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Preface

This issue of the Rendiconti del Seminario Matematico incorporates texts of
part of the 30-minute communicationsdelivered at theSecondConferenceonPseudo-
Differential OperatorsandRelated Topics, held in Växjö, Sweden on 23–27June2008.

Topics for the conference included Spectral Theory, Time-Frequency (Gabor)
AnalysisandLocalizationOperators, Positivity andLower BoundProblems, Operators
onSingular Manifolds, Fourier Integral Operators, Elli ptic andHyperbolic Problems.

The Växjö Conferencewas part of the activity of the International Society for
Analysis, its Applications andComputation (ISAAC) for the year 2008. ISAAC is a
non-profit organizationestablished in 1994to promote andadvance analysis, itsappli -
cations, and its interactionswith computation. Thepresident at the timewasProfessor
M. W. Wong (York University, Toronto), whereas the incoming president in 2009is
Professor M. Ruzhansky (Imperial College, London).

During the conference, the participants honoured Professor Luigi Rodino of
the University of Turin, on the occasion of his 60th birthday. The event at Växjö
was particularly significant in view of the fact that Professor Rodino began his long
and productive scientific career in the field of pseudo-differential operators at Lund
University and theMittag-Leffler Institute in 1973–74.

The meeting was organized with 45-minute plenary talks in the morning and
three parallel sessions of 30-minute communications in the afternoon. There were
about 80 talks altogether in the whole Conference. The texts of the plenary talks
were published in the Rendiconti del Seminario Matematico Università e Politecnico
di Torino (66 no. 4, 2008). Like that issue, the present one is is dedicated to Professor
Luigi Rodino. The contributionsconcerningElli ptic Problems appeared in “Complex
VariablesandElli pticEquations” (Taylor & Francis, Oxford, 54/2009). Finally thepro-
ceedings in the field of Time Frequency Analysis are appearing in the Journal CUBO
(Pernambuco University, Brazil ).

The editors of this issue were also the scientific organizers of the conference.
Accordingly, we wish to thank Växjö University, the Vetenskapsrådet (the Swedish
ScienceCouncil ) andtheMathematicsDepartment “GiuseppePeano” of theUniversity
of Turin for financial support. We are also grateful to Karoline Johansson and Haidar
Al-Talibi of Växjö University for their technical support as local organizers.

G. Garello (Turin University, Italy)

J. Toft (Växjö University, Sweden)

M.W. Wong(York University, Toronto, Canada)
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SecondConf. Pseudo-Differential Operators

S. Albeverio, R. Cianci and A.Yu. Khrennikov

OPERATOR CALCULUS FOR

p-ADIC VALUED SYMBOLS AND QUANTIZATION

Dedicated to Professor Luigi Rodino ontheoccasion of his60th birthday

Abstract. The aim of this short review is to attract the attention of the pseudo-differential
community to possibiliti es in the development of operator calculus for symbols (depending
on p-adic conjugate variables) taking values in fields of p-adic numbers. Essentials of this
calculus were presented in works of the authors of this paper in order to perform p-adic val-
ued quantization. Unfortunately, this calculus still has not attracted a great deal of attention
from pure mathematicians, althoughit opens new and interesting domains for the theory of
pseudo-differential operators.

1. Introduction

Quantum formalism with wavefunctionsvalued in non-Archimedeanfieldswasdevel-
oped in aseriesof papersand books[1]–[13], see also related worksof Vladimirov and
Volovich [14]–[15] and thebook[16] on quantum formalism with p-adic variablesbut
complex-valued wave functions. In this review article, wepresent the essentialsof this
theory. We restrict attention to the fields of p-adic numbers. General quantum theory
hasbeen developed for an arbitrary non-Archimedean field K, see[11].

Thebasic objectsof this theory are p-adic Hilbert spacesandsymmetric opera-
torsactingin thesespaces. Vectorsof a p-adicHilbert spacewhich arenormalizedwith
respect to the inner product represent quantum states. In the p-adic case, the norm is
not determined by the inner product. Thereforenormalizationwith respect to thenorm
andtheinner product, which coincidesfor real andcomplex Hilbert spaces, isdifferent
for p-adic Hilbert spaces. We shall proceed in the followingway.

Consider theformal differential expressionĤ =H(∂xj ,x j) of operatorsof quan-
tum mechanicsor quantum field theory. Let us realizethis formal expression as a dif-
ferential operator with variables x j belonging to the field of p-adic numbersQp and
study properties of this operator in a p-adic Hilbert space. Thus we would like to
perform a p-adic analogueof Schrödinger’squantization.

We remark that p-adic valued quantum theory suffers from the absence of a
“goodspectral theorem” for symmetric operators. At the same time, this theory is es-
sentially simpler (mathematically) than ordinary quantum mechanics, sinceoperators
of position andmomentumare bounded in the p-adic case, aswas found byAlbeverio
andKhrennikov [3].

The representation theory of groups in Hilbert spaces forms one of the corner-
stones of ordinary quantum mechanics. It is very natural to develop p-adic quantum
mechanics in a similar way. We construct a representation of the Weyl–Heisenberg
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138 S. Albeverio, R. Cianci and A.Yu. Khrennikov

group in a p-adic Hilbert space, namely the spaceL2(Qp,νb) of L2-functions with
respect to a p-adic valued Gaussian distribution νb (the symbol b indicates a p-adic
analogue of dispersion), see [3].1 Here the situation differs very much from that of
ordinary quantum mechanics. If we denote by Û(α) and V̂(β) the groups of unitary
operatorscorrespondingto positionand momentum operators, respectively, then these
groupsare defined only for parameters α and β belonging to ballsUR(b) andUr(b), re-
spectively, whereR(b) andr(b) depend onthedispersionb of theGaussian distribution
and they are coupled bya kind of Heisenberg uncertainty relation.

We shall also study the representation of the translation group onthe space
L2(Qp,νb). Here the result also differs from that of ordinary quantum mechanics, and
is more similar to one that holds in quantum field theory where Gaussian distributions
on infinitedimensional spacesareused.

Let µ be Gaussian measureon the infinite-dimensional real Hilbert spaceH . It
is impossible to construct a representation of translations from all of H in L2(H ,µ),
because of the well -known fact that the translation µh of a Gaussian measureonH by
a vector h∈ H can besingular with respect to µ. It iswell known that µh is equivalent
to µ if and only if h belongs to a certain proper (“Cameron–Martin” ) subspace. In a
similar way we cannot construct in the spaceL2(Qp,νb) a representation of transla-
tions by all elements h in Qp; in fact, we have to restrict consideration to translations
belongingto someball (which isan additivesubgroupinQp) whoseradiusdependson
the dispersion b. This fact is connected with the nonexistenceof translation-invariant
measures in the p-adic case (similarly for infinite-dimensional spacesover the field of
real numbers), see[6].

2. Banach and Hilbert spaces

2.1. p-adic numbers and their quadratic extensions

The field of real numbers R is constructed as the completion of the field of rational
numbers Q with respect to the metric ρR(x,y) = |x− y|, where | · | is the usual real
valuation (absolute value). The fields of p-adic numbersQp are constructed in a cor-
responding way, by using other valuations. For any prime number p > 1, the p-adic
valuation | · |p is defined in the following way. First we define it for natural num-
bers. Every natural number n can be represented as the product of prime numbers:
n = 2r23r3 · · · prp · · · . Then we define |n|p = p−rp, and in addition set |0|p = 0 and
|−n|p = |n|p. We extend the definition of the p-adic valuation | · |p to all rational num-
bersby setting |n/m|p = |n|p/|m|p for m 6= 0. The completion of Q with respect to the
metric ρp(x,y) = |x− y|p is the locally compact field of p-adic numbersQp. By the
well -known Ostrovsky theorem, the real valuation (absolute value) | · | and the p-adic
valuations | · |p are the only possible valuationsonQ. Thus if one wants to construct a

1We remark that νb is not a p-adic valued measure, i.e. a bounded linear functional on the spaceof
continuous functions. It is just adistribution, ageneralized function, which isprimarily defined onthespace
of analytic test functions. A analogue of the L2-space can be constructed by completing the spaceof test
functions with respect to anatural norm.



p-adic valued symbols 139

physical model startingwith rational numbers, then there are only two possibiliti es: to
proceed to real numbersor to oneof thefieldsof p-adic numbers.2

The p-adic valuationsatisfies theso-called strongtriangle inequality: |x+y|p≤
max[|x|p, |y|p], which makesρp into an ultrametric. Set Ur(a) = {x∈Qp : |x−a|p≤ r}
and U−r (a) = {x ∈ Qp : |x− a|p < r}, with r = pn and n = 0,±1,±2, . . .; these are
(“closed” and“open”) ballsinQp.Set Sr(a)= {x∈Qp : |x−a|p= r}; these arespheres
in Qp. Any p-adic ball Ur ≡Ur(0) is an additive subgroup of Qp. The ball U1(0) is
also a ring, called the ring of p-adic integers and denoted byZp. For any x∈ Qp, we
have aunique canonical expansion(convergingin the | · |p-norm) of the form

(1) x= α−n/pn+ · · · α0+ · · ·+αkpk+ · · · ,

whereα j = 0,1, ..., p−1, arethe “digits” of the p-adic expansion. The elementsx∈Zp

have an expansionx=α0+α1p+ · · ·+αkpk+ · · · , i.e., they arenatural generalizations
of natural numbers. Moreover, even negative natural numbers can be represented as
elementsof Zp, e.g.,−1= (p−1)+(p−1)p+(p−1)p2+ . . .+(p−1)pn+ . . . This
is the sourceof the terminology“ p-adic integer” .

For p1 6= p2, the fields of p-adic numbersQp1 and Qp2 are not isomorphic as
topological fields. Thus by moving into the p-adic domain one obtains, in fact, an
infinite series of fields for the modeling of, e.g., spacegeometry. None of these fields
is isomorphic to thefield of real numbersR. The crucial differenceis in the topology.

Fields of p-adic numbers are disordered. It is impossible to introduce alinear
order onQp (at least in a natural way, e.g., matching algebraic operations). This fact
inducesinteresting departuresfrom thereal case. It also playsafundamental rolein the
application of p-adic numbers to string theory andcosmology. For a longtime, physi-
cistsdiscussed theideathat at Planck distances(which are extremely small ) space-time
isdisordered. In particular, it cannot bedescribed by real numbers. On theother hand,
p-adic numbers provide an excellent possibilit y for the mathematical formulation of
thisphysical idea.

In applications to physics, the following complicated problem arises: “Which
p should be used for modeling?” There are various opinions. Igor Volovich proved
that some amplitudesused in “ordinary string theory” , i.e., based onthe real model of
space-time, can bereproducedin thelimit p→∞ fromthe correspondingamplitudesof
p-adic string theory [16]. The authorsof thispaper think that this isnot crucial for the
new geometry. Thereforethe p selected for physical modeling(at least in a theoretical
model) does not play an important role. One can switch from one scale to another as
one does in the real case by switching in the expansion (1) from one p to another, see
[11] for adetailed presentation of this ideology. Of course, each physical phenomenon
has its own scale. One can discuss concrete scales, e.g., in the p-adic approach to
quantum physics. The authorsof this paper proposed selecting p= [1/α] : the integer
part of the fine structure constant α. However, all such physical discussions have no
direct relation to the present paper. For a mathematician, it may be more important to

2We remark that experimental data is always rational. It is a consequence of the finite precision of any
measurement.
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know that typically the case p= 2 should betreated separately, and proofsobtained for
p> 2 typically do not work for p= 2.

Let τ∈Qp andsupposethat x2 = τ havenosolutioninQp. Thesymbol Qp(
√

τ)
denotes the corresponding quadratic extension of Qp. Its elements have the form z=
x+
√

τy, where x,y ∈ Qp. The operation of conjugation is defined by z̄= x−√τy.
We remark that zz̄= x2− τy2 for z∈ Qp(

√
τ), and that zz̄∈ Qp for any z∈ Qp(

√
τ).

The extension of the p-adic valuation from Qp onto Qp(
√

τ) is denoted by the same
symbol | · |p. Wehave |z|p =

√
|zz̄|p for z∈Qp(

√
τ). Besidesquadratic extensions, we

shall also operatewith thefield of complex p-adic numbersCp. Itsconstructionisvery
complicated. Unlike in the real case, we cannot obtain an algebraically closed field
by taking a quadratic extension, nor indeed by taking an algebraic extension of any
finiteorder. The algebraic closureQa

p of Qp isconstructed asan infinite tower of finite
extensions. In particular, it is an infinite-dimensional li near spaceover Qp (compare
with the real case where the algebraic closureC is just two dimensional over R). The
p-adic valuation isdefined onthetower of finite extensions in a consistent way. In this
way we obtain the p-adic valuation onQa

p. However, this is not the end of the story
concerninga p-adic analogueof complex numbers. The field Qa

p is not completewith
respect to such an extension of the p-adic valuation. Finally, we complete it and obtain
that its completion, denoted by Cp, is algebraically closed! The latter is a notrivial
result, Krasner’s theorem. As the reader has seen, the construction of p-adic complex
numbersisquite complicated. However, it might be even worse– if Krasner’s theorem
werenot true.

2.2. Banach spaces

Essentials of non-Archimedean functional analysis can be foundin, e.g., the book of
van Rooji [18].

The symbol K denotes a non-Archimedean field with the valuation (absolute
value) | · |K . It isa map from K to [0,+∞) such that

(1) |x|K = 0⇔ x= 0;

(2) |xy|K = |x|K |y|K ;

(3) |x+ y|K ≤max(|x|K , |y|K).
Thelatter featureof thevaluationis thestrongtriangleinequality. It playsafundamen-
tal role in thedetermination of special featuresof the corresponding non-Archimedean
topology. Such terminology is common in so-called non-Archimedean analysis, see
e.g. [18]. However, in other domains of mathematics, a non-Archimedean field is a
totally (or partially) ordered field containing nonzero infinitesimals, e.g., the field of
nonstandard numbers R∗. We emphasize that this paper has nothing to do with the
latter case!

Let E be alinear spaceover a non-Archimedean field K. A non-Archimedean
normonE is amapping‖ · ‖ : E→ [0,+∞) satisfying the followingconditions:

(a) ‖x‖= 0⇔ x= 0;

(b) ‖αx‖= |α|K ‖x‖, α ∈ K;
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(c) ‖x+ y‖ ≤max(‖x‖,‖y‖).
As usual, we define non-Archimedean Banach spaceE as a complete normed space
over K. The metric ρ(x,y) = ‖x− y‖ is ultrametric. Hence every non-Archimedean
Banach spaceiszero-dimensional and totally disconnected. All ballsWr(a) = {x∈ E :
‖x−a‖ ≤ r} are clopen.

The dual spaceE′ is defined as the spaceof continuous K-linear functionals
l : E→ K. Let us introducetheusual norm onE′ : ‖l‖= supx6=0 |l(x)|K/‖x‖. Thespace
E′ endowed with thisnorm is aBanach space.

The simplest example of a non-Archimedean Banach spaceis the spaceKn =
K×·· ·×K (n times) with thenon-Archimedean norm ‖x‖= max1≤ j≤n |x j |K . Morein-
teresting examples are infinite-dimensional non-Archimedean Banach spaces realized
as spacesof sequences: set c0≡ c0(K) = {x∈ K∞ : lim

n→∞
xn = 0} and‖x‖= maxn |x|K .

2.3. Hilbert spaces

We take asequenceof p-adic numbersλ = (λn) ∈Q∞
p , λn 6= 0. We set

l2(p,λ) =
{

f = ( fn) ∈Q∞
p : theseries ∑ f 2

n λn convergesinQp

}
.

It turns out that l2(p,λ) = { f = ( fn) ∈ Q∞
p : limn→∞ | fn|p

√
|λn|p = 0}. In the space

l2(p,λ) we introducethenorm ‖ f‖λ = maxn | fn|p
√
|λn|p. Thespacel2(p,λ) endowed

with thisnorm isnon-ArchimedeanBanach space. On thespacel2(p,λ) we also intro-
ducethe p-adic valued inner product ( · , · )λ by setting ( f ,g)λ = ∑ fngnλn.

Weremark that ‖ f‖λ ∈R, but ( f , f )λ ∈Qp. Thenorm isnot determined by the
inner product. Nevertheless, the p-adic inner product ( · , · )λ : l2(p,λ)× l2(p,λ)→
Qp is continuous and the Cauchy–Bunyakovsky–Schwarz inequality holds, namely
|( f ,g)λ|p≤ ‖ f‖λ ‖g‖λ.

DEFINITION 1. A triplet (l2(p,λ), ( · , ·)λ, ‖ · ‖λ) iscalled a p-adic coordinate
Hilbert space.

Moregenerally, we shall define ap-adic inner product onQp-linear spaceE as
an arbitrary non-degeneratesymmetric bili near form ( · , ·) : E×E→Qp.

REMARK 1. We cannot introduce ap-adic analogueof positive definitenessof
a bili near form. For instance, any element γ ∈ Qp can be represented as γ = (x,x)λ,
with x∈ l2(p,λ) (this isasimple consequenceof propertiesof bili near formsover Qp).

The triplets (E j , ( · , ·) j , ‖ · ‖ j), j = 1,2, where E j are non-Archimedean Ba-
nach spaces, ‖ · ‖ j are norms and ( · , ·) j are inner products satisfying the Cauchy–
Buniakovski–Schwarz inequality, are isomorphic if the spaces E1 and E2 are alge-
braically isomorphic and the algebraic isomorphism I : E1→ E2 is a unitary isometry,
i.e., ‖Ix‖2 = ‖x‖1 and (Ix, Iy)2 = (x,y)1.
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DEFINITION 2. The triplet (E, ( · , ·), ‖ · ‖) is a p-adic Hilbert space if it i s
isomorphic to the coordinateHilbert space(l2(p,λ), ( · , ·)λ, ‖ · ‖λ) for somesequence
of weightsλ.

Theisomorphism relationsplits thefamily of p-adic Hilbert spacesinto equiva-
lence classes. An equivalence classis characterized bysome coordinaterepresentative
l2(p,λ). The classification of p-adic Hilbert spaces isan open mathematical problem.

Hilbert spaces over quadratic extensions Qp(
√

τ) of Qp can be introduced in
the sameway. For a given sequenceλ = (λn) ∈Q∞

p , λn 6= 0, weset

l2(p,λ,
√

τ) = { f = ( fn) ∈Qp(
√

τ)∞ : the series∑ fn f̄nλn converges},

with ‖ f‖λ = maxn | fn|p
√
|λn|p and ( f ,g)λ = ∑ fnḡnλn.

Thetriplet (l2(p,λ,
√

τ), ( · , ·)λ, ‖ · ‖λ) is the coordinateHilbert spaceover the
quadratic extension Qp(

√
τ). In general, a Hilbert space(E, ( · , ·), ‖ · ‖) over the

quadratic extension Qp(
√

τ), is by definition isomorphic to some coordinate Hilbert
space. We denote ap-adic Hilbert spaceover Qp(

√
τ) by

H p ≡ H p(
√

τ).

3. Groupsof unitary isometr ic operators in p-adic Hilbert space

Asusual, we introduceunitary operatorsÛ : H p→ H p asoperatorswhich preservethe
inner product, so (Ûx,Ûy) = (x,y) for all x,y∈ H p, with image Im Û = Û(Hp) = Hp.
Isometric operators are operators which preserve the norm, so ‖Ûx‖ = ‖x‖, and have
Im Û = Hp. Denote the spaceof all bounded linear operators Â : H p→ H p by L (H p).
It is a Banach spacewith respect to the operator norm ‖Â‖ = supx6=0‖Âx‖/‖x‖. A
unitary operator need not be isometric.3 Indeed, it could even be unbounded. Denote
thegroup of linear isometriesof the p-adic Hilbert spaceH p by IS(H p), and thegroup
of all bounded unitary operatorsinH p byUN(H p). Set UI(H p) =UN(H p)∩UI(H p).

An operator Â∈ L (H p) is said to be symmetric if (Âx,y) = (x, Ây) for all x,y.
The followingsimple fact will beuseful later.

THEOREM 1. The eigenvalue α of a symmetric operator Â : H p→ H p corre-
sponding to aneigenvector u with nonzero square, (u,u) 6= 0, belongs to Qp. Eigen-
vectors correspondingto different eigenvaluesof such type areorthogonal.

Theproof is similar to thestandard one for complex Hilbert spaceH .

As usual, we introduce the resolvent set Res(Â) of an operator Â ∈ L (H p); it
consistsof λ∈Qp(

√
τ) such that theoperator (λI− Â)−1 exists. ThespectrumSpec(Â)

of Â is the complement of the resolvent set.

3Recall that the norm on the p-adic Hilbert spaceis not determined by the inner product. The only
condition of consistency between them is theCauchy–Bunyakovsky–Schwarz inequality.
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Note that every ball Ur in Qp is an additive subgroup of Qp. A map F̂ : Ur →
L (H p) with the properties F̂(t + s) = F̂(t)F̂(s), t,s∈Ur , and F̂(0) = I , where I is the
unit operator in H p, is said to be aone-parameter group of operators. If we consider
IS(H p),UN(H p),UI(H p) instead of L (H p), we obtain definitions of the parametric
groups of isometric, unitary, and isometric unitary operators, respectively. If the map
F : U r → L (H p) is analytic the one-parameter groupiscalled analytic.

We recall that any p-adic ball i s, in fact, a ball with radius r = pk, with k =
0,±1, . . . (since the p-adic valuation takes only such values). On the other hand, in a
normedspaceoverQp or itsquadratic extension, thenormcan take any valuebelonging
to [0,+∞). To match these two rangesof values, we invent the following quantity. Let
a be apositive real number. We define

(2) [a]−p = sup{λ = pk, k∈ Z : λ < a}.

Thisnumber approximates(from below) thereal number a by numbersfrom therange
of valuesof the p-adic valuation.

For a bounded operator Â, wedefine

(3) γ(Â) =
1

p1/(p−1)‖Â‖
.

It is a real number, the reciprocal of the norm ‖Â‖ multiplied by the factor p1/(p−1).
The latter appears in connection with convergenceof the exponential series in the p-
adic case. The series ey, where in general y belongs to Cp, converges on the ball of
radius rexp = p−1/(p−1).

