&)llsj <Cj for every j. This shows that
|7 (X&) < i?fexp[*JIEIl/SHnC}] = exp[—L'(&)].

Since exp[—¢'(§) /2] isintegrable, we dso oktain the last inequality. O
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4. Kernelsand the spaces G

It seems natural to study the integral operator Tu(X) = [zm X (X,y)u(y)dy in the frame
of the spaces g 3. The condtionswhich we use for % in this sdion are motivated by
the following considerations:

o let x € »9(R™™M) have cmpad suppat. Then thereisd > 0 and ¢ > 0 such
that

(3D | (&,1)| < cexp[d(|E[YS+[n[*/9)], ¥(E,n) e R™™.
e From (31), condtion b) in Theorem 3 is equivalent to the foll owing:
3  vd”, 3d > 0,3 st |k (§,n)| < cexp[d|E]°—d"|n["/3].

Most of our arguments are based onthe foll owing simple relation:

(33 x) = (2“)7n7m/Rn+m X (8,n)P(—E&,—n)dEdn, g € 0 & (R™M),

the integral being the Lebesgue integral as above. (SeeRemark 6.) It foll ows that
(39 F(T® =@ " [ KEn§-nydn

PROPOSITION 2. @) Let k € »®/(R™™M) satisfy (13) and assume that (31)
holdsfor somed > 0. Also consider d > d. Then

(¢,u) = (Tu)(9) == % (€,n)$(—&)a(—n)dedn,

RMHM

for ¢ € » (9 (R") definesa continuows operator T : GSI(R™) — 5'(B).
b) Let k bea ultradistributionwith suppatin B’ x B which satisfiesthe estimate

(35  |X(&,n)| < exp[di|E|Y/S—dy|n|*S], for some constants dy > 0,d, > 0.

Also fix d3 < dp, B1 3 B. Then the correspondence
g Tg(x) = /U X (X,y)9(y)dy,

for g€ ©(9(By), can ke exended to acontinuous operator G4 (B) — G4 (B').

Proof. We only proveb). (Part @) is proved by similar arguments but is even simpler.)
We have drealy observed in Remark 5 that suppTg c B'. When g € 2 (9 (By), then
F(Tg)(§) isgiven (34). We daim that we have for some ¢ > 0 the estimate

(36) ITgl>* < c||glI>%, Vg € »(By).
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To provethis, we just argue &s foll ows:

[, & E&ma-nydn
Sexp[dllill/s]/Rmexp[—dllﬁll/%dzlnll/s]lfc(E,n)lap[—dzlnll/s]lé(—n)ldn
and ndicethat
[ expl-cein|Sg(-n)ldn < g% | expl(~dz+do)in|*Idn.

We have now proved (36) and can conclude the agument by observing that we can
approximate dementsin g (B) with functionsin (9 (By) by convdution: wefix k €
2 ®) (y; |y| < 1) withK(0) = 1 and approximate (i by K(n/j ). We have then for j large
that 7 ~(R(-/]))*u € D9 (B1) and that supy, exp[—ds|n|*/]|(1—R(n/}))d(n)| — O
asj — oo. O

REMARK 10. The propgasition gves in particular the implications ii)=-) in
Theorem 2 and b)=-a) in Theorem 3. SeeRemark 4 and Corollary 1.

To establish the remaining implications in the theorems 2, 3, we first prove a
lemma (part of which will be used only in sedion 6):

LEMMA 5. Letx € »®(B), k € »(¥(B) and fix L, d. Then thereisc > 0 such

that

(37 lexp[—i(X,&)]|sLB = S&IDLJE((J!)S < exp[c|E[Y/S/LY9,
(38) IX(X) exp[—i(x,E)][lsa < [|IX[lsaexp[d[E]*],

and

(39) K (y) exp[—i{y,m)][[5¢ < [|k]|saexp[—d|n[*/S].

Note that (39) is an estimate referring to the spaces g 5, athoughthe function
y = K(y)exp[—i(y,n)] liesin 29 (R™).

Proof. (37)isadired cdculation.
For (38) we have to caculate supy |7 (X exp[—i(x,£)])(8)| exp[d|B|*/5]. Since
F(xexp[—i(x,&)])(0) = X(0+&), it sufficesto okservethat
Sup[R(8-+&)| expld}6l*/] < sup|X saexpld|e[**— o+ &[*/]

< [IXllsa exp[d|E[*/3],
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wherewe used |8|%/S < |84 &|Y/S+|E|V/s. Asfor (39), we can argue similarly as
Ik (y) exp[—i{y,n)]|3¢ = Sl;pl R(8-+n)|exp[—d|B[*/]
5Jl;pIIKIIsﬁdeXlO[ d[e+n[*/°—dle|""]
< ||k||saexp[—d|n[*/3].

Here we again used (9). O
We can naw provethe following conwverseto part b) in Propasition 2
PrROPOSITION 3. Let K be a ultradistribution with suppatin B x B. Denate

by T theoperator Tu(x) = [zm K (X,y)u(y)dy. Assumethat there are amnstantsc, d;, d

and bdlsBy, By, B@B1,B’ € By, suchthat T can ke extended to acontinuows operator
Gg. (B1) = G, (Bz). Then the Fourier transform of % satisfies the estimate

(40) |% (8,n)] < crexp[da|€|™/°— du|n|*/9).
In particular, we have|§((£,r])| < clexp[fdl|r]|1/5/2] if |&] <di|n|/(2dy).

Proof. We shall obtain (40) starting from the estimate

I T (k(y) exp[—iy,n)])|[3% < ca||K(y) exp[—ify,n)] |5,

wherek € (9 (B;) isidenticdly 1 onB. On the other hand, by fixingx € 0 (By)
identicdly oneonB’, we have that

T (k(y) exp[—i{y,n)])||5%
= s;pexp[—dml/ﬂ|fﬁz<T<K<y> exp[—i(y,n)])) (€)|

= &;pexp[—dzlﬁll/ﬂlvc(x(X)K(y) exp[—i(x,&) —i{y,n))|

:a;pexp[—d2|ﬁ|l/ﬂ|§((57n)|-

The last equality foll ows from the fad that X (x)k(y) isidenticdly one on the suppat
of K. By applying (39), we now obtain that

St;pexp[fdzléll/s]lk(é,nﬂ < caexp[—di|n|*/7,
which isthe estimate we wanted to prove. O

Thereisaresult dual to Propasition 3which we now consider.
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PROPOSITION 4. Let x be asin the previous propasition and &sume that the
map S: G3%(By) — G (B1) such that

7 (D)) = [ K(-EndE)dE

maps G 3% (B,) to ¢ $%(B;) andis continuowsasa map G % (B,) — ¢ 59%(B;). Then
thereisc such that

(41) |%(—&,n)| < cexp[dafg|*/° — dsln| .

REMARK 11. Propasition 4 can be reduced to Propasition 3 bytricks, but the
proof is rather simple and daes not sean worth the df ort thiswould require.

Proof of Propasition 4. Continuity of Smeansthat thereis a constant ¢’ such that

(42) 1S9llsds < €Iy Y € 65U (Bo).
We shall apply thisfor the family offunctionsq)g defined by

0:(x) 1= X (e D

wherex € 29 (V) isafixed functionwith the property that x = 1 onB'’. Note that then
$z(§) = X(&+&), sowe dso have 7 (Spz)(n) = [ & (—& n)z (§)dE = [ & (—& n)X
(E+i)d£. Now, sincex =1 onB/, # (Sq)g)(r]) isjust f((z,n). It follows from the
continuity of Sthat

(43) &#plﬂi(i,n)lap[dslnll/s] <0z lsa,-

We can also write thisas

(44) |% (€,n)] < cexplc €[S — da|n| S,

if we dso use (38) for ||z ||, O

5. Proof of Theorem 3

Inthis ssdionwe gply Propasition 3to prove g=-b) in Theorem 3. For theimplication
b)=-a), seeRemark 10.

As a preparation, we chocse balls B, 3 B; 3 B’ in R" and consider the spaces
X, Y4, where X isthe space{v € 0 ®(R");suppv C B'} and Yy = 63’ (B1) = {v;supp
Vv C By, ||V|[®¥ < «}. The spaces Yq are dealy Banach spaces with the natural norm
andtheinclusions Yy C Yy are continuowsfor d < d’. Moreover, X C Y := g Yg. We
endow X with the topdogy induced by » (9(R") and also Y with the inductive li mit
topdogy byY = Ii_n;de. It isthen, in theterminology o [2], aLF-space

We have the following result:
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PROPOSITION 5. a) TheinclusionY ¢ »('(R") is continuots.
b) Theinclusion X C Y iscontinuots.