THEOREM 2. Let Â be a bounded symmetric operator in H p ≡ H p(
√

τ). The
map

t 7→ e
√

τ tÂ, t ∈Ur , r = [γ(
√

τÂ)]−p ,

is an analytic one-parameter group of isometric unitary operators.

Thus every symmetric operator Â ∈ L (H p(
√

τ)) generates the one-parameter

operator group of isometric unitary operatorst 7→ Û(t) = e
√

τ tÂ. This theorem isanat-
ural generalization of the standard theorem for C-Hilbert space. The following result
hasnoanaloguein functional analysisover C.

THEOREM 3. Supposethat an operator Â belongstoL (H p). Themapα 7→ eαÂ,

α ∈Ur , r = [γ(Â)]−p , is an analytic one-parameter group of isometric operators.

4. Gaussian integral and spacesof square integrable functions

As already remarked, the mathematical formalism of p-adic quantization does not
depend on the choice of a quadratic extension Qp(

√
τ) of Qp. To make considera-

tions symbolically closer to ordinary complex quantization, we shall proceed for the
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quadratic extensionQp(i). Of course, thischoicerestricts in an essential way the class
of primenumbersunder consideration.

To provide the pointwise realization of elements of the p-adic analogue of the
L2-space, weshall consider analytic functionsover thefield of complex p-adicnumbers
Cp. In Cp we denote the ball of radiuss∈ R+ with center at z= 0 by the symbol U s.
We denote thespaceof analytic functions f : U s→Cp by A (U s).

In [2], thegeneral definition of a p-adic valued Gaussian integral wasproposed
onthebasisof distributiontheory. In thiscontext, theGaussian distributionwasdefined
asthedistribution havingLaplacetransform of the form exp{bx2/2}, whereb∈R. We
recall that in the real case if b> 0 then Gaussian distribution is simply a countably ad-
ditivemeasure– Gaussian measurewith dispersionb. If b isnegativeor even complex
then theGaussian distributioncannot be realized asa measure.

For our present applications to quantization, we can use a simpler approach
based onthe definition of Gaussian distribution throughthe definition of its moments.
Roughly speaking, weknow momentsof Gaussian distribution over thereals. Suppose
now that dispersion is a rational number, b ∈ Q. Then moments can equally well be
interpreted as elements of any Qp. We now can extend bycontinuity our definition of
moments to any “dispersion” b∈Qp.

Let b be ap-adic number, b 6= 0. The p-adic Gaussian distributionνb isdefined
by itsmoments (n= 0,1, ...) :

M2n =

∫
Qp

x2nνb(dx)≡ (2n)! bn

n! 2n , M2n+1 =

∫
Qp

x2n+1νb(dx)≡ 0.

We define the Gaussian integral for polynomial functions by linearity. Then
we can define it for some classes of analytic functions. The analytic function f (x) =
∑∞

n=0cnxn, with cn ∈ Cp, is said to be integrablewith respect to the Gaussian distribu-
tion νb if theseries

(4)
∫
Qp

f (x)νb(dx)≡
∞

∑
n=0

cnMn =
∞

∑
n=0

c2nM2n

converges. It was shown in [11] that all entire analytic functionsonCp are integrable.
In fact, wedo not need analyticity onthewholeof Cp to be able to definetheGaussian
integral. The following(real) constant

θb ≡ p
1

2(1−p)

√
|b/2|p

will play a fundamental role. If p 6= 2, then θb = p
1

2(1−p)
√
|b|p. If p = 2, then θb =√

|b|p.

PROPOSITION 1. Let f (x) belongto the classA (U s). If s> θb, then the inte-
gral (4) converges.

REMARK 2. There exist functions which are analytic on the ball U θb but are
not integrable, see[11].
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In fact, we have proved that the Gaussian distribution is a continuous linear
functional on the spaceof analytic functionsA (U s), i.e., it is an analytic generalized
function (distribution); for the details see[2]. We shall use the symbol

∫
to represent

the duality between the spaceof test functions A (U s) and the spaceof generalized
functionsA ′(U s) by setting (µ′, f ) ≡ ∫

f (x)µ(dx) for f ∈ A (U s) and µ∈ A ′(U s). As
usual, we define the derivative of a generalized function µ by means of the equality∫

f (x)µ(dx) =−
∫

f ′(x)µ(dx).

It should be remarked that the distribution νb is not a bounded measure on any
ball of Qp. (This was proved for the case p 6= 2; in the case p = 2 the question is
still open), seeEndo and Khrennikov [19]. Thus we could not integrate continuous
functionswith respect to the p-adic Gaussian distribution.

WeintroduceHermitepolynomialsover Qp by substitutinga p-adic variable, in
placeof a real one, into the ordinary Hermitepolynomialsover the reals:

Hn,b(x) =
n!
bn

[n/2]

∑
k=0

(−1)kxn−2kbk

k!(n−2k)!2k .

We shall use also the followingrepresentationfor the Hermitepolynomials: Hn,b(x) =

(−1)nex2/2b dn

dxn e−x2/2b. This representation holds on a ball of sufficiently small radius
with center at zero. Asa consequence, weobtain the followingequality in thespaceof
generalized functionsA ′(U s), with s> θb :

(5) Hn,b(x)νb(dx) = (−1)n dn

dxn νb(dx),

i.e., multiplication of the Gaussian distribution bya Hermite polynomial is equivalent
to evaluatingthe corresponding derivative(in the senseof distribution theory).

In thespaceP (Qp) of polynomialsonQp with coefficientsbelongingtoQp(i),
we introduce the inner product ( f ,g) =

∫
f (x)ḡ(x)νb(dx). With respect to this inner

product, thepolynomialsHn,b verify theorthogonal conditions
∫

Hm,b(x)Hn,b(x)νb(dx)
= δnm n!/bn.

REMARK 3. In fact, the appearanceof such constants λn = n!/bn was one of
the reasonsfor introducing p-adic Hilbert spaces that are isomorphic to l2(p,λ).

Any f ∈ P (Qp) can be written in the following way: f (x) = ∑N
n=0 fnHn,b(x),

N = N( f ), fn ∈ Qp(i). We introducethe norm ‖ f‖2 = maxn | fn|2p(|n!|p/|b|np), and we
define Li

2(Qp,νb) as the completion of P (Qp) with respect to ‖ · ‖. It is evident that
the spaceLi

2(Qp,νb) is the set

{
f (x) =

∞

∑
n=0

fnHn,b(x), fn ∈Qp(i) : theseries
∞

∑
n=0

fn f̄n
n!
bn converges

}
.

Let L2(Qp,νb) stand for the subset of Li
2(Qp,νb) consisting of functions that

have theHermite coefficients fn ∈Qp. This isa Hilbert spaceover thefieldQp.
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For f (x) ∈ Li
2(Qp,νb) we set

(6) σ2
n( f ) ≡ σ2

n,b( f ) = | fn|2p
∣∣∣n!
bn

∣∣∣
p
,

where

fn =
bn

n!

∫
f (x)Hn,b(x)νb,p(dx)

are the Hermite coefficientsof f (x).

Now we wish to study the relations between L2(Qp,νb)-functionsand analytic
functions. Set AQp(U r) = { f ∈ A (U r) : f : Ur → Qp}, i.e., these are functions that
haveTaylor coefficientsbelongingto thefield Qp.

THEOREM 4. Assume p 6= 2. Then L2(Qp,νb)⊂ AQp(U θb).

Now we consider the case p = 2. In general, L2-functions are not analytic on
the ball U θb.

THEOREM 5. Let s> θb. Then AQp(U s)⊂ L2(Qp,νb).

Further we construct the L2-representation of the translation group. If |b|p =
p2k+1 weset s(b) = pk, if |b|p = p2k, weset s(b) = pk−1. Set T̂β( f )(x) = f (x+β),β ∈
Qp. Weshall provethat theseoperatorsarebounded for β∈Us(b). Moreover, theseop-
eratorsareisometriesof L2(Qp,νb). Usingthis fact weshall construct arepresentation
of the translation groupin the p-adic Hilbert spaceL2(Qp,νb).

LEMM A 1. The formula

(7) T̂βHn,b(x) =
n

∑
j=0

(
n
j

)(
β
b

) j

Hn− j ,b(x)

holds for the translatesof Hermite polynomials.

THEOREM 6. The operator T̂β belongs to IS(L2(Qp,νb)) for every β ∈ Us(b),

andthemapT : Us(b)→ IS(L2(Qp,νb)), β→ T̂β, is analytic.

5. Gaussian representationsof position and momentum operators

Just as in ordinary Schrödinger quantum mechanics, let us define the coordinate and
momentum operators in Li

2(Qp,νb) by

q̂ f (x) = xf (x), p̂ f (x) = (−i)

(
d
dx
− x

2b

)
f (x),

where f belongsto theQp(i)-linear spaceD of linear combinationsof Hermitepolyno-
mials. The coordinate andmomentum operators so defined satisfy onD the canonical
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commutationrelations

(8) [q̂, p̂] = iI ,

where I is the unit operator in Li
2(Qp,νb). We shall see that these relations can be

extended to thewholeof Li
2(Qp,νb).

THEOREM 7 (Albeverio-Khrennikov). The operators of the coordinate q̂ and
momentum p̂ are bounded in theHilbert spaceLi

2(Qp,νb), with

(9) ‖q̂‖=
√
|b|p, ‖p̂‖= 1√

|b|p
.

Moreover q̂ andp̂ aresymmetric andsatisfy (8) onLi
2(Qp,νb).

Proof. Let f (x) = ∑∞
n=0 fnHn,b(x) ∈ Li

2(Qp,νb). By the recurrenceformula

(10) Hn+1,b(x) = b−1[xHn,b(x)−nHn−1,b(x)],

we have

(11) q̂Hn,b(x) = bHn+1,b(x)+nHn−1,b(x),

and q̂ f (x) = ∑∞
n=0bfnHn+1,b(x)+∑∞

n=1nfnHn−1,b(x). Thus, by the strongtriangle in-
equality, weobtain

‖q̂ f‖2 ≤ max

[
max

n
|b|2p| fn|2p

|(n+1)!|p
|b|n+1

p
, max

n
|n|2p| fn|2p

|(n−1)!|p
|b|n−1

p

]

= |b|p max

[
max

n
|n+1|p| fn|2p

|n!|p
|b|np

, max
n
|n|p| fn|2p

|n!|p
|b|np

]

≤ |b|p‖ f‖2,

(as |n|p ≤ 1 for all n∈ N). Therefore, ‖q̂‖ ≤
√
|b|p. Now we prove that ‖q̂‖2 = |b|p.

Let n= pk, then

Dk,b = ‖q̂Hpk,b‖2 = max

[
|b|2p|(pk+1)!|p
|b|pk+1

p

,
|pk|2p|(pk−1)!|p
|b|pk−1

p

]
.

But |(pk+1)!|p = |pk!|p and |p2k(pk−1)!|p = p−k|pk!|p. Thus

Dk,b = |b|p
|pk!|p
|b|pk

p

= |b|p‖Hpk,b‖2,

which provesthefirst equality in (9).
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Further, we have d
dxHn,b(x) = (x/b)Hn,b(x)−Hn+1,b(x) = (n/b)Hn−1,b(x). Set

T̂x = (d/dx− (x/2b)). We have T̂xHn,b(x) = (n/2b)Hn−1,b(x)− (1/2)Hn+1,b(x). To
compare thisexpressionwith (11), we rewrite it as

(12) T̂xHn,b(x) =
1
2b

[
−bHn+1,b(x)+nHn−1,b(x)

]
.

The expression in squarebrackets is similar to that in (11); thesign doesplay a role in
estimates of max type. Thus we obtain ‖T̂x‖ = (1/|b|p)‖q̂‖, which proves the second
equality in (9).

Symmetry of thebounded operators q̂, p̂ is easily verified.

Thus, unlike in the Archimedean case (complex Hilbert space), in the p-adic
case the canonical commutation relations (8) are valid not only on a dense subspace,
but everywhereon theHilbert space.

6. Oneparameter groupsgenerated by position and momentum operators

We shall computenumbers [γ(q̂)]−p and [γ(p̂)]−p , see(2), (3) in section 3.

If |b|p = p2k+1 then γ(q̂) = 1/(pkp1/2p1/(p−1)). If p 6= 3 then [γ(q̂)]−p = 1/pk+1.

If p= 3 then [γ(q̂)]−p = 1/pk+2. If |b|p = p2k then γ(q̂) = 1/(pkp1/(1−p)) and [γ(q̂)]−p =

1/pk+1. Set
R(b) = [γ(q̂)]−p .

If |b|p = p2k+1 then γ(p̂) = (p1/2/p1/(p−1))pk. If p 6= 3 then [γ(p̂)]−p = pk. If
p= 3 then [γ(p̂)]−p = pk−1. If |b|p = p2k then [γ(p̂)]−p = pk−1. Set

r(b) = [γ(p̂)]−p .

THEOREM 8. (Albeverio–Khrennikov) The maps α 7→ Û(α) = eiαq̂, α ∈UR(b),

andβ 7→ V̂(β) = eiβp̂, β∈Ur(b), areanalyticone-parameter groupsof unitary isometric
operators acting onLi

2(Qp,νb). Theysatisfy theWeyl commutationrelations

(13) Û(α)V̂(β) = e−iαβV̂(β)Û(α).

We set

(14) M̂β f (x) = e−βq̂/2b f (x) =
∞

∑
n=0

(−βq̂)n

n!(2b)n f (x),

for f ∈ L2(Qp,νb). By Theorem 7, we easily obtain

PROPOSITION 2. ThemapM : Ur(b) 7→ IS(L2(Qp,νb)), β→ M̂β, isan analytic
one-parameter group(indexed by theball Ur(b)).

REMARK 4. The function x 7→ e−βx/2b is not defined on the whole of Qp and
we cannot consider (14) asa pointwisemultiplication operator.
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7. Operator calculus

It is well known that in the ordinary L2(R,dx) space, the unitary groupV̂(β) = eiβp̂,
with β ∈ R, can be realized as the translation group, with V̂(β)ψ(x) = ψ(x+ β) for
sufficiently well -behaved functionsψ(x). If we consider the equivalent representation
in L2-spacewith respect to the Gaussian measure νb(dx) = (e−x2/2b/

√
2πb)dx on R,

we obtain

(15) V̂(β)ψ(x) = e−β2/4be−βx/2bψ(x+β),

or

(16) V̂(β) = cβM̂βT̂β,

wherecβ = e−β2/4b. We shall now provethat (16) is also valid in the p-adic case.

Set Ŝ(β) = cβM̂βT̂β, β ∈Ur(b), where theoperator M̂β is defined by(14).

THEOREM 9. Themapβ 7→ Ŝβ, β ∈Ur(b), isa one-parameter analytic group of
isometric unitary operators acting in Li

2(Qp,νb).

LEMM A 2. ThegroupsŜ(β) andV̂(β) havep̂ as their common generator.

Asa consequenceof thislemma, andthe analyticity of theoneparameter groups
S(β) andV(β), we easily obtain:

THEOREM 10. Therepresentation(15), (16) holdsfor theoperator groupV̂(β).

By using one-parameter groups Û(α),V̂(β), one can formally define pseudo-
differential operators. However, a rigorousmathematical theory is still awaiting devel-
opment.
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SecondConf. Pseudo-Differential Operators

A. Ascanelli and M. Cicognani

GEVREY SOLUTIONSFOR

A VIBRATING BEAM EQUATION

Dedicated to Professor Luigi Rodino ontheoccasion of his60th birthday

Abstract. We consider theCauchy problem for theEuler-Bernoulli equation of thevibrating
beam and solve it in Gevrey classes under appropriate Levi conditions on the lower order
terms.

1. Introduction and main result

Let usconsider the Cauchy problem in [0,T]×Rx

(1)

{
Lu= 0

u(0,x) = u0, ∂tu(0,x) = u1

for theoperator

(2) L := D2
t −a4(t)D

4
x +

3

∑
k=0

ak(t,x)D
k
x,

where D = −i∂ for the sake of the Fourier transform and a4(t) is a real non-negative
function. A motivation to investigate such a problem comes from the Euler-Bernoulli
model of thevibrating beam. We admit zeroesof finiteorder k for a4(t), andso assume
there existsk∈ N, k≥ 2 such that

(3)
k

∑
j=0

|a( j)
4 (t)| 6= 0, t ∈ [0,T].

We assumefor the coefficientsof L the followingregularity conditions:

(4) a4 ∈ Ck([0,T];R+), a3 ∈ C1([0,T];γs(R)), a2,a1,a0 ∈ C([0,T];γs(R)),

where R+ = [0,+∞), and γs(R) is the Gevrey classof index s≥ 1 onR, that is the
spaceof all smooth functions f such that

| f (α)(x)| ≤CAαα!s, C,A> 0, α ∈ N.

One can consider L as an anisotropic hyperbolic operator where each derivative with
respect to the time variable t has the same weight of two derivatives with respect the
spacevariable x. After that, the two factors τ±

√
a4(t)ξ2 of the principal symbol

151
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correspondto Schrödinger operators. From the theory of hyperbolic equations, one
expects Levi conditions are needed on the lower order terms at the points where the
leading coefficient a4(t) vanishes. On the other hand, from the Schrödinger side, also
somedecay assumptionsasx→ ∞ should be taken into account for the imaginary part
of these terms, see[4].

Herewe assumethat the imaginary part of a3 satisfies theLevi condition

(5) |ℑa3(t,x)| ≤C0a4(t)〈x〉−σ, σ > 1,

〈x〉= (1+x2)1/2. Besidesthedecay ratefor x→∞, (5) saysthat theorder of vanishing
of ℑa3 is at least the same of a4. For the full coefficient a3, including its real part, for
the derivative∂ta3, and for the coefficientsa2 and a1, we require lower orders of zero
and not any decay, precisely

|∂β
xa3(t,x)| ≤CAββ!sa4(t)

η1,(6)

|∂β
x∂ta3(t,x)| ≤CAββ!sa4(t)

η2,(7)

|∂β
xa2(t,x)| ≤CAββ!sa4(t)

η3,(8)

|∂β
xa1(t,x)| ≤CAββ!sa4(t)

η4,(9)

with C,A> 0 and ηi to be specified herebelow.

Weproved in [1] that theproblem (1), (2) iswell posed in H∞ = ∩µ∈RHµ under
the assumptions(3), (5) with σ≥ 1 and

(10)





|∂β
xa3(t,x)| ≤ Cβa4(t)η1, η1≥ 3/4−1/(2k),

|∂β
x∂ta3(t,x)| ≤ Cβa4(t)η2, η2≥ 3/4−3/(2k),

|∂β
xa2(t,x)| ≤ Cβa4(t)η3, η3≥ 1/2−1/k,

|∂β
xa1(t,x)| ≤ Cβa4(t)η4, η4≥ 1/4−3/(2k).

(Hµ denotes the spaceof functions f such that ξ 7→ 〈ξ〉µ f̂ (ξ) is in L2 where ˆ is the
Fourier transform.) Otherwise, H∞ well posednesscannot hold; here we are going to
prove aresult of well posednessin Gevrey classes for (1) in this secondcase. Themain
result of thispaper is the following:

THEOREM 1. Let usconsider the Cauchy problem(1) for the operator L in (2)
under assumptions (3), (4). If the Levi conditions (5)–(9) are fulfilled (but (10) is not
necessarily satisfied), then problem(1) iswell posed in γs for 1< s< s0, where
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•





1/2 ≤ η1 < 3/4−1/(2k)
η2 ≥ 3η1−3/2
η3 ≥ 2η1−1
η4 ≥ 3η1−2

=⇒ s0 =
1−η1

2[3/4−1/(2k)−η1]
,

•





η2 < 3/4−3/(2k)
η1 ≥ η2/3+1/2
η3 ≥ 2η2/3
η4 ≥ η2−1/2

=⇒ s0 =
3/2−η2

2[3/4−3/(2k)−η2]
,

•





η3 < 1/2−1/k
η1 ≥ η3/2+1/2
η2 ≥ 3η3/2
η4 ≥ 3η3/2−1/2

=⇒ s0 =
1−η3

2[1/2−η3−1/k]
,

•





η4 < 1/4−3/(2k)
η1 ≥ η4/3+2/3
η2 ≥ η4+1/2
η3 ≥ 2η4/3+1/3

=⇒ s0 =
1−η4

2[1/4−3/(2k)−η4]
.

In proving Theorem 1 we need to assume σ > 1; for a precise explanation of
this fact seethefinal Remark 1.

2. Preliminary resultsand Schrödinger equations

In what follows, we are going to use pseudo-differential operators p(x,Dx) of order m
onR with symbols p(x,ξ) in the standard classSm which is the spaceof all symbols
a(x,ξ) satisfying, for any α,β ∈ Z+,

|∂α
ξ ∂β

xa(x,ξ)| ≤Cα,β,h〈ξ〉m−|α|h , 〈ξ〉h :=
√

h2+ ξ2,h≥ 1;

this is the limit space as ℓ→ ∞ of the Banach spacesSmℓ of all symbols such that

|a|m,ℓ := sup
x,ξ

sup
α+β≤ℓ

|∂α
ξ ∂β

xa(x,ξ)|〈ξ〉−m+|α|
h <+∞.

Operatorswith symbol in Sm arebounded operators from Hµ+m into Hµ for any µ. We
shall write 〈ξ〉 instead of 〈ξ〉1.

We are also goingto use, given s≥ 1, Gevrey-typesymbolsof classSm,s, where
Sm,s denotesthespaceof all symbolsa(x,ξ) satisfying

(11) |∂α
ξ ∂β

xa(x,ξ)| ≤Cα,hAββ!s〈ξ〉m−|α|h ,

which is the limit space

Sm,s := lim←
ℓ→+∞

Sm,s
ℓ , Sm,s

ℓ := lim→
A→+∞

Sm,s
ℓ,A



154 A. Ascanelli and M. Cicognani

of theBanach spacesSm,s
ℓ,A of all symbols such that

|a|m,s,A,ℓ := sup
α≤ℓ,β∈Z+

sup
x,ξ
|∂α

ξ ∂β
xa(x,ξ)|A−ββ!−s〈ξ〉−m+|α|

h <+∞.