Prodf. In all the agument we fix some x € »(¥(B;) which is identicdly one on B'.
Whenever we refer in the agument which foll owsto some result obtained in a previous
sedionin which a aut-off f unctionis used, it will be thisone.

a) Let us first show that the inclusions Yg ¢ »®'(R") are continuows. As-
sume then that v+ ||v||q is @ continuows smi-norm on » ((R"). Thereis nolossof
generality to assume that it has the form ||v||q = supsc,, [V(f)| for some bounded set
M C »O(RM). It follows that there exists aball B such that &  » (¥ (B) and such
that & isbounded in the spaceg S9(B) for every d > 0.

Then from Lemma 1 b), we can seethat the set AC = {xf;f € 4/ } isbouncdd
in gS9(By) for every d > 0, andfor v € Y4 we have

IVllg = sup [v(f)[ = sup [v(xf)| = sup|v(g)|

fem fem gex

< IVI=*- supllglsza- | expl-de[*/az.
gex R

Here we used Remark 6 for the last inequality. Since the second and the last fador
in the right hand side ae boundkd, the inclusion Yy — (&' (R") is corntinuots, as
claimed.

b) Now let u C 'Y be a onvex set such that its intersedion with the spaceYy is
aneighbahood d the origin for every d > 0. This meansin particular that for every
j we can find a constant ¢j > 0 such that {v € Yj;||v||®) < ¢} C u. (The constants
¢ will have to be, in general, small.) We now chocse constants ¢ such that [h(§)| <
cjexp[j[€[Y/5] implies that |(X  h)(§)| < 27Icj; exp[2][€|*/9]. (SeeLemmal) Note
that cj must be small compared with ;.

By using Corollary 1 we dso seethat there ae constants C; such that if v €
Gq (B1) andif f e L2(R"), [|f|lsj < Cj implies [v(f)| < 1, then [|v|[%% < cj; and
hencev € u. The constants C; will typicdly be large and orce we have foundsuch
constants, we may increase them gtill further. We then assume that they are larger than
max(1/cj, explj?]).

Next, we now consider an increasing sequence of positive mnstants C} for
which the numbersInC} satisfy (23) and for which we dso have that for the sequence
C; chosen abowe, it follows from fgn | f(&)|exp[2j|E|Y/S]dE < Cyj that |7 (xf)(E)| <
Ci exp[—j|&|*/]. Again this can be obtained using Lemma 1. (In all this argument we
denate “large constants’ by capital | etters and “small” ones, by small | etters.)

We now denote £(&) = sup;[j|€*/S - InCj], £'(§) = sup;[j|€|*/S — InC]] and
consider ar = {f € D(9(By); fun | (E)|exp[¢'(§)/2]dE < 1}. ar isthen abounded set
in o (R"): seeLemmaA.

For afixed pasitive constant €, it foll ows that the set

W = {veX;|v(f)| <&Vfear}
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isaneighbahood d the originin X. To conclude the agument it will t herefore suffice
to show that W C @ if €ischosen suitably.

Assume then that v € W, which means in particular that v € g3’ (B') for some
d, sinceX =g 65’ (B') asvedor spaces.

Since|v(f)| < &foral f € ar it follows combining Propasition 1with Lemma
2 that |V(€)| < c"€exp[£(&)] for some constant ¢’ which dependsonly on/ and ¢'. We
now put on € the condtion ¢’& < 1. Sincewe dso knaw that [9(£)| < Cexp[d|&|Y/s]
for some C and d, we conclude that

(45) [9(8)| < exp[min(£(g),d|&[/>+InC)], V€ € R".

Note that the constants C and d depend onv. Now we chocse anatural number k >
d+ 1. If |E|Y/sislarge enough say, larger than INC + InC, it foll ows that

d|€]Y/S+1InC < k|E|Y/S — |€|Y/S—InCy +INCy 4 INC < K|E|Y/S — InC.