Given µ∈R, ε > 0, s≥ 1, we deal with the Sobolev–Gevrey spaces

Hµ
ε,s(R) = e−ε〈Dx〉1/s

Hµ(R),

where thenorm isdefined by

‖u‖µ,ε,s= ‖eε〈Dx〉1/s
u‖µ.

Operatorswith symbol in Sm,s arebounded from Hµ+m
ε,s to Hµ

ε,s for |ε|< ε0, see[3].

In thepresent section, following[4], westatesomepreliminary resultsconcern-
ingSchrödinger equationsof the form Su(t,x) = 0,

(12) S= Dt +b2(t)D
2
x +b1(t,x,Dx)+b0(t,x,Dx),

where the functionb2(t) is real valued and doesnot changesign, say

(13) b2 ∈C([0,T];R+),

the lower order termsare complex valued andsuch that

(14) b j ∈C([0,T];Sj), j = 0,1.

Let usconsider the Cauchy problem

(15)

{
Su= 0

u(0,x) = u0.

We say that problem (15) is well posed in Hµ if for any u0 ∈ Hµ there is a unique
solutionu∈ ∩1

j=0C
j([0,T];Hµ−2 j). We have the following:

THEOREM 2. Consider the Cauchy problem (15), (12) under the assumptions
(13) and(14), and assumemoreover that

(16) |ℑb1(t,x,ξ)| ≤M0b2(t)〈x〉−σ|ξ|, |ξ| ≥ R, σ > 1.

Then (15) iswell posed in Hµ.

Proof. We define

(17) Λ(x,ξ) = M1ω(ξ/h)
∫ x

0
〈y〉−σdy,
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whereM1 isa large constant, ω(y) asmooth functionwith ω(y) = 0 for |y| ≤ 1, ω(y) =
|y|/y for |y| ≥ 2. For every α,β ∈ Z+ we have

(18) |∂α
ξ ∂β

xΛ(x,ξ)| ≤ δα,β〈ξ〉−α
h ,

with constantsδα,β independent on theparameter h≥ 1.

Let usnow consider thepseudodifferential operatorse±Λ with symbolse±Λ(x,ξ),
and perform the compositioneΛe−Λ. We have:

eΛe−Λ = I − r(x,Dx),

where theprincipal symbol of r is given by

(19) r−1(x,ξ) = DxΛ(x,ξ)∂ξΛ(x,ξ).

By (18),

|r(α)(β) (x,ξ)| ≤Cα,β〈ξ〉−1−α
h ≤Cα,βh−1〈ξ〉−α

h ,

with Cα,β independent of h. From this, we can fix a largeh in order to have abounded
operator r(x,Dx) on Hµ with norm ‖r(x,Dx)‖ < 1. The operator I − r(x,Dx) is invert-
ible by Neumannseriesand its inverseoperator isgiven by

I + p(x,Dx), p=
∞

∑
j=1

r j .

Thisprovesthat theoperator e−Λ(I + p) is theright inverseof eΛ. By similar arguments
oneprovesthe existenceof aleft inverse. Thus, theoperator eΛ is invertible, theinverse
operator isgiven by

(20)
(

eΛ
)−1

= e−Λ(I + p), p(x,ξ) ∈ S−1,

and p(x,ξ) has theprincipal part (19).

To obtain the well posednessin Hµ of problem (15), we perform the changeof
variablev= (eΛ)−1u andweshow that theCauchy problem

(21)

{
SΛv= 0

v(0,x) = (eΛ)−1u0

for theoperator SΛ := (eΛ)−1SeΛ iswell posed in Hµ. We have

iS= ∂t + iK(t,x,Dx),

where
K(t,x,Dx) = b2(t)D

2
x +b1(t,x,Dx)+b0(t,x,Dx),

and
iSΛ = ∂t + iKΛ, KΛ = (eΛ)−1KeΛ.
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Differentiatingwith respect to time and takingµ= 0, we have

d
dt
||v(t)||20 = 2ℜ〈v′(t),v(t)〉0 =−2ℜ〈iKΛv,v〉0.

We write iK as thesum

iK = HK +AK, HK = (iK +(iK)∗)/2, AK = (iK− (iK)∗)/2

of itshermitian andanti-hermitian parts. Theprincipal symbol of HK is given by

H0
K(t,x,ξ) =−ℑb1(t,x,ξ).

Thehermitian part HKΛ of iKΛ is then

HKΛ(t,x,ξ) = 2M1b2(t)|ξ|〈x〉−σ−ℑb1(t,x,ξ)+Q0(t,x,ξ),

with Q0(t,x,ξ) ∈C([0,T];S0). From (16), takingM1 = M0/2, wehave apositiveprin-
cipal part for HKΛ(t,x,ξ); hence, an application of thesharp Gårding inequality gives

(22) 2ℜ
(

iKΛu,u
)
≥−C‖u‖2, u∈H2.

From this, the energy method gives well posednessin L2 of the Cauchy problem for
SΛ. Well posednessin Hµ immediately follows, since, for any µ, the principal symbol
of thehermitian part of 〈Dx〉µiKΛ〈Dx〉−µ is thesameof HKΛ . �

3. Proof of themain result

We approximatethe characteristic roots±
√

a4(t)ξ2 of L by defining

(23) λ̃2(t,ξ) =
√

a4(t)+ 〈ξ〉−M ξ2 = b̃2(t,ξ)ξ2,

with 0≤M ≤ 1/(1−η1) to be chosen later on. We immediately noticethat

(24) b̃2−b2 ∈C([0,T];S−M/2), b2 =
√

a4(t).

Then, we define

(25) b̃1(t,x,ξ) =−a3(t,x)ξ/(2b̃2(t,ξ)),

and by(6) with η1≥ 1/2 we have

(26) b̃1 ∈C([0,T];S1,s).

Again, we define theoperators

(27) S̃± = Dt ± b̃2D
2
x± b̃1,
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andcompute

S̃−S̃+ = L−a2D2
x−a1Dx−a0−〈Dx〉−MD4

x

− op

(
i
dξ〈ξ〉−M∂xa3

4b̃2
2

ξ3+ i∂xa3ξ2+ · · ·
)
− i

a′4
2

b̃−1
2 D2

x

− i
∂ta3

2
b̃−1

2 Dx+ i
a′4a3

4
b̃−3

2 Dx

+ op

(
−
(a3

2
b̃−1

2 ξ
)2
− a3∂xa3

4
b̃−2

2 ξ+
a3∂xa3dξ〈ξ〉−M

8
b̃−4

2 ξ2+ · · ·
)
,

where we denoteby op(p(x,ξ)) the pseudodifferential operator of symbol p(x,ξ). We
have:

LEMM A 1. Let us consider the operator L given by (2) under the assumptions
of Theorem1 andtakeS̃± as in (27). Then:

(28) L = S̃−S̃+− (d0ω+e0ω0+ f0ω1+g0ω2+h0ω3+ l0ω4+m0) b̃2〈Dx〉2,

where e0,d0, f0,g0,h0, l0,m0 ∈C([0,T];S0,s),ω = op(ω(t,ξ)) and ωi = op (ωi(t,ξ)),
i = 0, . . . ,4, with:

ω(t,ξ) =
〈ξ〉2−M

(a4(t)+ 〈ξ〉−M)1/2
,(29)

ω0(t,ξ) =
a′4(t)

a4(t)+ 〈ξ〉−M ,(30)

ω1(t,ξ) =
1

(a4(t)+ 〈ξ〉−M)3/2−2η1
,(31)

ω2(t,ξ) =
〈ξ〉−1

(a4(t)+ 〈ξ〉−M)1−η2
,(32)

ω3(t,ξ) =
1

(a4(t)+ 〈ξ〉−M)1/2−η3
,(33)

ω4(t,ξ) =
〈ξ〉−1

(a4(t)+ 〈ξ〉−M)1/2−η4
.(34)

Proof. • i
a′4
2

b̃−1
2 D2

x(b̃2〈Dx〉2)−1 clearly becomesd0ω0.

• 〈Dx〉−MD4
x(b̃2〈Dx〉2)−1 clearly becomese0ω.

• op

((a3

2
b̃−1

2 ξ
)2
)
(b̃2〈Dx〉2)−1 becomes f0ω1 by theLevi condition(6).
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• i
∂ta3

2
b̃−1

2 Dx(b̃2〈Dx〉2)−1 becomesg0ω2 by theLevi condition(7).

• a2D2
x(b̃2〈Dx〉2)−1 becomesh0ω3 by theLevi condition(8).

• a1Dx(b̃2〈Dx〉2)−1 becomes l0ω4 by the Levi condition(9).

• op

(
i
dξ〈ξ〉−M∂xa3

4b̃2
2

ξ3
)
(b̃2〈Dx〉2)−1 and op(i∂xa3ξ2)(b̃2〈Dx〉2)−1 have symbols

in C([0,T];S0,s) by theLevi condition(6) with η1 ≥ 1/2.

• a0(b̃2D2
x)
−1 ∈C([0,T];S0,s).

• op

(
a3∂xa3

4
b̃−2

2 ξ+
a3∂xa3dξ〈ξ〉−M

8
b̃−4

2 ξ2

)
(b̃2〈Dx〉2)−1 has principal symbol

p0(t,x,ξ)〈ξ〉−1ω1, with p0(t,x,ξ) ∈C([0,T];S0,s), by (6).

• from (6), the principal symbol of −a′4a3b̃−3
2 Dx(b̃2〈Dx〉2)−1 is dominated by

ω0〈ξ〉−1(a4+ 〈ξ〉−M)−(1−η1), and 〈ξ〉−1(a4+ 〈ξ〉−M)−(1−η1)∈C([0,T];S0,s) be-
causewe aregoing to chooseM ≤ 1/(1−η1).

LEMM A 2. Thesymbolsdefined by (29)–(34) satisfy:
∣∣∣∣∂

α
ξ

∫ T

0
|ω0(t,ξ)|dt

∣∣∣∣≤ δα〈ξ〉−α(1+ log〈ξ〉),(35)

∣∣∣∣∂
α
ξ

∫ T

0
|ω(t,ξ)|dt

∣∣∣∣≤ δα〈ξ〉2−M(1/2+1/k)−α,(36)

∣∣∣∣∂
α
ξ ∂β

x

∫ T

0
|ω1(t,x,ξ)|dt

∣∣∣∣≤





δα,β〈ξ〉−α(1+ log〈ξ〉) if η1≥ 3/4−1/(2k)

δα,β〈ξ〉M(3/2−1/k−2η1)−α if η1 < 3/4−1/(2k) ,
(37)

∣∣∣∣∂
α
ξ ∂β

x

∫ T

0
|ω2(t,x,ξ)|dt

∣∣∣∣≤





δα,β〈ξ〉−α if η2≥ 1−1/k

δα,β〈ξ〉−1+M(1−1/k−η2)−α if η2 < 1−1/k,
(38)

∣∣∣∣∂
α
ξ ∂β

x

∫ T

0
|ω3(t,x,ξ)|dt

∣∣∣∣≤





δα,β〈ξ〉−α(1+ log〈ξ〉) if η3≥ 1/2−1/k

δα,β〈ξ〉M(1/2−1/k−η3)−α if η3 < 1/2−1/k,
(39)

∣∣∣∣∂
α
ξ ∂β

x

∫ T

0
|ω4(t,x,ξ)|dt

∣∣∣∣≤





δα,β〈ξ〉−α if η4≥ 1/2−1/k

δα,β〈ξ〉−1+M(1/2−1/k−η4)−α if η4 < 1/2−1/k.
(40)
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Proof. Theproof is asimple application of Lemma1 andLemma2 of [2].

Thenext step of theproof is to reduceL to afirst order system of asuitableform
by using factorization(28).

LEMM A 3. Let usconsider theoperator L in (2) under theassumptionsof The-
orem 1. Let usdenote

(41) K̃1 = b̃2D2
x + b̃1 = b2D2

x +b1, b1 = b̃1+(b̃2−b2)D
2
x

where b1 ∈C([0,T];S1,s) and, in view of (24) and(26), ℑb1 = ℑb̃1. Then, the scalar
equationLu= 0 is equivalent to the 2×2 systemW U = 0,

(42) W = Dt + K̃+D0ω+E0ω0+F0ω1+G0ω2+H0ω3+L0ω4+M0,

where

(43) K̃ =

(
K̃1 0
0 −K̃1

)
,

D0, . . . ,M0 ∈C([0,T];S0,s), ω,ωi (i = 0, . . . ,4) as in (29)–(34).

Proof. For ascalar unknown u wedefine thevector U0 =
t(u0,u1) by

{
u0 = b̃2〈Dx〉2u
u1 = S̃+u

so that, from (28), the scalar equation Lu = 0 is equivalent to the system W 0U0 = 0
with

(44)

W 0 = Dt +

(
K̃1 −b̃2〈Dx〉2
0 −K̃1

)

+

(
−iω0/2 0

d0ω+e0ω0+ f0ω1+g0ω2+h0ω3+ l0ω4 0

)

+

( [
b̃2〈Dx〉2, K̃1

](
b̃2〈Dx〉2

)−1
0

m0 0

)
,

where we use (∂t b̃2)〈Dx〉2u = (ω0/2)u0. The term
[
b̃2〈Dx〉2, K̃1

]
·
(
b̃2〈Dx〉2

)−1
is of

order 0 because b̃2 doesnot depend onx and ∂α
ξ b̃2 = p−αb̃2 with p−α of order−α.

We begin to diagonalizethematrix

(
K̃1 −b̃2〈ξ〉2
0 −K̃1

)
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by meansof

(45) D 0(ξ) =
(

1 〈ξ〉2/2ξ2

0 1

)
, |ξ| ≥ R> 0,

which is in S0. At theoperator level, for thesystemW 0 in (44) we have

D −1
0 W 0D 0 =W 1

withW 1 equal toW in (42) modulo a term of the form
(

0 z̃1

0 0

)
,

where
z̃1(t,x,ξ) = 〈ξ〉2ξ−2b̃1(t,x,ξ), |ξ| ≥ R> 0.

We perform asecondstep of diagonalization bymeansof the operator with symbol

(46) D 1 =

(
1 d̃1

0 1

)
, d̃1 =−z̃1/2b̃2(t)ξ2, |ξ| ≥ R.

By (6), we have

d̃1 ∈C([0,T];S−1+M(1−η1),s)⊆C([0,T];S0,s).

Moreover, from (6) and (7),

∂t d̃1 = p0ω0+q0ω1+ r0ω2, p0,q0, r0 ∈C([0,T];S0,s).

Thus, D −1
1 W 1D 1 =W , withW in (42). �

Proof of Theorem 1. To prove the well posedness in Gevrey classes of the Cauchy
problem (1) for the scalar operator L, we are going to prove the well posedness in
Sobolev–Gevrey spacesof the equivalent problem

(47)

{
W U(t,x) = 0

U(0,x) = G(x),

for thesystemW in (42). Wenoticethat under the assumptionsof Theorem1, recalli ng
also (41), (25) and the Levi condition (5), the diagonal part Dt + K̃ of W satisfies the
hypotheses of Theorem 2. Thus we can apply Theorem 2 to Dt + K̃. We take the
operator Λ in (17) andconsider the transformed system

(48) W Λ :=

(
eΛ 0
0 e−Λ

)−1

W

(
eΛ 0
0 e−Λ

)
.

We know that, takingsufficiently largeC0 in (5) andh in (17), we have

iWΛ = ∂t + iK̃Λ +D1ω+E1ω0+F1ω1+G1ω2+H1ω3+L1ω4+M1,
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where
2ℜ
(
iK̃ΛU,U

)
≥−C‖U‖2, U ∈H2;

moreover, sinceboth the transformationseΛ,(eΛ)−1 areof order zero, and

∂α
ξ ω(t,ξ) = q−α(t,ξ)ω(t,ξ), q−α ∈C([0,T];S−α),

∂α
ξ ω j(t,ξ) = q−α, j(t,ξ)ω j(t,ξ), q−α, j ∈C([0,T];S−α), j = 0, . . . ,4,

we have

i(D0ω+E0ω0+F0ω1+G0ω2+H0ω3+L0ω4+M0)
Λ

= D1ω+E1ω0+F1ω1+G1ω2+H1ω3+L1ω4+M1

with
D1,E1,F1,G1,H1,L1,M1 ∈C([0,T];S0,s).

The next step in the proof consists in the transformationalso of D1ω+E1ω0+
F1ω1 +G1ω2 +H1ω3 + L1ω4 +M1 into a positive operator, modulo a remainder of
order zero. There alossof derivativeswill appear. We perform the changeof variable
given byeφ(t,Dx), where

φ(t,ξ) =C
∫ t

0

(
|ω0(τ,ξ)|+ω(τ,ξ)+

4

∑
i=1

ωi(τ,ξ)
)

dτ,

C a large enoughconstant to be chosen. The change of variable carries a loss, see
Lemma2; the lossbecomesgreater as theorder ord(φ) of thesymbol φ(t,ξ) increases.
Thus we choose the parameter M that minimizes ord(φ), which is the maximum be-
tween theordersof

∫ t
0 ω(τ)dτ,

∫ t
0 |ω0(τ,ξ)|dτ,

∫ t
0 ωi(τ,ξ)dτ, i = 1, . . . ,4. In a compari-

son between (35)–(40), we noticethat the followingcasescan occur:

•





1/2≤ η1 < 3/4−1/(2k)
η2≥ 3η1−3/2
η3≥ 2η1−1
η4≥ 3η1−2

=⇒
M = 1/(1−η1),

ord(φ) =
2[3/4−1/(2k)−η1]

1−η1
,

•





η2 < 3/4−3/(2k)
η1≥ η2/3+1/2
η3≥ 2η2/3
η4≥ η2−1/2

=⇒
M = 3/(3/2−η2),

ord(φ) =
2[3/4−3/(2k)−η2]

3/2−η2
,

•





η3 < 1/2−1/k
η1≥ η3/2+1/2
η2≥ 3η3/2
η4≥ 3η3/2−1/2

=⇒
M = 2/(1−η3),

ord(φ) =
2[1/2−η3−1/k]

1−η3
,
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•





η4 < 1/4−3/(2k)
η1≥ η4/3+2/3
η2≥ η4+1/2
η3≥ 2η4/3+1/3

=⇒
M = 3/(1−η4),

ord(φ) =
2[1/4−3/(2k)−η4]

1−η4
.

In each case, we have that ord(φ) = 1/s0, s0 as in the statement of Theorem 1;
in what followsweuse thenotation

φ ∈C([0,T];S1/s0)

which coversall thefour casesthat can occur. The changeof variable can be considered
only if φ(t,ξ)〈ξ〉−1/s is small enough(see[3]), and it is

iW Λ,φ := e−φiW Λeφ

= ∂t + ∂tφ(t,Dx)I + iK̃Λ +R(t,x,Dx)

+D2ω+E2ω0+F2ω1+G2ω2+H2ω3+L2ω4+M2

= ∂t + iK̃Λ +(D2ω+CωI )+ (E2ω0+C|ω0|I )+ (F2ω1+Cω1I )

+ (G2ω2+Cω2I )+ (H2ω3+Cω3I )+ (L2ω4+Cω4I )

+M2+R(t,x,Dx) ,

(49)

where I is the2×2 identity matrix,

D2,E2,F2,G2,H2,L2,M2 ∈C([0,T];S0,s),

andR∈C([0,T];S1/s,s).

Taking now C sufficiently large, from the sharp Gårding inequality for ma-
trix operators, see[5, Theorem 4.4, page 134], we immediately get that D2ω+CωI ,
E2ω0+C|ω0|I , F2ω1+Cω1I , G2ω2+Cω2I , H2ω3+Cω3I andL2ω4+Cω4I in (49)
arepositivemodulo termswith symbol in C([0,T];S0,s).

It only remains to make R a positive operator. To this aim, we take µ= 0 and,
for afunctionr(t) ∈C1[0,T] to be chosen, weperform thelast changeof variablegiven

by er(t)〈Dx〉1/s−ε〈Dx〉1/s
, ε > 0, andconsider thefinal operator

(50) iW̃ := e−(φ(t,Dx)+r(t)〈Dx〉1/s−ε〈Dx〉1/s)iW Λeφ(t,Dx)+r(t)〈Dx〉1/s−ε〈Dx〉1/s
.

By [3] weknow that there existsan ε0 > 0 such that if

φ(x,Dx)+ r(t)〈Dx〉1/s≤ ε〈Dx〉1/s, 0≤ ε≤ ε0,

then

iW̃ = ∂t + iK̃Λ +(D2ω+CωI )+ (E2ω0+C|ω0|I )+ (F2ω1+Cω1I )

+ (G2ω2+Cω2I )+ (H2ω3+Cω3I )+ (L2ω4+Cω4I )

+M2+ R̃(t,x,Dx)+ r ′(t)〈Dx〉1/sI ,

(51)
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where R̃∈C([0,T];S1/s) has seminorms such that |R̃(t)|ℓ ≤ rℓ(t) for some functions
rℓ ∈C[0,T] not depending onr(t). An application of Caldéron–Vaill ancourt’sTheorem
to the operator R̃ gives the existence of a positive constant ℓ0 only depending onthe
spacedimensionn such that

|〈R̃v,v〉L2| ≤ rℓ0(t)〈〈Dx〉1/sv,v〉L2.

Thus, taking r(t) such that r ′(t) = rℓ0(t), we have that also R̃(t,x,Dx)+ r ′(t)〈Dx〉1/sI

becomes a positive operator modulo terms of order zero. So, from (51), we obtain by
Gronwall ’smethod

‖U(t)‖20≤C0‖U(0)‖20.

Thisprocedure can begeneralized to the case µ 6= 0, sincefor each µ we have

〈Dx〉µ
(
iW̃
)
〈Dx〉−µ = iW̃ +Rµ,

with Rµ of order zero. From this, the energy method gives well posednessin Hµ of

the Cauchy problem for iW̃ , which corresponds to well posedness of (47) in Hµ
ε,s,

0< ε≤ ε0. �

REMARK 1. If , with the assumptions of Theorem 2, we take σ = 1 or σ ∈
(0,1), then the Cauchy problem (15) is not well posed in Hµ, but it is well posed
respectively in H∞ or in γs for s< 1/(1− σ), see [4]. This is because the symbol
Λ in (17) has positive order under a decay at infinity condition of type ℑb1 ∼ 〈x〉−σ

with σ ∈ (0,1]. Regarding second order equations, in the statement of Theorem 1 we
only admit σ > 1, see(5). This is because in the proof of Theorem 1 we need Λ of
order zero; otherwise, the transformation(48) carries a lossof derivatives, and as now
we cannot simultaneously control the two losses coming from the decay condition at
infinity (transformation(48)) and from the Levi conditions (transformation(50)). The
problem of givingan analogueof Theorem 1 in the case σ ∈ (0,1] is still open.
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SecondConf. Pseudo-Differential Operators

C. Boiti and R. Meise

EVOLUTION FOR OVERDETERMINED SYSTEMS

IN (SMALL ) GEVREY CLASSES

Dedicated to Professor Luigi Rodino ontheoccasion of his60th birthday

Abstract. Given a system of linear partial differential operators with constant coefficients
whose affine algebraic varieties V(℘̌) have dimension 1, we establish in which classes of
(small ) Gevrey functions the associated Cauchy problem admitsat least onesolution, looking
at thePuiseux series expansions on thebranches at infinity of the algebraic curvesV(℘̌). We
focus, in particular, on the case of two variables, giving some examples.

1. Introduction and main theorems

Let A0(D) be an a1× a0 matrix of linear partial differential operators with constant
coefficients in theN indeterminatesz1, . . . ,zN.

To allow different scales of regularity in the time-variables t and in the space-
variablesx, wesplit RN

z ≃Rk
t ×Rn

x andconsider then thespacesof (ultra-)differentiable
functionsof Beurling type

E ω(R
N) = { f ∈ E (RN) : ∀K ⊂⊂RN ∀ε > 0 ∃c> 0 :

sup
K
|Dβ

t Dγ
x f (t,x)| ≤ cε|γ|+|β|(β!)1/α1(γ!)1/α2 ∀γ ∈Nn

0,β ∈ Nk
0},

whereN0 = N∪{0} and 0≤ α j < 1. If α1 = α2 = 1/swith s> 1 this space coincides
with the spaceof (small ) Gevrey functions of order s. If α1 = α2 = 0 it is identified
with the spaceE (RN) of smooth functions. We assume in the following that α1 = 0
if α2 = 0, so that we allow ultradifferentiabilit y in all variables or only in the space-
variables, but not only in the time-variables.

We want to consider theCauchy problem for A0(D) in these classes of (ultra-)
differentiable functions with initial data on {(t,x) ∈ Rk×Rn : t = 0}. In order to
avoid the problem of formal coherence of the initial data, which can be particularly
intricate if the system is overdetermined, we allow Whitney functions as initial data,
which means that we give functions with all their normal derivatives on {t = 0}. By
Whitney’sextensiontheorem it isnot restrictiveto give zero initial-data, so that we are
concerned with the following(overdetermined) Cauchy problem:





given f ∈ E ω(RN)a1

find ϕ ∈ E ω(RN)a0 such that

A0(D)ϕ = f

Dα
t ϕ(0,x) = 0 ∀α ∈Nk

0,∀x∈ Rn.

(1)

165
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Let θ = (τ,ζ) ∈ Ck×Cn be the dual coordinates of z= (t,x) and denote by
P =C[θ1, . . . ,θN] thering of complex polynomials in theN indeterminatesθ1, . . . ,θN.
By the formal substitution θ j ↔ D j =

1
i

∂
∂zj

we can associate to the operator A0(D)

the P -homomorphism A0(θ) and insert it into a Hilbert resolution of the P -module
M = coker tA0(θ):

0→ P ad
tAd−1(θ)−→ P ad−1−→ . . . −→P a2

tA1(θ)−→ P a1
tA0(θ)−→ P a0−→M → 0.

When themap A1(θ) isnot trivial thesystem (1) isoverdeterminedandin order
to besolvable f must satisfy the compatibilit y conditions

{
A1(D) f = 0

Dα
t f (0,x) = 0 ∀α ∈ Nk

0, ∀x∈ Rn.
(2)

We say that the pair (Rn
x,R

k
t ×Rn

x) is of evolution for A0(D) (or for M ) in the
classE ω if the Cauchy problem (1) admits at least one solution ϕ for each datum f
satisfying the compatibilit y conditions(2).

Let usdenotebyV =V(℘̌), for ℘∈ Ass(M ), the algebraic variety

V(℘̌) = {θ ∈ CN : p(−θ) = 0 ∀p∈℘}.
It was proved in [3], [4] that evolution is equivalent to the validity of the following
Phragmén-Lindelöf principle for every V =V(℘̌) with℘∈ Ass(M ):

PL(ω)





∃A> 0 such that ∀v∈ PSH(V) satisfying, for someαv > 0,{
(α) v(τ,ζ) ≤ | Imτ|+ | Imζ|+ω(τ,ζ) ∀(τ,ζ) ∈V

(β) v(τ,ζ)≤ αv(| Imζ|+ω(τ,ζ)+1) ∀(τ,ζ) ∈V

then v must also satisfy

(γ) v(τ,ζ) ≤ A(| Imζ|+ω(τ,ζ)+1) ∀(τ,ζ) ∈V,

where PSH(V) is the set of plurisubharmonic functions on V (cf. [2]), and ω(τ,ζ) =
σα1(|τ|)+σα2(|ζ|) is theweight functiondefined, for 0≤ α1,α2 < 1 and t ≥ 0, by

σα(t) =

{
tα if 0< α < 1

log(1+ t) if α = 0.

When the algebraic variety V has dimension one, i.e. is an algebraic curve, we
can describeitsbranchesat infinity by meansof Puiseux seriesexpansions. It turnsout
that theordersα1,α2 for whichV satisfiesPL(ω) arestrictly related to the coefficients
and the exponents of the Puiseux series expansions on its branches at infinity. This
seems particularly useful sincePuiseux series expansionscan be computed by several
programs, such asMAPLE, for instance.

Given an algebraic curveV ⊂CN ≃ Ck
τ×Cn

ζ with coneof limiting directions

Vh =
ℓ⋃

j=1

Vj =
ℓ⋃

j=1

C ·v j
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for v j = (τo
j ,ζo

j ) ∈ (Ck×Cn) \ {(0,0)}, there are two kinds of Puiseux series expan-
sions on the branches of V near infinity, depending onwhether their cone of limiting
directionsVj is contained in Ck×{0} or not. Moreprecisely (cf. Lemma3.6 of [2]):

1) If Vj 6⊂ Ck×{0} and, for instance, thefirst component of ζo
j is not zero, then on

thebranchesW of V with coneof limiting directionsVj wehave aPuiseux series
expansion of the form

(τ,ζ1,ζ′) = (τo
j ,1,a)ζ1+

κ

∑
ν=−∞

(Dν,0,Eν)ζ
ν/m
1 , |ζ1| ≫ 1(3)

whereζ′ = (ζ2, . . . ,ζn), m∈N, κ∈ Z∪{−∞}, κ < m, Dν ∈Ck, a,Eν ∈Cn−1 for
all ν≤ κ.

2) If Vj ⊂ (Ck \ {0})×{0} and, for instance, the first component of τo
j is not zero,

then on the branches W of V with cone of limiting directions Vj we have a
Puiseux seriesexpansion of the form

(τ1,τ′,ζ) = (1,0,0)τ1+
p′

∑
ν=−∞

(0,Fν,Gν)τ
ν/q
1 , |τ1| ≫ 1(4)

where τ′ = (τ2, . . . ,τk), q∈ N, p′ ∈ Z∪{−∞}, p′ < q, Fν ∈ Ck−1, Gν ∈ Cn for
all ν≤ p′.

Note that all the indices and the coefficients in (3) and (4) depend onthe branchesW
(cf. [2]), so that weshould writeκ = κ(W), p′ = p′(W), etc.

Moreover, we can multiply the coefficients Dν,Eν in (3) by ων
m and the coeffi-

cients Fν,Gν in (4) by ων
q (where ωm and ωq are, respectively, any m-th root and any

q-th root of unity), obtainingan equivalent representation of W.

On each of these branches we have several necessary and/or sufficient condi-
tions for PL(ω) to bevalid (cf. [2]). In the case of one time-variable(and oneor more
space-variables) thesenecessary andsufficient conditionsperfectly fit, so that we have
a complete characterization of systems which are of evolution in E ω. In this case the
Puiseux seriesexpansion(3) isof the form





τ(ζ1) = τo
j ζ1+

s

∑
ν=−∞

Dνζν/m
1

ζ′(ζ1) = aζ1+
t

∑
ν=−∞

Eνζν/m
1

|ζ1| ≫ 1(5)

where s= max{ν≤ κ : Dν 6= 0}, t = max{ν≤ κ : Eν 6= 0} (and the maximum of the
empty set isdefined, here and in the following, as−∞).

ThePuiseux expansion(4) isof the form

ζ(τ) =
p

∑
ν=−∞

Gντν/q, |τ| ≫ 1(6)
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with p= max{ν≤ p′ : Gν 6= 0}. If Gp ∈ CRn then we can assume, up to a real li near
changeof variables, that Gp = (Gp,1,0, . . . ,0) and henceobtain from (6) (cf. [1], [2]):

τ(ζ1) =
q

∑
ν=−∞

Aνζν/p
1 =

q

∑
ν=−∞

Aνζaν/r
1 , |ζ1| ≫ 1, Aq =


 1

G1/p
p,1




q

(7)

and, for n≥ 2,

ζ′(ζ1) =
P

∑
ν=−∞

Bνζν/Q
1 =

P

∑
ν=−∞

Bνζbν/r
1 |ζ1| ≫ 1

for P∈ Z, Q∈ N, P< Q, r = ap= bQ the least commonmultiple of p and Q (r := p
if n= 1).

Let us define, for ζo ∈ {−1,1}, for any branch fm of the m-th root and for any
branch fr of the r-th root:

u(ζo, fm) = max{ν≤ t : Im(Eν fm(ζo)
ν) 6= 0}

w(ζo, fm) = max{ν≤ s : Im(Dν fm(ζo)
ν) 6= 0}

w0 = max{w(ζo, fm) : ζo ∈ {−1,1}, fm a branch of them-th root,
w(ζo, fm)> max{0,u(ζo, fm)}}

µ(ζo, fr) = max{ν < q : Im(Aν fr(ζo)
aν) 6= 0}

µ∗ = max

{
µ(ζo, fr) : ζo ∈ {−1,1}, fr a branch of the r-th root,

µ(ζo, fr)> q− p, and

Im(Bν fr(ζo)
bν) = 0 ∀ν≥Q

(
1− q−µ(ζo, fr )

p

)}
,

wherewemean, in thedefinition of µ∗, that wedo not place any requirement ontheBν
if n= 1. Here again everything depends on the branch W of V that hasVj as cone of
limiting directions(cf. [2]), so that weshould write w0 = w0(W), µ∗ = µ∗(W), etc.

We can then state the followingtheorem (cf. Theorem 5.16 of [2]):

THEOREM 1. Let V be an algebraic curve in Cτ×Cn
ζ with cone of limiting

directions

Vh =
ℓ⋃

j=1

Vj =
ℓ⋃

j=1

C ·v j

for v j = (τo
j ,ζo

j ) ∈ (C×Cn)\{(0,0)}, andlet ω(τ,ζ) = σα1(|τ|)+σα2(|ζ|) bea given
weight function. Then the followingconditionsare equivalent:

(1) V satisfiesPL(ω).

(2) For each j ∈ {1, . . . , ℓ} andfor each branch W of V with cone of limiting direc-
tionsVj , one of the followingconditionsholds (where we write p,q, etc. instead
of p(W),q(W), etc.):
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(i) ζo
j /∈ CRn;

(ii ) v j = (τo
j ,ζo

j ) ∈ (R\ {0})× (Rn\ {0}) and

max{α1,α2} ≥ w0/m;

(iii ) v j = (0,ζo
j ) ∈ {0}× (Rn\ {0}) and

max
{ s

m
α1,α2

}
≥ w0

m
;

(iv) v j = (τo
j ,0) ∈ (R\ {0})×{0}, p≤ 0 or Gp /∈ CRn;

(v) v j = (τo
j ,0) ∈ (R\{0})×{0}, p> 0, Gp ∈ λRn for someλ ∈ C, q/p /∈ N,

α1≥ p/q;

(vi) v j =(τo
j ,0)∈ (R\{0})×{0}, p> 0, Gp∈ λRn, q/p∈N, λ/|λ| /∈ {eikπp/q :

k∈ Z}, α1 ≥ p/q;

(vii ) v j =(τo
j ,0)∈ (R\{0})×{0}, p> 0, Gp∈ λRn, q/p∈N, λ/|λ| ∈ {eikπp/q :

k∈ Z},

max

{
q
p

α1,α2

}
≥ 1− q−µ∗

p
.

We now want to find a more explicit formulation of this theorem in the case of
two variables, i.e. k= n= 1. In thiscasethere existsapolynomial P∈C[τ,ζ] of degree
m′ > 0 such that

V =V(P) = {(τ,ζ) ∈ C2 : P(τ,ζ) = 0},
Vh =V(Pm′) = {(τ,ζ) ∈ C2 : Pm′(τ,ζ) = 0},

wherePm′ is theprincipal part of P and isof the form

Pm′(τ,ζ) = bτνζµ
σ

∏
j=1

(τ−a jζ)mj , (τ,ζ) ∈ C2

for someµ,ν,σ ∈N0, b∈C\ {0}, andmj ∈ N0, a j ∈ C\ {0} for 1≤ j ≤ σ.

ThereforethePuiseux seriesexpansions(5) reduceto

τ(ζ) = Aζ+
s

∑
ν=−∞

Dνζν/m, |ζ| ≫ 1,(8)

with A= 0 or A= a j for some j ∈ {1, . . . ,σ}.
Theseriesexpansions(6) and (7) are of the form:

ζ(τ) =
p

∑
ν=−∞

Gντν/q, |τ| ≫ 1,(9)

τ(ζ) =
q

∑
ν=−∞

Aνζν/p, |ζ| ≫ 1,(10)
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for Gν ∈ C andAq = (1/G1/p
p )q.

Now we check what this specialization means for the conditions (i)− (vii) in
(2) of Theorem 1. Obviously, the condition (i) is empty when n= 1.

Let us look at the conditions (2)(ii ) and (2)(iii ) for n= 1. We first prove that if
s> 0 then w0 = s. To this aim we choose the branch g(ρeiϕ) = ρ1/mexp(iϕ/m) of the
m-th root. Then, for Ds = reiψ, we have that

Dsg(1)s = reiψ ∈ R iff ψ = hπ, h∈ Z;

in thiscase

Dsg(−1)s= rei(ψ+πs/m) = rei(hπ+πs/m) =±rei s
mπ /∈ R

sinces/m /∈ Z for 0< s< m. This means that we can find ζo ∈ {−1,1} and a branch
fm = g of the m-th root such that w(ζo, fm) = s> 0. Sincen= 1 we have u(ζo, fm) =
−∞ and hencew0 = s. Therefore the conditions (2)(ii ) and (2)(iii ) of Theorem 1 be-
come, respectively:

(ii )′ v j = (τo
j ,ζo

j ) ∈ (R\ {0})× (R\ {0}) and

max{α1,α2} ≥ s/m;

(iii )′ v j = (0,ζo
j ) ∈ {0}× (R\ {0}) andα2 ≥ s/m.

If , on the contrary, s≤ 0, then w0 = −∞ and the conditions (2)(ii ) and (2)(ii )’ , (2)(iii )
and (2)(iii )’ are empty, and hence coincide again.

In case of (2)(iv) we have only the condition p≤ 0, sinceGp ∈ CR is always
satisfied.

Let us now take p= 1 and look at the conditions (2)(v)–(vii ). We have q/p=
q∈ N (hencethe condition (2)(v) is empty) and

G1

|G1|
:= eiφ ∈ {eik p

q π : k∈ Z}= {ei kπ
q : k∈ Z}

if and only if φq= kπ for somek∈ Z, i.e. if and only if Gq
1 ∈ R. In this caseµ∗ =−∞,

sincethe condition

q−1= q− p< µ(ζo, fp)< q

cannot be satisfied for any integer µ(ζo, fp). Thereforethe condition (2)(vii ) is empty.

If , on the contrary, Gq
1 /∈ R then wehave the conditionα1 ≥ p/q from (2)(vi).

Let us now take p = 2. If q is odd then q/p /∈ N and we have the condition
α1 ≥ p/q from (2)(v).

If q is even then q/p∈ N and

G2

|G2|
:= eiφ ∈ {eikπ p

q : k∈ Z} = {ei 2kπ
q : k∈ Z}
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if and only if φq= 2kπ for somek∈Z, i.e. if and only if Gq
2 > 0. Let usnow investigate

µ∗ in thiscase. If Aq−1 6= 0, then there exist ζo ∈ {−1,1} andabranch f2 of thesquare
root such that

Im(Aq−1 f2(ζo)
q−1) 6= 0

sinceq−1 is odd. In this case µ∗ = q−1> q−2= q− p, and the condition (2)(vii )
becomes

max
{q

2
α1,α2

}
≥ 1− q− (q−1)

2
=

1
2
.

If , on the contrary, Aq−1 = 0 then for any ζo ∈ {−1,1} andany branch f2 of thesquare
root wehave that µ(ζo, f2)< q−1 and henceµ∗ =−∞, becausethe condition

q−2= q− p< µ(ζo, f2)< q−1

cannot be satisfied for any integer µ(ζo, f2). In this case the condition (2)(vii ) is there-
fore empty.

If we assume that Gq
2 ∈C\R or Gq

2 < 0 then G2/|G2| /∈ {ei 2kπ
q : k∈ Z}. In this

case we havethe conditionα1≥ p/q from (2)(vi).

Let us finally remark that if V(P) satisfies PL(ω), then also V(Pm′) satisfies
PL(ω) because of Theorem 5.3 of [2]. Vice versa, if V(Pm′) = V1∪ . . .∪Vℓ satisfies
PL(ω), then every Vj , for j ∈ {1, . . . , ℓ}, admitsareal generator v j = (τo

j ,ζo
j )∈R2\{0}

by Theorem 3.3 of [2].

All the above considerations allow us to reformulate Theorem 1 in the case of
two variablesas follows:

THEOREM 2. For P∈C[τ,ζ]\C with principal part Pm′ and aweight function
ω(τ,ζ) = σα1(|τ|) +σα2(|ζ|) the algebraic curveV(P) satisfies PL(ω) if and only if
the following two conditionsare satisfied:

(1) V(Pm′) satisfiesPL(ω).

(2) For each j ∈ {1, . . . , ℓ} andfor each branch W of V with cone of limiting direc-
tionsVj , oneof the followingconditionsholds:

(i) v j = (τo
j ,ζo

j ) ∈ R× (R\ {0}) and

{
max{α1,α2} ≥ s

m if τo
j 6= 0

α2 ≥ s
m if τo

j = 0;

(ii ) v j = (τo
j ,0) ∈ (R \ {0})×{0}, p≤ 0, or p = 1 and Gq

1 ∈ R, or p = 2,
Gq

2 > 0, q iseven andAq−1 = 0;
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(iii ) v j = (τo
j ,0) ∈ (R\ {0})×{0}, p> 0 and





α1 ≥ p
q if p∈ {1,2} andGq

p ∈ C\R
or if p= 2 andGq

2 < 0

or if p= 2, Gq
2 > 0, q odd

or if p≥ 3 and q
p /∈N

or if p≥ 3, q
p ∈ N, and

Gp
|Gp| /∈

{
eikπ p

q : k∈ Z
}

max
{q

2α1,α2
}
≥ 1

2 if p= 2, Gq
2 > 0,

q even, andAq−1 6= 0

max
{

q
pα1,α2

}
≥ 1− q−µ∗

p if p≥ 3, q
p ∈N, and

Gp
|Gp| ∈

{
eikπ p

q : k∈ Z
}

.

REMARK 1. Theorem 2 corrects [1], Theorem 4.16, which is not correct, due
to amistake in theproof of part (1) of Lemma4.10 in [1]. However, the argumentsfor
this part of Lemma4.10are right whenever (p,q) = 1. ThereforeTheorem 2 concides
with Theorem 4.16 of [1] if (p,q) = 1 on every branch W of V(P). Note that [1],
Theorem 4.16, isalso correct if V(P) hasno branchesW for which p≥ 3, q/p∈N and

Gp/|Gp| ∈ {eikπ p
q : k∈ Z}.

2. Examples

EXA MPLE 1. Let usconsider the algebraic curve

V={(τ,ζ) ∈ C2 : P(τ,ζ) = ζ6+3ζ2τ2+ τ2−3ζ4τ−6ζτ2−2ζ3τ− τ3 = 0}.

Sincetheprincipal part P6 of P isP6(τ,ζ) = ζ6, it follows that

V(P6) = {(τ,ζ) ∈C2 : ζ = 0}.

It is therefore trivial that V(P6) satisfies PL(ω) for each weight function ω, by Propo-
sition 4.3 of [1]. It iseasy to check that

V = {(λ6,λ3+λ2) : λ ∈C}.

From this it followsthat V hasonly one irreduciblebranch near infinity that admits the
Puiseux seriesexpansion

ζ(τ) = τ3/6+ τ2/6, |τ| ≫ 1,
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which converts into the expansion

τ(ζ) = ζ2−2ζ5/3+
4

∑
ν=−∞

Aνζν/3, |ζ| ≫ 1.

Since p= 3, q= 6 andG3 = 1= eikπ/2 for k= 0, we are in the last case of Theorem 2
hencewe must compute µ∗. SinceA5 = −2 and there exists a third root f3 of 1 such
that Im(A5 f3(1)5) 6= 0, we have µ(1, f3) = 5. Since5> 3= q− p we also have µ∗ =
5. Consequently, Theorem 2 implies that V satisfies PL(ω), for ω(τ,ζ) = σα1(|τ|)+
σα2(|ζ|) if and only if

max{2α1,α2} ≥ 1− 6−5
3

=
2
3
.

Let usnow prove alemmathat isuseful in thestudy of examples.

LEMM A 1. For p,q∈N, q> p, and a∈ C\ {0} let P∈ C[τ,ζ] bedefined as

P(τ,ζ) := τp−aζq+
p−1

∑
j=0

b jτ j −
q−1

∑
j=0

a jζ j .