This showsthat there is g, which also depends onv, such that

.....

Indedd, for |E|l/S > InC+ InC, thisistrue by what we saw before if we asume o > Kk,
and for |€|Y/S < InC+InCy, we have that j|&|*/S—InCj < j(INC+InCy) —InCj —
—oo, With j — oo (uniformly for the vedors & under consideration), such that ¢(¢) <
sup;< jo(j[&[**—InC;), for some |°.

We can now find measurable functions hj, j = 1,...,0, such that V= Z?:lhj
and such that |h;j(§)| < cjexp[j|&|*/s]. Multiplyingw; = 7 ~*h; with the aut-off f unc-
tionx, we obtain in thisway ultradistributionsv; = xwj, j =1,...,0, such that |V;(§)|
< 271c5; exp[2j[€|*/9] and such that v = 39_; vj. Sincethe ultradistributions 21v; lie
in « and @ is convex and containsthe origin, it followsthat v € . Thisconcludesthe
proof. O

We have now proved Propasition 5and turn to the proof of Theorem 3. Recdl
that we may assume that suppx C B’ x B, with B and B’ closed ballsin R™, respec
tively R". (SeeRemark 4.) Let usthen asuime that T : 2 ®(R™) — 2/ (R") isa
continuous operator such that the restriction to » (9 (R™) is given by the kernel % .
Sincethe inclusions g3’ (B) — »(9(R") are mntinuots we obtain for every d > 0 a
cortinuous map (dencted again T) T : g 3'(B) — 2 (9 (R") and consider X € 09 (By)
which is identicaly one on B'. On ¢J'(B) the operator T coincides with XT, so in
particular it is trivial that T defines a continuous operator T : §'(B) — X. By part
b) of Propasition 5 it also defines a continuous operator T : g3'(B) — Y. It follows
therefore from Grothendied’s theorem which we recdl i n a moment, that there is d’
with T(G§'(B)) C Yy and such that themap T : g3'(B) — Yy is continuos. At this
moment we can esentially apply Propasition 3to conclude the agument.
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THEOREM 4 (Grothendiedk, [2]). Let--- — X — Xi+1 — --- be a sequence of
Frédhet spaces and continuows maps. Denate by X the inductive limit of the spaces
Xi, by fi : Xi — X the natural maps andconsider a continuowslinear mapT : F — X
where F is a Frécet space Assume that X is Hausdorff. Then there is an indexi®
such that T(F) C fio(X0). Moreover if fjo isinjedive then thereis a continuous map

0 f
TO:F — X suchthat T isfactorized into F 1 X0 - X.

6. Proof of Theorem 2

In this ®dion we prove the implication i)=-i) in Theorem 2. For the implicaion
ii)=-), seeRemark 10.

PROPOSITION 6. Let S: 0 {8}(B) — o {8}(B') bea continuotsintegral operator
asciated with a kernel % with suppat in B x B, B,B/, balsin R™, respedivedy
R", and fx d > 0. Then there is d’ > 0 such that Sinduces a continuous operator
G34(B) — 659 (B).

Proof. Using (16), we have a ontinuous operator from a Banach spaceto a countable
inductive limit of Banach spaces:

6%9(B) 2 1limg®i(B),

jeN

Gs9(B) — li
d

élB

where the first map is the standard inclusion gven by the definition o an inductive
limit. Then the conclusion foll ows from Theorem 4. O

Proof of Theorem2. The assuumptionisthat Tu(x) = [ & (x,y)u(y)dy isalinea con
tinuows operator £ {8 (U) — o {(8(V). Sincewe can multi ply with cut-off f unctionsin
thex andin they variables, thereis again nolossof generality to assumethatU = R™,
V = R" andthat suppx C B’ x Bfor two ballsB’ c R", B R™. By duality, we obtain
then a continuows operator S: o {8H(R") — £ {sH(R™) defined by

80) - (SD)(Y) = [ % (xy)p ()

From the suppat condtion, the image of Sisincluded in o {$(B), and Sbhecmmes a
continuous operator

S:o{shB) - ols(B),

sincethe topdogy o  {8}(B) is equal to the one indwced by the inclusion o {}(B)
£{8H(R™). It foll ows therefore from Propasition 6that if we fix d’ > 0, then there is
d > 0 such that Sinduces a continuous operator 59 (B') — ¢59(B). The cnclusion
in the theorem is then a consequenceof Propasition 4. O
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7. An example and some comments

In this dionwe give an example of a distribution which satisfies condtion b) in the-
orem 3, but doesnot satisfy awave front set condtion o form WF) (%) N {(x,y,0,n);
n#0}=0.