Assumethat for h,s, t ∈Nwehavep=hs, q= ht, and(s, t) =1and denoteby β1, . . . ,βh

theh different h-th rootsof a. Then V(P) := {(τ,ζ) ∈C2 : P(τ,ζ) = 0} hash branches
near infinity andfor each such branchW there exists j ∈ {1, . . . ,h} such that W admits

a Puiseux series expansionwhich hasβ−1/t
j τs/t as leading term.

Proof. Since p= hsandq= ht we have

F(τ,ζ) := τp−aζq = τsh−aζth =
h

∏
j=1

(τs−β jζt).

Because of (s, t) = 1, this shows that V(F) is the union of h irreducible curves, which
have thePuiseux seriesexpansions

ζ j(τ) =
( 1

β j

)1/t
τs/t , |τ|> 0, 1≤ j ≤ h.

For 1≤ j ≤ h, 1≤ k≤ t, and τ ∈ C with |τ| > 0 denote by ζ j ,k(τ) the q= ht different
rootsof F(τ, ·). Then it iseasy to check that there existsδ > 0 such that

min{|ζi,k(τ)− ζ j ,m(τ)| : 1≤ i, j ≤ h, 1≤ k, m≤ t,(i,k) 6= ( j,m)} ≥ δ|τ|s/t .

Furthermore, there existsη > 0 such that

min

{
|1− βν

β j
| : 1≤ j, ν≤ h, j 6= ν

}
≥ 2η.
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Then wehave for λ ∈ C with |λ|= ε|τ|s/t :

(11) |F(τ,ζ j ,k(τ)+λ)|= |τs−β j(ζ j ,k(τ)+λ)t |
h

∏
ν=1
ν6= j

|τs−βν(ζ j ,k(τ)+λ)t |.

Now note that ζ j ,k(τ)t = τs/β j and the choiceof η imply the existenceof 0< ε1 < δ
such that for each ε with 0< ε≤ ε1 we have

(12) |τs−βν(ζ j ,k(τ)+λ)t |= |τ|s
∣∣∣1− βν

β j

(
1+β1/t

j
λ

τs/t

)t ∣∣∣≥ η|τ|s.

Similary, we get

τs−β j(ζ j ,k(τ)+λ)t = τs−β j

t

∑
l=1

(
t
l

)
ζ j ,k(τ)t−l λl .

This showsthat we can chooseε1 > 0 so small that for each ε with 0< ε < ε1 wehave

(13) |τs−β j(ζ j ,k(τ)+λ)t | ≥ |β j |1/tt
ε
2
|τ|s.

From (11), (12), and(13) we now get

(14) |F(τ,ζ j ,k(τ)+λ)| ≥ ηh−1|β j |1/tt
ε
2
|τ|sh, |λ|= ε|τ|s/t .

To apply theTheorem of Rouché to F andP on the circles ∂B(ζ j ,k(τ),ε|τ|s/t ), we note
that there existsC> 1 such that

|P(τ,ζ)−F(τ,ζ)| ≤C(|τ|p−1+ |ζ|q−1), |τ| ≥ 1.

Sincefor λ ∈ C with |λ|= ε|τ|s/t we have

|(ζ j ,k(τ)+λ)q−1| ≤ |τ|s(q−1)/t



∣∣∣∣∣∣

1

β1/t
j

∣∣∣∣∣∣
+ ε




q−1

,

andsince p< q there existsD > 1 such that, for |λ|= ε|τ|s/t ,

(15) |P(τ,ζ j ,k(τ)+λ)−F(τ,ζ j ,k(τ)+λ)| ≤CD|τ|s(q−1)/t =CD|τ|sh−s/t .

From (14) and (15) we now get that for each 0< ε < ε1 there exists τ0 > 1 such that
for each τ ∈C with |τ| ≥ τ0 we have

|F(τ,ζ j ,k(τ)+λ)−P(τ,ζ j ,k(τ)+λ)|< |F(τ,ζ j ,k(τ)+λ)|, |λ|= ε|τ|s/t .

By the Theorem of Rouché, it follows that for each τ ∈ C, |τ| ≥ τ0, the function ζ 7→
P(τ,ζ) has a zero ξ j ,k(τ) which satisfies |ξ j ,k(τ)− ζ j ,k(τ)| ≤ ε|τ|s/t for each ε with
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0< ε < ε1. By the choiceof ε1, the disks B(ζ j ,k(τ),ε|τ|s/t ), 1≤ j ≤ h, 1≤ k≤ t, are
pairwise disjoint. Since each branch W of V(P) near infinity admits a Puiseux series
expansion of the form

ζ(τ) =
w

∑
ν=−∞

Aντν/r

it now follows that the leading term of such an expansion has thegiven form.

In the following example we use Lemma 1 and Theorem 2 to give a correct
proof of [1], Example5.3. The proof that was given in [1] is based onthat part of [1],
Theorem 4.16, in which we have aflaw. Nevertheless, the assertions of [1], Example
5.3, are right, as thenew proof shows.

EXA MPLE 2. For p,q∈ N, p,q,≥ 2, anda∈ C\ {0} let P∈ C[τ,ζ] bedefined
as

P(τ,ζ) := τp−aζq+
p−1

∑
j=0

b jτ j −
q−1

∑
j=0

a jζ j .

Then for ω(τ,ζ) := σα1(|τ|)+σα2(|ζ|) the followingassertionshold for

V =V(P) = {(τ,ζ) ∈C×C : P(τ,ζ) = 0}.

(1) If p> q≥ 2 then V satisfies PL(ω) if and only if α2≥ q/p.

(2) If q> p≥ 3 then V satisfies PL(ω) if and only if α1≥ p/q.

(3) If q> p= 2 with a∈ C\R or a< 0 or a> 0 andq odd, then V satisfies PL(ω)
if and only if α1 ≥ p/q.

(4) If q> p= 2, a∈R, q evenanda>0 thenV satisfiesPL(ω) for all 0≤α1,α2 <1.

(5) If p= q≥ 3 or p= q= 2 and a∈ C \ [0,∞[ then V does not satisfy PL(ω) for
any (α1,α2) ∈ [0,1[× [0,1[.

(6) If p= q= 2, a∈ R anda> 0 then V satisfies PL(ω) for all 0≤ α1,α2 < 1.

To provethese assertionswe argue as follows.

(1) In thiscasetheprincipal part Pp of P isgiven byPp(τ,ζ) = τp. HenceV(Pp)
satisfies PL(κ) for each weight functionκ by [1], Proposition 4.3. Now fix any branch
W of V near infinity. By [1], Lemma 4.4, W admits a Puiseux series expansion of the
form (8). Thepresent hypothesisq< p impliesA= 0 so that (8) gives

τ(ζ) =
s

∑
ν=−∞

Dνζν/m.

SinceP(τ(ζ),ζ) = 0, wehaveDp
sζsp/m−aζq = 0 andconsequently s/m= q/p. Hence

we get from Theorem 2, part (2)(i) that PL(ω) holds onW if and only if α2 ≥ s/m=
q/p. SinceW wasan arbitrary branch of V theproof of (1) is complete.
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(2) In this case the principal part Pq of P is given by Pq(τ,ζ) = −aζq. Hence
V(Pq) satisfies PL(κ) for each weight functionκ by [1], Proposition 4.3. Next assume
that there are h,s, t ∈ N with p= hs, q= ht, and (s, t) = 1. If we denote by β1, . . . ,βh

the h different rootsof a, then we get from Lemma1 that for each branchW of V near
infinity, there exists 1≤ j ≤ h such that W admits a Puiseux series expansion of the
form

ζ(τ) =
1

β1/t
j

(τs)1/t + l .o.t.

This showsthat Gt
s = 1/β j . Now wedistinguish the followingcases:

(i) s= 1.
Thismeansthat p= h andq/p∈N. Sinceh= p≥ 3 bythepresent hypotheses, at least
one of the numbers β1, . . . ,βp is not real. If β j ∈ C \R then Gt

s ∈ C \R. Therefore,
it follows from Theorem 2 (2)(iii ) (and Theorem 2 (2)(ii) for β j ∈ R) that V satisfies
PL(ω) if and only if α1≥ p/q.
(ii ) s≥ 2, h= 1.
Then s= p≥ 3 and (p,q) = 1. Hencep/q 6∈ N and it follows from Theorem 2 (2)(iii )
that V satisfies PL(ω) if and only if α1 ≥ p/q.
(iii ) s= 2, h≥ 2.
Then (s, t) = 1 implies that t must be odd. Hence it follows from Theorem 2 (2)(iii )
that, no matter whether 1

β j
∈ C \R or 1

β j
∈ R \ {0}, V satisfies PL(ω) if and only if

α1 ≥ s/t = p/q.
(iv) s≥ 3, h≥ 2.
Then s/t 6∈N together with Theorem 2 (2)(iii ) impliesalso in this case that V satisfies
PL(ω) if and only if α1≥ s/t = p/q.

(3) As in part (2) weget that V(Pq) satisfies PL(κ) for each weight functionκ.
If p = 2, a > 0, and q is odd then τ2− aζq is irreducible and henceV has a Puiseux

seriesexpansion of the form ζ(τ) =
(

τ2

a

)1/q
+ l .o.t. This showsthat G2 =

(
1
a

)1/q
and

henceGq
2 =

1
a > 0. Therefore, it followsfrom Theorem 2 (2)(iii ) that V satisfiesPL(ω)

if and only if α1 ≥ p/q.
If p = 2 and q is odd the same argument as above shows that Gq

2 = 1
a is negative if

a< 0 or is not real i f a is not real. Hencewe get thesame conclusionasbefore.
If p= 2 andq iseven, then q= 2mandτp−aζq factorsas (τ−√aζm)(τ+

√
aζm). By

Lemma1, the two branchesof V near infinity are then given by

ζ(τ) =
(±1√

a

)1/m
+ l .o.t.

HenceGm
1 = ±1√

a. This number is not real i f a∈ C\ [0,∞[. Therefore, it follows from

Theorem 2 (2)(iii ) that (3) holds.

(4) The same arguments as in (3) show that now Gm
1 = ±1√

a is real sincea> 0.

Hence(4) followsfrom Theorem 2 (2)(ii).

(5) In both cases the principal part of P is given by Pp(τ,ζ) = τp−aζp and we
can find α ∈ C\R such that αp = a. HencePp admitsa factor τ−αζ with α ∈ C\R,
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which implies that V(Pp) does not satisfy PL(ω) for any weight function ω because
of [1], Proposition 4.3. By [1], Corollary 4.9, also V(P) cannot satisfy PL(ω) for any
weight functionω. Hence(5) holds.

(6) In this case the principal part P2 of P is given by P2(τ,ζ) = τ2−aζ2 = (τ−√
aζ)(τ+

√
aζ). Since a is positive by the present hypothesis, V(P2) satisfies PL(κ)

for each weight function κ, by [1], Proposition 4.3. SinceV(P2) has two irreducible
components, it follows similarly as in the proof of Lemma 1 that V has two branches
near infinity and that these can bedescribed as

τ =−b1

2
±
√

aζ
(

1+
a1

a
1
ζ
+

a′0
a

1
ζ2

)1/2
.

This implies the existenceof C> 0 such that

| Imτ| ≤C| Imζ|+C, (τ,ζ) ∈V.

Hence condition (γ) of PL(ω) follows from condition (α) of PL(ω) for each weight
functionω.
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THE KERNEL T HEOREM IN ULT RADISTRIBUTIONS:

MICROLOCAL REGULARITY OF THE KERNEL

Dedicated to Professor Luigi Rodino ontheoccasion of his60th birthday

Abstract. In this paper we study kernels associated with continuous operators between
spaces of Gevrey ultradistributions. The existence of such kernels has been established, in
analogy with the kernel theorem of L. Schwartz for classical distributions, by H. Komatsu,
and our aim here is to study these kernels from a microlocal point of view. The main re-
sults, which are the theorems 2, 3 below, show that there is a significant difference between
the results which hold true in the case of Beurling ultradistributions and the results valid for
Roumieu ultradistributions.

1. Introduction

The Schwartz kernel theorem states that the linear continuous operators T mapping
D (U) toD ′(V) areprecisely theoperatorsfor which thereisK ∈ D ′(V×U) such that

(1) Tu(ϕ) = K (ϕ⊗u), u∈ D (U), ϕ ∈ D (V).

(Cf. L. Schwartz, [17].) K is called the “kernel” of T and in this situation we write
Tu(x) =

∫
U K (x,y)u(y)dy. Here U and V are open sets in Rm and Rn respectively,

D (U) isthespaceof C ∞
0 (U) functionsendowedwith theSchwartz topologyandD ′(W)

thespaceof distributionsonW, withW =V or W =V×U . TheSchwartz theorem has
been extended to the case of ultradistributions by H. Komatsu and both L. Schwartz
and H. Komatsu have also studied linear continuous operators defined on compactly
supported distributions, respectively ultradistributions, to distributions or ultradistri-
butions. We shall consider for the moment only the distribution case. The problem
is then to consider a linear continuous operator T : E ′(U)→ D ′(V), where E ′(U)
is the spaceof compactly supported distributions on U . T induces a linear contin-
uous operator on D (U) and therefore it has a distributional kernel K ∈ D ′(V ×U).
The relation (1) associates a separately continuous bili near form (ϕ,u) 7→ K (ϕ⊗ u)
onD (V)×D (U) with T whereas the initial operator defined onE ′(U) is associated
with the bili near form (ϕ,u) 7→ T(u)(ϕ) defined on D (V)× E ′(U). If we want to
understandthe classof kernelsK ∈ D ′(V×U) which correspondto linear continuous
operatorsE ′(U)→D ′(V), wemay then just studythebili near form (ϕ,u) 7→ K (ϕ⊗u)
as a form onD (V)×E ′(U). This has led to a sophisticated theory of tensor products
of topological vector spaces in which the notion of “nuclear” spaces (introduced by

∗Thesecondauthor was supported in part by JSPSGrant-in-Aid No. 19540165.
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A. Grothendieck) plays a central role. It turns out that most common spaces of dis-
tributions or ultradistributionsare nuclear and the central result concerning the kernel
theorem in distributions is that the operator T : D (U)→ D ′(V) associated with some
K ∈D ′(V×U) can be extended to alinear continuousoperator E ′(U)→D ′(V) if and
only if K can be identified in anatural way with an element in [D (V)⊗̂E ′(U)]′, where
D (V)⊗̂E ′(U) is, say, the ε topological tensor product of D (V) with E ′(U). Sincethe
spacesunder considerationarenuclear, wemay aswell work with theπ tensor product.
For definitions and details we refer to [2] and [19]. There is also an interpretation of
this in termsof C ∞ functionswith distributional values.

Thetheory of tensor productsof topological vector spaces isvery powerful and
it explains, among other things, why kernel theorems in Banach spaces of (possibly
generalized) functions must typically be more complicated than those in distributions
(see e.g., [1] for some examples of kernel theorems in Lebesgue spaces): infinite di-
mensional Banach spaces are never nuclear. On the other hand, when one wants to
consider kernel theoremsin hyperfunctions, thiskind of approach isnot usablein prac-
ticesincehyperfunctionshave no reasonable topology. One may then try another ap-
proach, which has been worked out in microlocal analysis. The central notion is this
time the “wave front set” of a distribution, ultradistribution, or hyperfunction (intro-
duced in 1969 byM. Sato for hyperfunction, [15] and in 1970 byL. Hörmander for
distributions, [3]). Themain condition is then

(2) {(x,y,0,η);x∈V,y∈U,η 6= 0}∩WF(K ) = /0.

When K is a distribution, WF(K ) stands for the C ∞ wave front set and if (2) holds
then microlocal analysisgivesanatural meaningto

∫
U K (x,y)u(y)dy when u∈ E ′(U).

(See [3], [20].) The same is true also in hyperfunctions if WF denotes the analytic
wavefront set: thereisanatural meaningfor

∫
U K (x,y)u(y)dy when u isareal-analytic

functional onU . Integration is then defined in terms of “ integration alongfibers” and∫
U K (x,y)u(y)dy hasameaning in hyperfunctions: see e.g., [16], [5] for details.

There is now however a fundamental difference between the two main cases
contemplated bymicrolocal analysis, thedistributional and thehyperfunctional one.

It is in fact not difficult to seethat the condition(2) is not equivalent to the fact
that K ∈ [D (V)⊗̂E ′(U)]′. This means that (2) is not a necessary condition when we
want K to define a continuous operator from E ′(U) to D ′(V). On the other hand,
it is part of the results described in [10], [11], that for hyperfunctions a reasonable
operator acting from somespaceof analytic functionals to thespaceof hyperfunctions
can only be defined in presenceof condition (2). It seemed then natural to the present
authors to look into the case of Gevrey ultradistributions and to study if microlocal
conditions of type (2) are necessary for reasonable operators in ultradistributions to
exist. It came, at least at first, as a surprise, that the answer depends on which type
of ultradistributions one is considering: for ultradistributions of Beurling type, one
may work with weaker conditions than the ones corresponding to (2), whereas for
ultradistributions of Roumieu type such conditions are also necessary: seesection 2
for the terminologyandthe theorems2, 3 for theprecisestatements.
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2. Definitionsand main results

For the convenienceof the reader, we shall now recall some of the definitions related
to Gevrey-ultradistributions. (For most of the notionsconsidered here, cf. e.g., Lions–
Magenes, vol.3, section 1.3, or [14].)

Consider s> 1, L > 0, U open in Rn and let K be a compact set in U . We shall
denoteby f 7→ | f |s,L,K thequasinorm

(3) | f |s,L,K = sup
α∈Nn

sup
x∈K

|(∂/∂x)α f (x)|
L|α|(α!)s

,

defined onC ∞(U). We further denoteby

• D s,L(K) thespaceof C ∞ functions f onRn which vanish outsideK such that for
them | f |s,L,K < ∞,

• D (s)(K) =
⋂

L>0D
s,L(K),D {s}(K) =

⋃
L>0D

s,L(K),

• D {s}(U) =
⋃

K⊂U D
{s}(K), respectively D (s)(U) =

⋃
K⊂U D

(s)(K),

• E (s)(U) = { f ∈ C ∞(U); ∀K ⋐U, ∀L > 0, | f |s,L,K < ∞}, respectively
E {s}(U) = { f ∈ C ∞(U); ∀K ⋐U, ∃L > 0, | f |s,L,K < ∞}.

Thefunctionsin E {s}(U), are called “ultradifferentiable” of Roumieu type, and
those in E (s)(U), ultradifferentiable of Beurling type, with Gevrey index s. Sincewe
shall often encounter statements for the two types of classes which are quite similar,
we now introducethe conventionthat we shall writeD ∗(U) when we give astatement
which refers to both the case ∗ = (s) and the case ∗ = {s}. The same conventionalso
applies for other spacesassociated with the two cases.

All thespacesmentioned above carry natural topologies:

• D s,L(K) is a Banach spacewhen endowed with | · |s,L,K asanorm,

• D (s)(K) is the projective limit (for “L→ 0+” ) of the spaces D s,L(K), whereas
D {s}(K) is the inductive limit (for “L→ ∞” ) of the same spaces. The spaces
D (s)(K) are FS (i.e., Fréchet-Schwartz), whereas the spaces D {s}(K) are DFS
(duals of Fréchet–Schwartz). (The topological properties of these spaces are
studied in [6].)

• D {s}(U) is the inductive limit (for K ⊂ U) of the spaces D {s}(K), whereas
D (s)(U) is the inductive limit (again for K ⊂U) of thespacesD (s)(K).

• Weshall definetopologiesonE (s)(U) andE {s}(U) asfollows. At first wedefine
for K ⋐U and L > 0 the spaceYK,L of restrictions to K of functions in C ∞(U),
which satisfy | f |s,L,K < ∞, endowed with the topology given by the semi-norm
| · |s,L,K . Then,

E (s)(U) = lim←−
K⋐U

lim←−
L>0

YK,L, E
{s}(U) = lim←−

K⋐U

lim−→
L>0

YK,L.
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We have continuous inclusionsD ∗(U)⊂ E ∗(U) with dense image andD ∗(K)
is the subspaceof E ∗(U) (K ⊂ U) consisting of the functions with compact support
lying in K.

For a systematic study of the topological propertiesof these spaces we refer to
[13], [6]. We shall however strive to use only a minimum of results on the topological
structure of the spaces we shall consider. On the other hand, we shall consider later
a new class of spaces in which we can state results which can serve as a common
backgroundfor both theRoumieu and theBeurlingcase.

Finally, we shall denote by D {s}′(U), D (s)′(U), E {s}′(U), E (s)′(U), the strong
dual spaces (called Gevrey-ultradistributionsof Roumieu, respectively Beurling type)
of thespacesD {s}(U), D (s)(U), E {s}(U), E (s)(U).

We then also haveby duality continuousinclusions

(4) E ∗′(U)⊂ D ∗′(U).

As for integral operators, the followingremark iseasy to check (cf. [6]):

• assumeK ∈ D ∗′(V×U). Then theprescriptionT(ϕ)(ψ) = K (ψ⊗ϕ) definesa
linear continuousoperator T fromD ∗(U) toD ∗′(V).

We shall write thisas

(Tϕ)(x) =
∫

V
K (x,y)ϕ(y)dy, ϕ ∈ D ∗(U).

It ispart of the resultsproved in [6], [7], [8], that also the converseis true:

THEOREM 1 (Komatsu). a) Any linear continuous operator T : D ∗(U) →
D ∗′(V) is of form T(ϕ)(ψ) = K (ψ⊗ϕ) for someK ∈ D ∗′(V×U).

b) (See[8] , page655.) Any linear continuousoperator T : E ∗′(U)→ D ∗′(V) is
of form T(ϕ)(ψ) = K (ψ⊗ϕ) for someK ∈ D ∗′(V)⊗ε E

∗(U). (“⊗ε” is the ε-tensor
product.)

Before we can state our own results, we must still i ntroduce the notions of
Gevrey wave front sets. In order to justify them, we start from the following straight-
forward (andstandard) result, which is in fact also central in the calculations:

REMARK 1 (See e.g., [6]). Let B be a closed ball i nRn (or Rm; in the caseRm,
notationshould be changed slightly).

There are constantsc> 0,c′ > 0, such that for f ∈ C ∞
0 (B) we have

(5) sup
ξ∈Rn
| f̂ (ξ)|exp[c′(|ξ|/L)1/s]≤ c| f |s,L,B, | f |s,c′L,B ≤ c sup

ξ∈Rn
| f̂ (ξ)|exp[(|ξ|/L)1/s].

“Hats” will denote theFourier transform, which we defineby

f̂ (ξ) = F f (ξ) =
∫
Rn

f (x)exp[−i〈x,ξ〉]dx.
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The relation (5) is based on the following elementary inequality, which is valid for
d|ξ| ≥ 1:

(6) |ξ||α|exp[−d|ξ|1/s]≤ |ξ||α| inf
β
|β||β|/(d|ξ|1/s)|β| ≤ (4s)s|α|d−s|α||α|s|α|;

the last inequality is obtained by evaluating the function F(β) = |β||β|× (d|ξ|1/s)−|β|

for |β|= [s|α|]+1, where [s|α|] is the integer part of s|α|. (The factor “4s|α|” appears
becauseof the “integer part” .)

We havethe followingrelations:

• A function f ∈ C ∞
0 (Rn) lies inD {s}(Rn) precisely if there are constantsc,d > 0,

such that | f̂ (ξ)| ≤ cexp[−d|ξ|1/s].

• A function f ∈ C ∞
0 (Rn) lies in D (s)(Rn) precisely if there is c and a function

ℓ : Rn→R+ such that

(7) ∀d > 0, ∃c′ s.t. d|ξ|1/s≤ ℓ(ξ)+ c′, ∀ξ ∈ Rn,

andsuch that

(8) | f̂ (ξ)| ≤ cexp[−ℓ(ξ)], ∀ξ ∈ Rn.

• A real analytic functional u lies in E (s)′(Rn) if there are constants c,d > 0 such
that |û(ξ)| ≤ cexp[d|ξ|1/s].

• A real analytic functional u lies inE {s}′(Rn) if for every d> 0 thereisa constant
c such that |û(ξ)| ≤ cexp[d|ξ|1/s].

A useful remark is thesub-additivity of the functionξ 7→ |ξ|1/s for s≥ 1, that is,

(9) |ξ+θ|1/s≤ |ξ|1/s+ |θ|1/s, ∀ξ,θ ∈ Rn.

We now introduce the wave front sets corresponding to the ultradistribution
spacesconsidered above. (Cf., e.g., [4], [9], [14].)

DEFINITION 1. a) Let u∈ D (s)′(U) andconsider (x0,ξ0) ∈U × Ṙn. We shall
say that (x0,ξ0) /∈WF(s)(u), if we can findε > 0, v∈ E (s)′(Rn), an open convex cone
Γ which containsξ0, c> 0 and afunctionℓ as in (7) with the following properties:

(10) u≡ v on |x− x0|< ε, |v̂(ξ)| ≤ cexp[−ℓ(ξ)] for ξ ∈ Γ.

b) Let u∈ D {s}′(U). Weshall say that (x0,ξ0) /∈WF{s}(u), if we can findε > 0,

v∈ E {s}′(Rn), an open convex coneΓ which containsξ0 andc,d > 0 such that

(11) u≡ v on |x− x0|< ε, |v̂(ξ)| ≤ cexp[−d|ξ|1/s] for ξ ∈ Γ.
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The WF{s}(u), WF(s)(u) are the Gevrey wave front sets of u of Roumieu, re-
spectively Beurling, typewith Gevrey index s.

We now state the main results.

THEOREM 2. Let V×U be an open set in Rn×Rm andconsider a linear con-
tinuous map T : D {s}(U)→ D {s}′(V) given by some kernel K ∈ D {s}′(V×U). Then
the followingstatementsare equivalent:

i) T can be extended to acontinuousandlinear mapT : E {s}′(U)→ D {s}′(V).

ii ) K satisfies theGevreywavefront set condition of Roumieu type:

WF{s}(K )∩{(x,y,0,η);η 6= 0}= /0.

THEOREM 3. With V andU as before, consider a linear continuous map T :
D (s)(U)→D (s)′(V) given by some kernel K ∈D (s)′(V×U). Then thefollowingstate-
mentsare equivalent:

a) T can be extended to acontinuousandlinear mapT : E (s)′(U)→ D (s)′(V).

b) For every (x0,y0) ∈ V ×U and for all d > 0, ∃ε > 0, ∃c, ∃c1, and ∃K ′ ∈
E (s)′(V×U) such that K ′ = K on |(x,y)− (x0,y0)|< ε and

(12) |(F K ′)(ξ,η)| ≤ c1exp[−d|η|1/s] for |ξ| ≤ c|η|.
REMARK 2. A comparison of condition b) in Theorem 3 with part a) of Defi-

nition 1showsthat WF(s)(K )∩{(x,y,0,η);η 6= 0}= /0 impliesb) in the theorem. We
shall seelater on that the converseisnot true: there arekernelswhich satisfy condition
b), but do not satisfy the wave front set conditionWF(s)(K )∩{(x,y,0,η);η 6= 0}= /0.

REMARK 3. Note that, taking into account Theorem 1, the conditions ii ) and
b) in the preceding theorems may be regarded as characterizations of the respective
spaces D {s}′(V)⊗ε E

{s}(U) and D (s)′(V)⊗ε E
(s)(U), as subspaces of D {s}′(V ×U)

andD (s)′(V×U).

Thefollowingremark is immediate.

REMARK 4. Let ∗ denote (s) or {s} with s> 1, and consider χ1 ∈ D ∗(V),
χ2 ∈ D ∗(U). We denote by B1 the support of χ1 and by B2 the support of χ2. If
T : E ∗′(U)→D ∗′(V) isa linear continuousoperator, then so isT1 : E ∗′(B2)→ E ∗′(B1)
defined byT1u= χ1T(χ2u). Conversely, if all operatorsobtained in thisway are contin-
uousfor some linear operator T : E ∗′(U)→ D ∗′(V), then T is continuous. Note that if
T correspondsto akernel K (x,y), then T1 correspondsto thekernel χ1(x)χ2(y)K (x,y).
In view of this remark we may assume henceforth without loss of generality that
U = Rm, respectively that V = Rn, and that

(13) suppK ⊂ B′×B,

for some closed ballsB⊂Rm, B′ ⊂ Rn.

REMARK 5. If K ∈ D ∗′(Rn+m) satisfies (13), then suppTg⊂ B′ for every g∈
D ∗(Rm). Conversely, if suppTg⊂ B′ for every g∈ D ∗(Rm), then suppK ⊂ B′×Rm.
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3. Intermediatespacesand weight functions

In this sectionwedefinespaceswhich areintermediatebetween Roumieu andBeurling
ultradistributions. We fix a closed ball B and consider for f ∈ C ∞

0 (Rn), u∈ A ′(Rn), a
new set of quasinorms

‖ f‖s,d = sup
ξ∈Rn
| f̂ (ξ)|exp[d|ξ|1/s],

‖u‖s,d = sup
ξ∈Rn
|û(ξ)|/exp[d|ξ|1/s].(14)

(Here A ′(Rn) denotes the real-analytic functionals on Rn.) Thus formally, ‖u‖s,d =
‖u‖s,−d, but the two quasinormsrefer to different situations, so wewanted to makethe
differencevisible also notationally.

DEFINITION 2. Wedenoteby G s,d(B) thespaceof C ∞ functionsu with support
in B such that ‖u‖s,d < ∞, endowed with the norm ‖u‖s,d. In a similar way, we con-
sider the spaceG s,′

d (B) of ultradistributionsu with support in B for which ‖u‖s,d < ∞,
endowed with thenorm‖u‖s,d.

Also note that, using the estimates (5), we have for suitable constants c′,c′′, the
followingcontinuousinclusions:

(15) G s,1/L1/s
(B)⊂ D s,c′L(B)⊂ G s,c′ ′/L1/s

(B), if L > 0.

Thus(for fixed s) thespacesG s,d(B) form ascale(indexed byd> 0) of functionspaces
which isessentially equivalent with thescaleD s,L(B). For example, we have

(16) D {s}(B) = lim−→
d>0

G s,d(B)

as locally convex spaces. (Also see[6].)

REMARK 6. When f ∈ D ∗′(Rn) hascompact support andg∈ D ∗(Rn), we can
calculate f (g) by f (g) = (2π)−n∫

Rn f̂ (ξ)ĝ(−ξ)dξ, where the integral is the standard
Lebesgue integral. (See[7].)

We now mention that G s,′
d (B) is not defined asa dual space and, in somesense,

the norms ‖u‖s,d are not optimal for duality arguments. We now state alemma that
will help usto bypassthis shortcoming. This is typically used for the cut-off multiplier
χ ∈ D (s)(B′′) for ballsB′ ⋐ B′′, satisfyingχ≡ 1 onB′.

LEMM A 1. Consider χ∈ D (s)(Rn), d > 0. Then the constantsc1 := ‖χ‖s,d and
c2 := ‖χ̂(ξ)exp[d|ξ|1/s]‖L 1(Rn) arefinite.
a) Moreover, we have

(17) ‖χ f‖s,d ≤ (2π)−nc1‖ f̂ (ξ)exp[d|ξ|1/s]‖L 1(Rn).
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b) In asimilar vein, we also have

‖χ f‖s,d ≤ (2π)−nc2‖ f‖s,d.

c) Finally, if h ismeasurable,

|(χ̂∗h)(ξ)| ≤ c2‖h(ξ)exp[−d|ξ|1/s]‖L ∞(Rn) ·exp[d|ξ|1/s].

Proof. Thefinitenessof the constantscomes from (8). For a), we have

(2π)n|F (χ f )(ξ)| ·exp[d|ξ|1/s] =
∣∣∣
∫
Rn

χ̂(ξ−θ) f̂ (θ)dθ
∣∣∣ ·exp[d|ξ|1/s]

≤
∣∣∣
∫
Rn

χ̂(ξ−θ)exp[d|ξ−θ|1/s] · f̂ (θ)exp[d|θ|1/s]

×exp[d|ξ|1/s−d|θ|1/s−d|ξ−θ|1/s]dθ
∣∣∣

≤ ‖χ‖s,d · ‖ f̂ (θ)exp[d|θ|1/s]‖L 1(Rn).

Herewe used the inequality |ξ|1/s≤ |ξ−θ|1/s+ |θ|1/s. See(9).

Partsb) andc) areproved with a similar argument.

A measurable and non-negativevalued function onRn is called a weight func-
tion. A weight functionϕ(ξ) is said to besub-linear if it satisfies

sup
ξ∈Rn

(ϕ(ξ)− ε|ξ|)<+∞, for any ε > 0.

In this article, we only consider radial weight functions, and we say, by abuse of nota-
tion, that a weight function is increasingwhen it isan increasing function of |ξ|.

Now consider two sub-linear weight functionsϕ,ψ : Rn→R+ andassumethat
ψ(θ)−|ξ−θ|1/s≤ ϕ(ξ)+c, ∀ξ, ∀θ, inRn. If χ∈D (s)(Rn), then there existsa constant
c′ such that

(18) ‖(χ̂∗h)eψ‖L 1(Rn) ≤ c′‖heϕ‖L 1(Rn)

holds for any measurable function h. Indeed, the left hand side of (18) is estimated
from aboveby

∫
Rn

∫
Rn
|χ̂(θ− ξ)h(ξ)|exp[ψ(θ)]dξdθ

=

∫
Rn

∫
Rn

eψ(θ)−|ξ−θ|1/s−ϕ(ξ) · |χ̂(θ− ξ)|e|ξ−θ|1/s · |h(ξ)|eϕ(ξ)dξdθ

≤ ec‖χ̂(θ)e|θ|1/s‖L 1(Rn) · ‖heϕ‖L 1(Rn).

REMARK 7. Our next lemma is similar to Lemma 1, c), but is more abstract
and therefore lessprecise. We also mention that in the proof of the lemma we con-
sider Lebesgue-spacesassociated with weights. We briefly recall the terminology. We
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assume that we are given a continuousweight function ϕ : Rn→ R+ and say that two
measurablefunctionsonRn are equivalent if they are equal except onaset of Lebesgue
measure zero. Then we denote by L 1(Rn,ϕ) the spaceof equivalence classes of mea-
surable functions on Rn for which the integral

∫
Rn | f (ξ)|exp[ϕ(ξ)]dξ is finite. The

norm on this spaceisof course

(19) f 7→ ‖ f‖L 1,ϕ =

∫
Rn
| f (ξ)|exp[ϕ(ξ)]dξ.

If L : L 1(Rn,ϕ)→ C is a linear continuous map, then there is a measurable
function h defined onRn such that L( f ) =

∫
Rn f (ξ)h(ξ)dξ, ∀ f ∈ L 1(Rn,ϕ) and we

have |h(ξ)| ≤ ‖L‖1exp[ϕ(ξ)], for almost all ξ ∈ Rn, where‖L‖1 is the norm of L as a
functional onL 1(Rn,ϕ).

LEMM A 2. Let B′ ⋐ B′′ be two balls in Rn, χ a function in D (s)(B′′) satisfying
χ ≡ 1 on B′, and d> 0. Consider two sub-linear weight functions ϕ,ψ : Rn→ R+.
Assume that

(20)
∫
Rn
|F (χ f )(ξ)|exp[ψ(ξ)]dξ≤ c1

∫
Rn
| f̂ (ξ)|exp[ϕ(ξ)]dξ, ∀ f ∈ L 2(Rn),

for some constant c1, provided the right handside in (20) is finite. Also denote by
N (B′′,ψ) theset

N (B′′,ψ) := {g∈ D (s)(B′′);
∫
Rn
|ĝ(ξ)|exp[ψ(ξ)]dξ≤ 1}.

Then there is a constant c2 such that for any v∈ D (s)′(Rn) with suppv⊂ B′ we have
that

|v̂(ξ)| ≤ c2exp[ϕ(−ξ)] sup
g∈N (B′′,ψ)

|v(g)|.

Proof. We define thespacesZ andY, Y ⊂ Z, by

Z = { f ∈ L 2(Rn);
∫
Rn
| f̂ (ξ)|exp[ϕ(ξ)]dξ < ∞},

Y = { f ∈ Z;‖ f‖s,d′ < ∞ for all d′}.

It is easy to seethat Y is dense in Z if the latter is endowed with the norm defined by
f 7→ ‖ f̂‖L 1,ϕ: if f is given in Z, then k 7→ fk = F −1(exp[−(1/k)|ξ|] f̂ ), k= 1,2, . . . is

a sequenceof functions in Y which approximates f . Now, Y ⊂ E (s)(Rn) and we also
observethat if µ∈ C ∞

0 (Rn), then F −1µ∈ Z.

It suffices to construct c2 such that

|v̂(ξ)| ≤ c2exp[ϕ(−ξ)]

holds for any v∈ D (s)′(Rn) satisfyingsuppv⊂ B′ and

(21) sup
g∈N (B′′,ψ)

|v(g)| ≤ 1.
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Now we fix such a v and consider the functional f 7→ v(χ f ), which is initially
defined onE (s)(Rn). For f ∈Y, wehave

|v(χ f )| ≤
∫
Rn
|F (χ f )(ξ)|exp[ψ(ξ)]dξ≤ c1‖ f̂‖L 1,ϕ,

where the first inequality follows from (21), and the secondfrom (20). Therefore, this
functional can be extended, by continuity, to a linear continuous functional L on Z.
Next we introducethe spaceẐ = { f ∈ L 2(Rn);

∫
Rn| f (ξ)|exp[ϕ(ξ)]dξ < ∞}, which is

the image of Z under the Fourier transform. We endow Ẑ with the norm f 7→ ‖ f‖L 1,ϕ;
this is of course the norm induced by the norm of Z if we use the Fourier transform to
identify Z and Ẑ. The map L gives rise in this way to a linear continuousmap L̂ on Ẑ
defined by L̂( f ) = L(F −1 f ).

Finally, we can apply the Hahn-Banach theorem to extend L̂ to a linear con-
tinuous map defined on the spaceL 1(Rn,ϕ) introduced in Remark 7, with the norm
not greater than c1. (Instead of applying the Hahn-Banach theorem, we can also use
the density of Z in L 1(Rn,ϕ).) It follows therefore from Remark 7, that L̂ is of form
L̂( f ) =

∫
Rn f̂ (ξ)h(ξ)dξ, for somesuitablemeasurable functionh onRn which satisfies

|h(ξ)| ≤ c1exp[ϕ(ξ)] for almost all ξ. The proof of the lemma will come to an end if
we can show that v̂(ξ) = (2π)nh(−ξ). This is the case, since

∫
Rn

µ(ξ)h(ξ)dξ = L̂(µ) = L(F −1µ) = v(χF −1µ) = v(F −1µ)

= (2π)−n
∫
Rn

v̂(−ξ)µ(ξ)dξ

for µ ∈ C ∞
0 (Rn), which means that h(ξ) and (2π)−nv̂(−ξ) coincide as distributions.

Herewe haveused the fact that suppv⊂ B′ and that χ≡ 1 onB′′.

COROLL ARY 1. There is a constant c′ for which we havethe following impli -
cation for v∈ D (s)′(Rn) satisfyingsuppv⊂ B′:

(22) |v( f )| ≤ 1 for all f ∈ D (s)(B′′) with ‖ f‖s,d ≤ 1, implies‖v‖s,2d ≤ c′.

In other words, thequasinormv 7→ ‖v‖s,2d can be estimated fromaboveby theinequal-
ity

‖v‖s,2d ≤ c′ sup
f∈M
|v( f )|

using thebounded set M = { f ∈ D (s)(B′′);‖ f‖s,d ≤ 1} in D (s)(B′′), and aconstant c′

depending only onB′, B′′, and d. Since, in the oppositedirection, we have

sup
f∈M
|v( f )| ≤ c′′‖v‖s,d/2

for some constant c′′ independent of v, it isclear that thetopology induced onE ∗′(B) as
a subspaceof D ∗′(Rn) is given as the inductive/projectivelimit of thespacesG s,′

d (B).

The corollary follows from Lemma2, if we also take into account Lemma1.
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REMARK 8. Thestatement in the corollary ismeaningful also for v∈D {s}′(Rn).
In this case, we know from the very beginning that there is a constant c′, which may
depend onv, with ‖v‖s,2d ≤ c′, and the lemma just givesan estimate by duality of the
norm ‖v‖s,2d.

We now consider asequenceof numbersCj which satisfies the condition

(23) j2 ≤Cj ,

(other conditionson the constantsCj will be introduced in a moment) and denoteby ℓ
the (increasing) function

(24) ℓ(ξ) = sup
j
( j|ξ|1/s−Cj).

REMARK 9. a) The function ℓ is well -defined since j|ξ|1/s−Cj is negative for
|ξ|< j. (This implies that the “sup” is finite for every ξ.) Somewhat morespecifically,
j|ξ|1/s−Cj ≤− j( j−|ξ|1/s) tends to−∞ for j → ∞ when ξ is fixed, and thereforewe
also seethat actually, ℓ(ξ) = max j( j|ξ|1/s−Cj), i.e., the “sup” isactually a “max” .

b) The functionℓ clearly satisfies (7).

c) Assumenow that Cj also satisfies

(25) Cj ≥ 4C[ j/2]+1, [ j/2] the integer part of j/2.

Sincek|ξ|1/s−Ck≤ 4
(
([k/2]+1)|ξ/2|1/s−C[k/2]+1

)
, we then also have

(26) ℓ(ξ)≤ 4ℓ(ξ/2).

We recall here the fact that when one defines function spaces by inequaliti es of type
| f̂ (ξ)| ≤ exp[ϕ(ξ)], then conditions of type ϕ(ξ) ≤ cϕ(ξ/2) are used (for increasing
weight functions) in relation to the requirement that the functionspacebestable under
multiplication. (When the weight functions are not increasing, the formulation of the
correspondingcondition is somewhat more involved. We shall not use c) in thispaper.
Also cf. the “ringcondition” in [12].)

The condition (23) is needed to show that the function ℓ is finite. We now
put further conditions on the constantsCj to show that we can make ℓ sub-linear and
Lipschitz-continuous. We should mention that while the fact that ℓ is sub-linear is
essential, the fact that it is Lipschitz continuous is not strictly needed in this paper.
Lipschitzianity is however needed as soonas one wants to develop a theory of pseu-
dodifferential and Fourier integral operators in spaces related to weight functions and
thereforeweshow also in thispaper that we can choosethe functionsℓ with thisprop-
erty. (See[12].)

LEMM A 3. a) Consider a sequenceof constantsCj ≥ j2, and definea function
ρ̃ : R+→ R+ by

(27) ρ̃(τ) =

{
supj( jτ1/s−Cj), (τ ≥ 1)

supj( j−Cj), (τ < 1).
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Then ρ̃ is finite. If Cj tends to infinity quick enough andis suitably chosen, then ρ̃ is
sub-linear andLipschitz. Moreover, we may assumethat if s′ > s is fixed, then

(28) lim
τ→∞

ρ̃(τ)/τ1/s′ = 0.

b) Let ρ̃ be as in the conclusion of part a) and denote by ρ : Rn→ R+ the
functionρ(ξ) = ρ̃(|ξ|). Then ρ is sub-linear andLipschitz.

Proof. We choose asequenceof positive numbersM j ց 0, with M1 = 1. Further, we
iteratively definenumbersτ j , j ≥ 0,Cj ≥ j2, j ≥ 1, andfunctionsρ j with thefollowing
properties:

• τ0 = 0, C1 = 0, ρ1(τ) = τ1/s,

• ρ j(τ) = jτ1/s−Cj ,

• thesequence j 7→ (Cj+1−Cj) is strictly increasing,

• τ1/s
j =Cj+1−Cj , and therefore also thesequence j 7→ τ j is strictly increasing,

• j(1/s)τ−1+1/s = ρ′j(τ) ≤M j on [τ j−1,∞),

• ρ j(τ) ≥ ρ j−1(τ) for τ≥ τ j−1, ρ j(τ)≤ ρ j−1(τ) for τ≤ τ j−1.