Weshall work forn=m=1,0onV xU =T2=T x T, T the one-dimensional
torus. Since we ae deding with a nonquasianalytic setup, there is no red loss of
generality in dang so. (We say something abou this in Remark 12 below.) On the
other hand, working onthe torus makes the example alittl e bit simpler.

We denote exp[—k*+Y/S/j], for j € N, k € N, by ajx and define the distribution
% onT2 by

00

(46) % (x,y) = (2m) 2 ; ajkexpli(jx+ky)].
=

(The numbers aj are thus the Fourier coefficients of % and convergencein (46) is
in the spaceof clasdcd distributions.) It is immediate that x defines a continuows
operator L : 0(T) — »&(T) by

8

(47 Lu= (201 S bjexpliix, b= 3 apd(—k)
=1 k=1

where G(k) = u(exp[—iyk]) arethe Fourier coefficients of u and and convergencein the
first part of (47) isin the spaceof ultradistributions.

We daim that we have

PROPOSITION 7. Let % be the kenel defined by (46). Then there is (X°,y°)
€ T2 suchthat ((x°,y?),(0,1)) € WF5(% ). (Also seeRemark 13 below)

Thus % definesa continuows operator » (' (T) — o (9/(T), but we do nd have
WFg (%) N{(x,y.0,n);x€ T,y e T,n #0} =0.
To prove Propasition 7, wefirst state

PROPOSITION 8. Consider w € 0 (9(T?) and suppcse that for some (x°,y°),
((x,y°),(0,1)) ¢ WFg(w). Thenthereise > Osuchthatif x € »(9(R?) is suppated
in ane-neighbahood d (x0,y°), then |7 (xw)(&,n)| < exp[—£(&,n)] for some sub-
linear function ¢ as in (7) when (€,n) isin a suitably small conic neighbahood d
(0,1).

The proof of this propasitionis draightforward and is dmilar e.g., to the proof
of lemma1.7.3in [14]. We omit detail s.

We can now prove Propasition 7. In fad, arguing by contradiction and using
the precaling propasition, we can find a partition o unity formed of functions x;,
i=1,...,0,in 2 (T2) such that for some nic neighbahoodr of (0,1) in R? and
some function asin (7) we have |7 (Xix)(§,n)| < exp[—£(&,n)] for (§,n) € I and



200 O. Liessand Y. Okada

i=1,...,0. Sinceajx= 37, F (Xi%)(j,k) it would follow that |ajx| < oexp[—£(j,K)]
when (j,k) € ', which isfalse.

REMARK 12. We have agued onthe torus but we canh now also immediately
obtain from this an example of akernel %’ defined onR x R which satisfies condtion
b), but not the wave front set relation WF) (%) N {(x,y,0,n);x € R,y € R,n # 0} = 0.
To simplify notations, we first observe that after a translation onthe torus, it foll ows
from above that there ae kernels which define linea continuous maps 29/ (T) —
2 (T), but with ((0,0),(0,1)) € WFg(% ). Next, pick ¢ € 2 (R?) which has
suppat in asmall neighbahood d 0 € R? with ¢ = 1 in atill smaller neighbahood
of 0. If x € »'(T?) is the one just introduced abowe, then k' = YPx has a natural
interpretation as a distribution onR2. Since X gave rise to a linea continuous op-
erator »'(T) — »&'(T), x' defines in a natural way alinear continuous operator
»®(R) — »(R). It clealy does nat satisfy the wave front set conditionwe would
like to have.

REMARK 13. Withasmall extra ef ort, we can show that adualy ((0,0), (0,1))
€ WF) (%), X theonedefinedin (46). To provethisitis esential that the coefficients
ajk are positive. We leave the detail s to the reader.

REMARK 14. The agumentsin this paper canin principle be extended to more
general classes of nonquasianalytic ultradistributions but we have not tried to work out
such cases.
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