As a preparation for this, we notice that, independently of the way we choose the
constants Cj , we shall have ρ′j(τ) ≥ ρ′j+1(τ), ∀τ. Therefore, if τ j is chosen with
ρ j(τ j ) = ρ j+1(τ j), then we have ρ j(τ) ≥ ρ j+1(τ) for τ ≤ τ j , respectively ρ j(τ) ≤
ρ j+1(τ) for τ ≥ τ j . We now return to the construction of the Cj , τ j . Note that, by
our requirements, wehave to set τ0 = 0, C1 = 0. We next note that the functionsρ j(τ)
are concave and ρ2(τ) = 2τ1/s−C2 is negative for τ > 0 small , whatever the value
of C2 > 0 may be, whereas ρ1 is positive. Moreover, when C2 increases so does τ1

given by τ1/s
1 = C2−C1 = C2 and we fix some C2 ≥ 22 so that 2(1/s)τ−1+1/s

1 ≤ M2.
This already defines ρ2 by ρ2(τ) = 2τ1/s−C2, and it is automatic that ρ′2(τ) ≤ M2

for every τ ≥ τ1. We may now assume that we have foundCj , τ j−1 and have set
ρ j = jτ1/s−Cj . In particular, ρ j(τ)≥ ρ j−1(τ) for τ≥ τ j−1 andρ′j(τ)≤M j for τ≥ τ j .

Next we fix Cj+1 ≥ ( j + 1)2, large enoughsuch that for τ1/s
j = Cj+1−Cj we have

j(1/s)τ−1+1/s
j ≤M j andset ρ j+1(τ) = ( j +1)τ1/s−Cj+1.

This concludes the construction of the numbers τ j , Cj , ρ j by iteration. If we
also want to have (28), then it suffices to chooseτ j−1 so that j(1/s)τ1/s−1≤M jτ1/s′−1

on [τ j−1,∞).

It follows for these choicesthat

(29) sup
k

ρk(τ) = ρ j(τ) on [τ j ,τ j+1] for τ≥ 1,

andwe set ρ̃(τ) = supk ρk(τ) for such τ.
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This showsthat ρ̃′(τ)→ 0 therewherethederivativeisdefined (which isexcept
the points τ = τ j ) when τ→ ∞. The sub-linearity and the Lipschitz-continuity of ρ is
then clear, so part a) of the lemmaisproved. Part b) isan immediate consequence.

LEMM A 4. Let ℓ̃ : Rn→ R+ be a functionwhich satisfies (7) and denoteM =
{ f ∈ D (s)(B2);

∫
Rn | f̂ (ξ)|exp[ℓ̃(ξ)]dξ≤ 1}. ThenM is a bounded set inD (s)(Rn).

We apply this for “ ℓ̃= ℓ′/2” , whereℓ′ will be constructed later on.

Proof. In view of thesupport conditionin thedefinition of M , weonly need to estimate
thederivativesof the elementsinM , andin fact show that for every j thereisa constant
c̃ j such that |(∂/∂x)α f (x)| ≤ c̃ j j−s|α||α|s|α|, for f ∈ M . We write for this purpose for
fixed j, α,

js|α|
∣∣∣ ∂α

∂xα f (x)
∣∣∣ ≤ js|α| sup

ξ∈Rn
|ξα|exp[−sj|ξ|1/s] ·

∫
Rn
| f̂ (ξ)|exp[sj|ξ|1/s]dξ

≤ |α|s|α|
∫
Rn
| f̂ (ξ)|exp[ℓ(ξ)+ lnc j ]dξ

≤ c̃ j |α|s|α|,

since|ξα|exp[−sj|ξ|1/s]≤ c′ j−s|α||α|s|α|, ∀α ∈Nn. (See, e.g., the argument for study-
ing (6). The point is that by analogy, exp[sj|ξ|1/s] ≥ (sj|ξ|1/s)s|α|/(s|α|)|α|. In the
secondinequality we haveused sj|ξ|1/s≤ ℓ(ξ)+ lnc j for some constantsc j .)

PROPOSITION 1. Fix χ ∈ D (s)(B), andconsider sequencesof constantsCj , C′j .

Assume that
∫
Rn | f̂ (ξ)|exp[2 j|ξ|1/s]dξ ≤ C2 j implies ‖χ f‖s, j ≤ C′j . (SeeLemma 1.)

Assume further that both sequences satisfy the condition lnCj ≥ j2, lnC′j ≥ j2.

We now denote by ℓ,ℓ′ : Rn→ R+ the functions ℓ(ξ) = supj( j|ξ|1/s− lnCj ),

ℓ′(ξ) = supj( j|ξ|1/s− lnC′j). Then we havethat

(30) |F (χ f )(ξ)| ≤ exp[−ℓ′(ξ)] · ‖ f̂ (ξ)expℓ(ξ)‖L 1(Rn)

and
∫
Rn
|F (χ f )(ξ)|exp[ℓ′(ξ)/2]dξ≤ ‖ f̂ (ξ)expℓ(ξ)‖L 1(Rn) ·

∫
Rn

exp[−ℓ′(ξ)/2]dξ.

Proof. It suffices to argue for the case ‖ f̂ (ξ)expℓ(ξ)‖L 1(Rn) = 1. Thus, f satisfies

‖ f̂ (ξ)exp[ j|ξ|1/s− lnCj ]‖L 1(Rn) ≤ 1, so it follows from the assumption onCj , that
‖F (χ f )(ξ)‖s, j ≤C′j for every j. This shows that

|F (χ f )(ξ)| ≤ inf
j

exp[− j|ξ|1/s+ lnC′j ] = exp[−ℓ′(ξ)].

Since exp[−ℓ′(ξ)/2] is integrable, we also obtain the last inequality.
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4. Kernelsand thespacesG s

It seemsnatural to study the integral operator Tu(x) =
∫
RmK (x,y)u(y)dy in the frame

of the spacesG s. The conditionswhich we use for K in this section are motivated by
the followingconsiderations:

• let K ∈ D (s)′(Rn+m) have compact support. Then there is d > 0 and c> 0 such
that

(31) |K̂ (ξ,η)| ≤ cexp[d(|ξ|1/s+ |η|1/s)], ∀(ξ,η) ∈ Rn+m.

• From (31), condition b) in Theorem 3 isequivalent to the following:

(32) ∀d′′, ∃d′ > 0, ∃c, s.t. |K̂ (ξ,η)| ≤ cexp[d′|ξ|1/s−d′′|η|1/s].

Most of our argumentsarebased onthe followingsimple relation:

(33) K (ψ) = (2π)−n−m
∫
Rn+m
K̂ (ξ,η)ψ̂(−ξ,−η)dξdη, ψ ∈ D (s)(Rn+m),

the integral being theLebesgue integral asabove. (SeeRemark 6.) It follows that

(34) F (Tg)(ξ) = (2π)−m
∫
Rm
K̂ (ξ,η)ĝ(−η)dη.

PROPOSITION 2. a) Let K ∈ D (s)′(Rn+m) satisfy (13) and assume that (31)
holds for somed > 0. Also consider d̃ > d. Then

(ϕ,u) 7→ (Tu)(ϕ) :=
∫
Rn+m
K̂ (ξ,η)ϕ̂(−ξ)û(−η)dξdη,

for ϕ ∈ D (s)(Rn) definesa continuousoperator T : G s,d̃(Rm)→ G s,′
d (B′).

b) Let K bea ultradistributionwith support inB′×B whichsatisfiesthe estimate

(35) |K̂ (ξ,η)| ≤ exp[d1|ξ|1/s−d2|η|1/s], for some constants d1 > 0,d2 > 0.

Also fix d3 < d2, B1 ⋑ B. Then the correspondence

g 7→ Tg(x) :=
∫

U
K (x,y)g(y)dy,

for g∈ D (s)(B1), can be extended to acontinuousoperator G s,′
d3
(B)→ G s,′

d1
(B′).

Proof. We only proveb). (Part a) is proved by similar argumentsbut is even simpler.)
We have already observed in Remark 5 that suppTg⊂ B′. When g ∈ D (s)(B1), then
F (Tg)(ξ) is given (34). We claim that wehave for somec> 0 the estimate

(36) ‖Tg‖s,d1 ≤ c‖g‖s,d3, ∀g∈ D (s)(B1).
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To provethis, we just argue as follows:

∣∣∣
∫
Rm
K̂ (ξ,η)ĝ(−η)dη

∣∣∣

≤ exp[d1|ξ|1/s]

∫
Rm

exp[−d1|ξ|1/s+d2|η|1/s]|K̂ (ξ,η)|exp[−d2|η|1/s]|ĝ(−η)|dη

and noticethat
∫
Rm

exp[−d2|η|1/s]|ĝ(−η)|dη≤ ‖g‖s,d3

∫
Rm

exp[(−d2+d3)|η|1/s]dη.

We have now proved (36) and can conclude the argument by observing that we can
approximate elementsinG s,′

d3
(B) with functionsinD (s)(B1) by convolution: wefix κ∈

D (s)(y; |y| ≤ 1) with κ̂(0) = 1 andapproximateû by κ̂(η/ j)û. Wehavethen for j large
that F −1(κ̂(·/ j))∗u ∈ D (s)(B1) and that supη exp[−d3|η|1/s]|(1− κ̂(η/ j))û(η)| → 0
as j → ∞.

REMARK 10. The proposition gives in particular the implications ii )⇒i) in
Theorem 2 and b)⇒a) in Theorem 3. SeeRemark 4 andCorollary 1.

To establish the remaining implications in the theorems 2, 3, we first prove a
lemma(part of which will beused only in section 6):

LEMM A 5. Let χ ∈ D (s)(B′), κ ∈ D (s)(B) and fix L, d. Then there isc> 0 such
that

|exp[−i〈x,ξ〉]|s,L,B = sup
α

|ξα|
L|α|(α!)s

≤ exp[c|ξ|1/s/L1/s],(37)

‖χ(x)exp[−i〈x,ξ〉]‖s,d ≤ ‖χ‖s,d exp[d|ξ|1/s],(38)

and

‖κ(y)exp[−i〈y,η〉]‖s,d ≤ ‖κ‖s,d exp[−d|η|1/s].(39)

Note that (39) is an estimate referring to the spacesG s,′
d , althoughthe function

y 7→ κ(y)exp[−i〈y,η〉] lies in D (s)(Rm).

Proof. (37) isa direct calculation.

For (38) we have to calculate supθ |F (χexp[−i〈x,ξ〉])(θ)|exp[d|θ|1/s]. Since
F (χexp[−i〈x,ξ〉])(θ) = χ̂(θ+ ξ), it suffices to observethat

sup
θ
|χ̂(θ+ ξ)|exp[d|θ|1/s]≤ sup

θ
‖χ‖s,d exp[d|θ|1/s−d|θ+ ξ|1/s]

≤ ‖χ‖s,d exp[d|ξ|1/s],
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whereweused |θ|1/s≤ |θ+ ξ|1/s+ |ξ|1/s. As for (39), we can arguesimilarly as

‖κ(y)exp[−i〈y,η〉]‖s,d = sup
θ
|κ̂(θ+η)|exp[−d|θ|1/s]

≤ sup
θ
‖κ‖s,d exp[−d|θ+η|1/s−d|θ|1/s]

≤ ‖κ‖s,d exp[−d|η|1/s].

Herewe again used (9).

We can now provethe followingconverseto part b) in Proposition 2:

PROPOSITION 3. Let K be a ultradistribution with support in B′×B. Denote
by T theoperator Tu(x) =

∫
RmK (x,y)u(y)dy. Assumethat thereare constantsc,d1,d2

and ballsB1, B2, B⋐B1,B′⋐B2, such that T can be extended to acontinuousoperator
G

s,′
d1
(B1)→ G s,′

d2
(B2). Then theFourier transformof K satisfies the estimate

(40) |K̂ (ξ,η)| ≤ c1exp[d2|ξ|1/s−d1|η|1/s].

In particular, we have|K̂ (ξ,η)| ≤ c1exp[−d1|η|1/s/2] if |ξ| ≤ d1|η|/(2d2).

Proof. We shall obtain (40) starting from the estimate

‖T(κ(y)exp[−i〈y,η〉])‖s,d2 ≤ c2‖κ(y)exp[−i〈y,η〉]‖s,d1,

where κ ∈ D (s)(B1) is identically 1 onB. On the other hand, by fixing χ ∈ D (s)(B2)
identically oneonB′, we havethat

‖T(κ(y)exp[−i〈y,η〉])‖s,d2

= sup
ξ

exp[−d2|ξ|1/s]|Fx→ξ(T(κ(y)exp[−i〈y,η〉]))(ξ)|

= sup
ξ

exp[−d2|ξ|1/s]|K (χ(x)κ(y)exp[−i〈x,ξ〉− i〈y,η〉])|

= sup
ξ

exp[−d2|ξ|1/s]|K̂ (ξ,η)|.

The last equality follows from the fact that χ(x)κ(y) is identically one on the support
of K . By applying(39), we now obtain that

sup
ξ

exp[−d2|ξ|1/s]|K̂ (ξ,η)| ≤ c3exp[−d1|η|1/s],

which is the estimate wewanted to prove.

There isa result dual to Proposition 3which wenow consider.
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PROPOSITION 4. Let K be as in the previous proposition and assume that the
map S: G s,d1(B2)→ G s,′

d2
(B1) such that

F (Sϕ)(η) =
∫
K̂ (−ξ,η)ϕ̂(ξ)dξ

mapsG s,d1(B2) to G s,d3(B1) andiscontinuousasa mapG s,d1(B2)→ G s,d3(B1). Then
there isc such that

(41) |K̂ (−ξ,η)| ≤ cexp[d1|ξ|1/s−d3|η|1/s].

REMARK 11. Proposition 4can be reduced to Proposition 3 bytricks, but the
proof is rather simple and doesnot seem worth the effort thiswould require.

Proof of Proposition 4. Continuity of Smeansthat there is a constant c′ such that

(42) ‖Sϕ‖s,d3 ≤ c′‖ϕ‖s,d1, ∀ϕ ∈ G s,d1(B2).

We shall apply this for the family of functionsϕξ̃ defined by

ϕξ̃(x) := χ(x)e−i〈x,ξ̃〉,

whereχ∈ D (s)(V) isafixed functionwith theproperty that χ≡ 1 onB′. Notethat then
ϕ̂ξ̃(ξ) = χ̂(ξ+ ξ̃), so we also haveF (Sϕξ̃)(η) =

∫
K̂ (−ξ,η)ϕ̂ξ̃(ξ)dξ =

∫
K̂ (−ξ,η)χ̂

(ξ+ ξ̃)dξ. Now, since χ ≡ 1 on B′, F (Sϕξ̃)(η) is just K̂ (ξ̃,η). It follows from the
continuity of S that

(43) sup
η
|K̂ (ξ̃,η)|exp[d3|η|1/s]≤ c′‖ϕξ̃‖s,d1.

We can also write thisas

(44) |K̂ (ξ̃,η)| ≤ cexp[d1|ξ̃|1/s−d3|η|1/s],

if we also use (38) for ‖ϕξ̃‖s,d1.

5. Proof of Theorem 3

In this sectionwe apply Proposition 3to prove a)⇒b) inTheorem3. For theimplication
b)⇒a), seeRemark 10.

As a preparation, we choose balls B2 ⋑ B1 ⋑ B′ in Rn and consider the spaces
X,Yd, where X is the space{v∈ D (s)′(Rn);suppv⊂ B′} andYd = G s,′

d (B1) = {v;supp
v⊂ B1, ‖v‖s,d < ∞}. The spaces Yd are clearly Banach spaces with the natural norm
and the inclusionsYd ⊂Yd′ are continuousfor d < d′. Moreover, X ⊂Y :=

⋃
dYd. We

endow X with the topology induced byD (s)′(Rn) and also Y with the inductive limit
topology byY = lim−→d

Yd. It is then, in the terminology of [2], a LF-space.

We havethe followingresult:
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PROPOSITION 5. a) The inclusionY ⊂ D (s)′(Rn) is continuous.

b) The inclusionX ⊂Y iscontinuous.

Proof. In all the argument we fix some χ ∈ D (s)(B1) which is identically one on B′.
Whenever werefer in the argument which followsto someresult obtained in aprevious
section in which a cut-off f unction isused, it will be thisone.

a) Let us first show that the inclusions Yd ⊂ D (s)′(Rn) are continuous. As-
sume then that v 7→ ‖v‖q is a continuous semi-norm onD (s)′(Rn). There is no lossof
generality to assume that it has the form ‖v‖q = supf∈M |v( f )| for some bounded set

M ⊂ D (s)(Rn). It follows that there exists a ball B̃ such that M ⊂ D (s)(B̃) and such
that M is bounded in thespaceG s,d(B̃) for every d > 0.

Then from Lemma 1 b), we can seethat the set N = {χ f ; f ∈ M } is bounded
in G s,d(B2) for every d > 0, and for v∈Yd we have

‖v‖q = sup
f∈M
|v( f )| = sup

f∈M
|v(χ f )|= sup

g∈N
|v(g)|

≤ ‖v‖s,d · sup
g∈N
‖g‖s,2d ·

∫
Rn

exp[−d|ξ|1/s]dξ.

Here we used Remark 6 for the last inequality. Since the second and the last factor
in the right hand side are bounded, the inclusion Yd → D (s)′(Rn) is continuous, as
claimed.

b) Now let U ⊂Y be a convex set such that its intersectionwith thespaceYd is
a neighborhood of the origin for every d > 0. This means in particular that for every
j we can find a constant c′′j > 0 such that {v∈ Yj ;‖v‖s, j ≤ c′′j } ⊂ U . (The constants
c′′j will have to be, in general, small .) We now choose constants c j such that |h(ξ)| ≤
c j exp[ j|ξ|1/s] implies that |(χ̂ ∗ h)(ξ)| ≤ 2− jc′′2 j exp[2 j|ξ|1/s]. (SeeLemma 1.) Note
that c j must be small compared with c′′2 j .

By using Corollary 1 we also see that there are constants Cj such that if v ∈
G

s,′
d (B1) and if f ∈ L 2(Rn), ‖ f‖s, j ≤ Cj implies |v( f )| ≤ 1, then ‖v‖s,2 j ≤ c′′2 j and

hencev ∈ U . The constants Cj will t ypically be large and oncewe have foundsuch
constants, wemay increase them still further. We then assumethat they are larger than
max(1/c j ,exp[ j2]).

Next, we now consider an increasing sequence of positive constants C′j for
which the numbers lnC′j satisfy (23) and for which we also have that for the sequence

Cj chosen above, it follows from
∫
Rn | f̂ (ξ)|exp[2 j|ξ|1/s]dξ ≤ C2 j that |F (χ f )(ξ)| ≤

C′j exp[− j|ξ|1/s]. Again this can be obtained using Lemma1. (In all thisargument we
denote “large constants” by capital lettersand“small ” ones, by small l etters.)

We now denote ℓ(ξ) = supj [ j|ξ|1/s− lnCj ], ℓ′(ξ) = supj [ j|ξ|1/s− lnC′j ] and

considerM = { f ∈ D (s)(B2);
∫
Rn | f̂ (ξ)|exp[ℓ′(ξ)/2]dξ≤ 1}. M is then aboundedset

in D (s)(Rn): seeLemma4.

For a fixed positive constant c̃, it followsthat theset

W = {v∈ X; |v( f )| ≤ c̃, ∀ f ∈M }
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isaneighborhood of theorigin in X. To concludethe argument it will t hereforesuffice
to show that W ⊂ U if c̃ is chosen suitably.

Assume then that v∈W, which means in particular that v∈ G s,′
d (B′) for some

d, sinceX =
⋃

dG
s,′
d (B′) asvector spaces.

Since|v( f )| ≤ c̃ for all f ∈M it followscombiningProposition 1with Lemma
2 that |v̂(ξ)| ≤ c′′c̃exp[ℓ(ξ)] for some constant c′′ which dependsonly on ℓ and ℓ′. We
now put on c̃ the condition c′′c̃≤ 1. Sincewe also know that |v̂(ξ)| ≤Cexp[d|ξ|1/s]
for someC andd, we concludethat

(45) |v̂(ξ)| ≤ exp[min(ℓ(ξ),d|ξ|1/s+ lnC)], ∀ξ ∈ Rn.

Note that the constantsC and d depend onv. Now we choose anatural number k >
d+1. If |ξ|1/s is large enough, say, larger than lnC+ lnCk, it follows that

d|ξ|1/s+ lnC≤ k|ξ|1/s−|ξ|1/s− lnCk+ lnCk+ lnC≤ k|ξ|1/s− lnCk.

This showsthat there is σ, which also dependsonv, such that

|v̂(ξ)| ≤ max
j=1,...,σ

exp[ j|ξ|1/s− lnCj ].

Indeed, for |ξ|1/s≥ lnC+ lnCk, this is trueby what wesaw before if we assumeσ≥ k,
and for |ξ|1/s ≤ lnC+ lnCk, we have that j|ξ|1/s− lnCj ≤ j(lnC+ lnCk)− lnCj →
−∞, with j → ∞ (uniformly for the vectors ξ under consideration), such that ℓ(ξ) ≤
supj≤ j0( j|ξ|1/s− lnCj), for some j0.

We can now find measurable functions h j , j = 1, . . . ,σ, such that v̂ = ∑σ
j=1h j

andsuch that |h j(ξ)| ≤ c j exp[ j|ξ|1/s]. Multiplyingwj = F
−1h j with the cut-off f unc-

tion χ, weobtain in thisway ultradistributionsv j = χwj , j = 1, . . . ,σ, such that |v̂ j(ξ)|
≤ 2− jc′′2 j exp[2 j|ξ|1/s] and such that v = ∑σ

j=1v j . Since the ultradistributions 2 jv j lie
inU andU isconvex andcontainstheorigin, it followsthat v∈U . Thisconcludesthe
proof.

We have now proved Proposition 5and turn to the proof of Theorem 3. Recall
that we may assume that suppK ⊂ B′×B, with B and B′ closed balls in Rm, respec-
tively Rn. (SeeRemark 4.) Let us then assume that T : D (s)′(Rm)→ D (s)′(Rn) is a
continuous operator such that the restriction to D (s)(Rm) is given by the kernel K .
Since the inclusionsG s,′

d (B)→ D (s)′(Rn) are continuous we obtain for every d > 0 a
continuousmap (denoted again T) T : G s,′

d (B)→ D (s)′(Rn) andconsider χ ∈ D (s)(B2)

which is identically one on B′. On G s,′
d (B) the operator T coincides with χT, so in

particular it is trivial that T defines a continuous operator T : G s,′
d (B)→ X. By part

b) of Proposition 5, it also defines a continuous operator T : G s,′
d (B)→ Y. It follows

therefore from Grothendieck’s theorem which we recall i n a moment, that there is d′

with T(G s,′
d (B)) ⊂Yd′ and such that the map T : G s,′

d (B)→ Yd′ is continuous. At this
moment we can essentially apply Proposition 3to concludethe argument.
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THEOREM 4 (Grothendieck, [2]). Let · · · → Xi → Xi+1→ ··· be a sequenceof
Fréchet spaces and continuous maps. Denote by X the inductive limit of the spaces
Xi , by fi : Xi → X the natural maps andconsider a continuous linear map T : F → X
where F is a Fréchet space. Assume that X is Hausdorff. Then there is an index i0

such that T(F) ⊂ fi0(Xi0). Moreover if f i0 is injective, then there is a continuousmap

T0 : F → Xi0 such that T is factorized into F
T0
−→ Xi0

fi0−→ X.

6. Proof of Theorem 2

In this section we prove the implication i)⇒ii ) in Theorem 2. For the implication
ii )⇒i), seeRemark 10.

PROPOSITION 6. Let S:D {s}(B)→D {s}(B′) bea continuousintegral operator
associated with a kernel K with support in B′×B, B,B′, balls in Rm, respectively
Rn, and fix d > 0. Then there is d′ > 0 such that S induces a continuous operator
G s,d(B)→ G s,d′(B′).

Proof. Using (16), we have a continuousoperator from a Banach spaceto a countable
inductive limit of Banach spaces:

G s,d(B)→ lim−→
d>0

G s,d(B)
S−→ lim−→

j∈N
G s, j(B′),

where the first map is the standard inclusion given by the definition of an inductive
limit. Then the conclusion follows from Theorem 4.

Proof of Theorem2. The assumption is that Tu(x) =
∫
K (x,y)u(y)dy is a linear con-

tinuousoperator E {s}′(U)→D {s}′(V). Sincewe can multiply with cut-off f unctionsin
thex and in they variables, there isagain nolossof generality to assumethat U =Rm,
V =Rn andthat suppK ⊂B′×B for two ballsB′ ⊂Rn, B⊂Rm. By duality, weobtain
then a continuousoperator S: D {s}(Rn)→ E {s}(Rm) defined by

ϕ(x) 7→ (Sϕ)(y) =
∫
K (x,y)ϕ(x)dx.

From the support condition, the image of S is included in D {s}(B), and S becomes a
continuousoperator

S: D {s}(B′)→ D {s}(B),

sincethe topology of D {s}(B) is equal to the one induced by the inclusionD {s}(B) ⊂
E {s}(Rm). It follows therefore from Proposition 6 that if we fix d′ > 0, then there is
d > 0 such that S inducesa continuousoperator G s,d′(B′)→ G s,d(B). The conclusion
in the theorem is then a consequenceof Proposition 4.
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7. An exampleand some comments

In this sectionwe give an exampleof a distributionwhich satisfies condition b) in the-
orem 3, but doesnot satisfy awavefront set condition of form WF(s)(K )∩{(x,y,0,η);
η 6= 0}= /0.

We shall work for n= m= 1, onV×U = T2 = T×T, T the one-dimensional
torus. Since we are dealing with a non-quasianalytic setup, there is no real lossof
generality in doing so. (We say something about this in Remark 12 below.) On the
other hand, working onthe torusmakes the example alittl e bit simpler.

We denote exp[−k1+1/s/ j], for j ∈ N, k∈ N, by a jk and define the distribution
K onT2 by

(46) K (x,y) = (2π)−2
∞

∑
j ,k=1

a jk exp[i( jx+ ky)].

(The numbers a jk are thus the Fourier coefficients of K and convergence in (46) is
in the spaceof classical distributions.) It is immediate that K defines a continuous
operator L : D (s)′(T)→ D (s)′(T) by

(47) Lu= (2π)−1
∞

∑
j=1

b j exp[i j x], b j =
∞

∑
k=1

a jkû(−k)

where û(k) = u(exp[−iyk]) aretheFourier coefficientsof u andandconvergencein the
first part of (47) is in thespaceof ultradistributions.

We claim that we have

PROPOSITION 7. Let K be the kernel defined by (46). Then there is (x0,y0)
∈ T2 such that ((x0,y0),(0,1)) ∈WF(s)(K ). (Also seeRemark 13 below.)

ThusK definesa continuousoperator D (s)′(T)→ D (s)′(T), but wedo not have
WF(s)(K )∩{(x,y,0,η);x∈ T,y∈ T,η 6= 0}= /0.

To proveProposition 7, wefirst state

PROPOSITION 8. Consider w∈ D (s)′(T2) andsuppose that for some (x0,y0),
((x0,y0),(0,1)) /∈WF(s)(w). Then thereisε > 0 such that if χ∈ D (s)(R2) is supported
in an ε-neighborhood of (x0,y0), then |F (χw)(ξ,η)| ≤ exp[−ℓ(ξ,η)] for some sub-
linear function ℓ as in (7) when (ξ,η) is in a suitably small conic neighborhood of
(0,1).

The proof of this proposition is straightforward and is similar e.g., to the proof
of lemma1.7.3 in [14]. We omit details.

We can now prove Proposition 7. In fact, arguing by contradiction and using
the preceding proposition, we can find a partition of unity formed of functions χi ,
i = 1, . . . ,σ, in D (s)(T2) such that for some conic neighborhoodΓ of (0,1) in R2 and
some function ℓ as in (7) we have |F (χiK )(ξ,η)| ≤ exp[−ℓ(ξ,η)] for (ξ,η) ∈ Γ and
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i = 1, . . . ,σ. Sincea jk =∑σ
i=1F (χiK )( j,k) it would follow that |a jk| ≤ σexp[−ℓ( j,k)]

when ( j,k) ∈ Γ, which is false.

REMARK 12. We have argued on the torus but we can now also immediately
obtain from thisan exampleof a kernel K ′ defined onR×R which satisfies condition
b), but not thewavefront set relationWF(s)(K )∩{(x,y,0,η);x∈R,y∈R,η 6= 0}= /0.
To simpli fy notations, we first observe that after a translation onthe torus, it follows
from above that there are kernels which define linear continuous maps D (s)′(T)→
D (s)′(T), but with ((0,0),(0,1)) ∈ WF(s)(K ). Next, pick ψ ∈ D (s)(R2) which has
support in a small neighborhood of 0∈ R2 with ψ≡ 1 in a still smaller neighborhood
of 0. If K ∈ D ′(T2) is the one just introduced above, then K ′ = ψK has a natural
interpretation as a distribution onR2. SinceK gave rise to a linear continuous op-
erator D (s)′(T)→ D (s)′(T), K ′ defines in a natural way a linear continuous operator
D (s)′(R)→ D (s)′(R). It clearly doesnot satisfy thewave front set conditionwewould
like to have.

REMARK 13. With asmall extra effort, we canshow that actually ((0,0), (0,1))
∈WF(s)(K ), K theonedefined in (46). To provethisit isessential that the coefficients
a jk arepositive. We leave the details to the reader.

REMARK 14. The argumentsin thispaper can in principlebe extended to more
general classesof non-quasianalyticultradistributionsbut wehavenot tried to work out
such cases.
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Lp(R) BOUNDEDNESSAND COMPACTNESSOF

LOCALIZATION OPERATORSASSOCIATED WITH

THE STOCKWELL T RANSFORM

Dedicated to Professor Luigi Rodino ontheoccasion of his60th birthday

Abstract. In this article, we prove the boundednessand compactnessof localization opera-
tors associated with Stockwell t ransforms, which depend ona symbol and two windows, on
Lp(R), 1≤ p≤ ∞.

1. Introduction

1.1. The Stockwell transform

TheStockwell t ransform, which wasdefined in [13], isahybrid of theGabor transform
and the wavelet transform. For a signal f ∈ L2(R), the Stockwell t ransform Sϕ f with
respect to thewindow ϕ ∈ L1(R)∩L2(R) is given by

(1) Sϕ f (b,ξ) = (2π)−1/2|ξ|
∫ ∞

−∞
e−ixξ f (x)ϕ(ξ(x−b))dx, b∈R, ξ ∈ R.

Moreprecisely,
Sϕ f (b,ξ) = ( f ,ϕb,ξ),

where

(2) ϕb,ξ = (2π)−1/2|ξ|eixξϕ(ξ(x−b)),

or
ϕb,ξ = (2π)−1/2MξT−bDξϕ,

and ( , ) is the inner product in L2(R). Here, Mξ, T−b and Dξ are the modulation
operator, the translation operator and thedilation operator, defined by

(Mξh)(x) = eixξh(x),

(T−bh)(x) = h(x−b),

(Dξh)(x) = |ξ|h(ξx),

for all x∈ R andall measurable functionh onR.
∗This research has been supported by the Natural Sciences and Engineering Research Council of

Canada.
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A great amount of articles use the Stockwell t ransform to study applied prob-
lems, coveringareasasgeophysics, engineering or biomedicine(seethereferenceslist
in thepapers[9] and [14]). Somemathematical aspectsof such atransform arestudied
or expanded in thepapers [2, 8, 9, 10, 11, 14].

1.2. Reconstruction formula

In an attempt to reconstruct a signal f from its Stockwell spectrum {Sϕ f (b,ξ) : b,ξ ∈
R}, we havethe followingresult in [8].

THEOREM 1. Let ϕ ∈ L2(R) besuch that ‖ϕ‖L2(R) = 1 and

(3)
∫ ∞

−∞

|ϕ̂(ξ−1)|2
|ξ| dξ < ∞.

Then for all signals f and gin L2(R),

(4) ( f ,g)L2(R) =
1
cϕ

∫ ∞

−∞

∫ ∞

−∞
Sϕ f (b,ξ)Sϕg(b,ξ)

dbdξ
|ξ| ,

where

(5) cϕ =

∫ ∞

−∞

|ϕ̂(ξ−1)|2
|ξ| dξ,

and ˆ denotesthe Fourier transformdefined by

F̂(ζ) = (2π)−N/2
∫
RN

e−ix·ζF(x)dx

for all F in L1(RN).

REMARK 1. Theorem 1 is known as the Plancherel formula or the resolution
of the identity formula for theone-dimensional Stockwell t ransform. The integrabilit y
condition (3) is the admissibilit y condition for a function ϕ in L2(R) to be awindow.
An important corollary of Theorem 1 is that every signal f can be reconstructed from
its Stockwell spectrum by meansof the inversionformula

(6) f =
1
cϕ

∫ ∞

−∞

∫ ∞

−∞
( f ,ϕb,ξ)L2(R)ϕ

b,ξ dbdξ
|ξ| .

That the admissibilit y condition (3) is a necessary condition for the inversion formula
for the Stockwell t ransform can be seen by letting f = g = ϕ in (4). Details can be
foundin [7].
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1.3. Localization operators

Let ϕ,ψ be measurable functions onR, σ be measurable function onR2, then for all
functions f ∈ Lp(R), wedefine the localization operator Lσ,ϕ,ψ f , by

Lσ,ϕ,ψ f =

∫
R

∫
R

σ(b,ξ)(Sϕ f )(b,ξ)ψb,ξ dbdξ
|ξ|(7)

=
∫
R2

σ(b,ξ)( f ,ϕb,ξ)ψb,ξ dbdξ
|ξ| .

REMARK 2. The symbol can be understoodas a filter of the Stockwell spec-
trum. Formula (6) reconstructs the signal using the Stockwell spectrum {Sϕ f (b,ξ) :
b,ξ ∈ R} with respect to the window component ϕb,ξ. The localization operator using
the filtered Stockwell spectrum {σ(b,ξ)Sϕ f (b,ξ) : b,ξ ∈R} may bedefined by

Tσ,ϕ f = f =
1
cϕ

∫ ∞

−∞

∫ ∞

−∞
σ(b,ξ)( f ,ϕb,ξ)L2(R)ϕ

b,ξ dbdξ
|ξ| .

However, in order to allow some linearity properties with respect to the windows, we
consider the localization operator designed in the original way (7).

In accordancewith thedifferent choicesot thesymbolsσ(b,ξ) andthedifferent
continuitiesrequired, weneed to imposedifferent conditionsonϕ andψ. Andthen we
obtain an operator onLp(R).

In the paper [15] by Wong, the Lp-boundednessof localization operatorsasso-
ciated to left regular representations is studied for 1≤ p≤ ∞. Lp-boundednessand
Lp-compactnessof two-wavelet localization operators on the Weyl-Heisenberg group
can be foundin the papers [4] by Boggiatto and Wong, and [3] by Boggiatto, Oliaro
andWong. The aim of thispaper isto give another set of resultsontheLp-boundedness
andalso Lp-compactnessof the localization operatorsdefined by (7).

In Section 2, we prove that the localization operator associated with the Stock-
well t ransform, with symbols in L1(R) and windows ϕ ∈ Lp′(R) and ψ ∈ Lp(R) are
bounded linear operatorson Lp(R), 1≤ p≤ ∞. Herein, p′ is the conjugateof p, such
that

(8)
1
p
+

1
p′

= 1.

If thesymbolsarein Lr(R2), 1≤ r ≤ 2, andthe admissiblewindowsϕ,ψ arein L1(R)∩
L∞(R), then the localization operators are proved in Section 3 to be bounded linear
operators on Lp(R), r ≤ p≤ r ′. Section 4 deals with the compactnessfor symbols in
L1(R2). The last section treats the localization operatorsassociated to the generalized
Stockwell t ransform defined in [10] and [11]. Due to the close relation between the
Stockwell t ransform and generalizedStockwell t ransform, all our conclusionsobtained
in Section 2, Section 3andSection 4can be applied to these localization operators.
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2. Symbols in L1(Rn)

For 1≤ p≤ ∞, let σ ∈ L1(R2), ϕ ∈ Lp′(R) andψ ∈ Lp(R). We aregoing to show that
Lσ,ϕ,ψ is abounded linear operator onLp(R).

Let us start with the followingestimates:

PROPOSITION 1. For 1≤ p≤∞, let ψ∈ Lp(R) and f ∈ Lp′(R), where p′ is the
conjugateof p. Then

(9) ‖ψb,ξ‖p = (2π)−1/2|ξ|1/p′‖ψ‖p,

and

(10) |Sψ f (b,ξ)| ≤ (2π)−1/2|ξ|1/p′‖ψ‖p‖ f‖p′ .

Proof. For p= ∞, thefirst equality is trivial. For p 6= ∞, by Fubini’s theorem, wehave

‖ψb,ξ‖p =

{∫ ∣∣(2π)−1/2|ξ|eixξψ(ξ(x−b))
∣∣p dx

}1/p

= (2π)−1/2|ξ|
{∫
|ψ(ξ(x−b))|p dx

}1/p

= (2π)−1/2|ξ|1/p′‖ψ‖p.

ApplyingHölder’s inequality and (9), we have

|Sψ f (b,ξ)| = |( f ,ψbξ)| ≤ ‖ f‖p′‖ψb,ξ‖p = (2π)−1/2|ξ|1/p′‖ f‖p′‖ψ‖p.

In the following we denote with ‖ · ‖B(Lp(R)) the operator norm in the Banach
spaceB(Lp) of bounded linear operatorsonLp,1≤ p≤ ∞.

We start with the result about theboundednessof Lσ,ϕ,ψ onL1(R).

PROPOSITION 2. Let σ ∈ L1(R2) and ϕ ∈ L∞(R),ψ ∈ L1(R). Then Lσ,ϕ,ψ :
L1(R)→ L1(R) is a bounded linear operator and

‖Lσ,ϕ,ψ‖B(L1(R)) ≤
1
2π
‖σ‖1‖ϕ‖∞‖ψ‖1.
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Proof. For any f ∈ L1(R), by (7), (2), and(10), we have

‖Lσ,ϕ,ψ f‖1 =
∫ ∣∣∣

∫∫
σ(b,ξ)Sϕ f (b,ξ)ψb,ξ(x)

dbdξ
|ξ|

∣∣∣dx

≤
∫∫∫

|σ(b,ξ)|
(
(2π)−1/2|ξ|‖ f‖1‖ϕ‖∞

)(
(2π)−1/2|ξ||ψ(ξ(x−b))|

)
dbdξ
|ξ| dx

≤ 1
2π
‖ f‖1‖ϕ‖∞

∫∫∫
|σ(b,ξ)||ψ(ξ(x−b))||ξ|dbdξdx

=
1
2π
‖ f‖1‖ϕ‖∞

∫∫
|σ(b,ξ)|

(∫
|ξ||ψ(ξ(x−b))|dx

)
dbdξ

=
( 1

2π
‖ϕ‖∞‖σ‖1‖ψ‖1

)
‖ f‖1,

which completesour proof.

For p 6= 1, wehave the followingconclusionabout theboundednessof Lσ,ϕ,ψ.

PROPOSITION 3. Let σ ∈ L1(R2), ϕ ∈ Lp′(R) and ψ ∈ Lp(R). Then Lσ,ϕ,ψ :
Lp(R)→ Lp(R) is a bounded linear operator for 1≤ p< ∞ and

‖Lσ,ϕ,ψ‖B(Lp(R)) ≤
1
2π
‖σ‖1‖ϕ‖p′‖ψ‖p.

Proof. For any f ∈ Lp(R), consider the linear functional

Tf : Lp′(R)→ C, g 7→ (g,Lσ,ϕ,ψ f ).

By (7), we have

|(g,Lσ,ϕ,ψ f )| = |(Lσ,ϕ,ψ f ,g)|

=
∣∣∣
∫

σ(b,ξ)Sϕ f (b,ξ)Sψg(b,ξ)
dbdξ
|ξ|

∣∣∣

=

∫
|σ||Sϕ f (b,ξ)||Sψg(b,ξ)|dbdξ

|ξ| .

ApplyingProposition 1, we have

|(g,Lσ,ϕ,ψ f )|

≤
∫
|σ(b,ξ)|

(
(2π)−1/2|ξ|1/p‖ f‖p‖ϕ‖p′

)(
(2π)−1/2|ξ|1/p′‖g‖p′‖ψ‖p

)dbdξ
|ξ|

=

(
1
2π
‖σ(b,ξ)‖1‖ϕ‖p′‖ψ‖p‖ f‖p

)
‖g‖p′

which implies that Tf is a continuous linear functional on Lp′(R), and the operator
norm

‖Tf ‖B(Lp′ (R)) ≤
1
2π
‖σ‖1‖ϕ‖p′‖ψ‖p‖ f‖p.
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SinceTf g= (g,Lσ,ϕ,ψ f ), by theRiesz representationtheorem, wehave

‖Lσ,ϕ,ψ f‖p = ‖Tf ‖B(Lp′ (R) ≤
1
2π
‖σ‖1‖ϕ‖p′‖ψ‖p‖ f‖p,

which establishes the proposition.

To sum up the two propositionsabove, we havethe following theorem.

THEOREM 2. Let σ ∈ L1(R2), ϕ ∈ Lp′(R), ψ ∈ Lp(R). Then Lσ,ϕ,ψ : Lp(R)→
Lp(R) is bounded linear operator for 1≤ p≤ ∞ and

‖Lσ,ϕ,ψ‖B(Lp(R)) ≤
1
2π
‖σ‖1‖ϕ‖p′‖ψ‖p.

3. Symbols in Lr(R), 1≤ r ≤ 2

In this section, we study the localization operators Lσ,ϕ,ψ for symbols σ ∈ Lr(R),
1≤ r ≤ 2.

PROPOSITION 4. Let ψ and ϕ be admissible windows, ψ ∈ L2(R) and ϕ ∈
L2(R), σ ∈ L2(R2). Then Lσ,ϕ,ψ : L2(R)→ L2(R) is a bounded linear operator and

‖Lσ,ϕ,ψ‖B(L2(R)) ≤
(√

cϕcψ

2π
‖ϕ‖2‖ψ‖2

)1/2

‖σ‖2.

To provetheproposition, let us start with the followinglemma.

LEMM A 1. Let ψ and ϕ be admissible windows, ψ ∈ L2(R) and ϕ ∈ L2(R),
σ ∈ L∞(R2). Then Lσ,ϕ,ψ : L2(R)→ L2(R) is a bounded linear operator and

‖Lσ,ϕ,ψ‖B(L2(R)) ≤
√

cϕcψ ‖σ‖∞.

Proof. For any f , g∈ L2(R), by (7) andHölder’s inequality, we have

|(Lσ,ϕ,ψ f ,g)| =

∣∣∣∣
∫
R2

σ(b,ξ)Sϕ f (b,ξ)Sψg(b,ξ)
dbdξ
|ξ|

∣∣∣∣

≤ ‖σ‖∞

∫
R2
|Sϕ f (b,ξ)||Sψg(b,ξ)|dbdξ

|ξ|

≤ ‖σ‖∞

(∫
R2
|Sϕ f (b,ξ)|2 dbdξ

|ξ|

)1/2(∫
R2
|Sψg(b,ξ)|2dbdξ

|ξ|

)1/2

.

By Theorem 1, we have

|(Lσ,ϕ,ψ f ,g)| ≤ ‖σ‖∞(cϕ)
1/2(cψ)

1/2‖ f‖2‖g‖2
=
√

cϕcψ ‖σ‖∞‖ f‖2‖g‖2,

which completesthe proof.
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Proof of Proposition 4. For any fixed f ∈ L2(R), admissible windows ϕ, ψ ∈ L2(R),
we define alinear map from L1(R2)∩L∞(R2) to L2(R) by

T(σ) = Lσ,ϕ,ψ f .

From the above lemmawe have

(11) ‖T(σ)‖2 ≤
√

cϕcψ‖ f‖2‖σ‖∞,

and let p= 2 in Theorem 2, we have

(12) ‖T(σ)‖2≤
(

1
2π
‖ f‖2‖ϕ‖2‖ψ‖2

)
‖σ‖1.

Applying interpolationtheory, see[1] for instance, wehave

‖T(σ)‖2 ≤ (
√

cϕcψ‖ f‖2)1/2
(

1
2π
‖ f‖2‖ϕ‖2‖ψ‖2

)1/2

‖σ‖2

=

(√
cϕcψ

2π
‖ϕ‖2‖ψ‖2

)1/2

‖ f‖2‖σ‖2.

By thedefinition of T(σ), wehave

‖Lσ,ϕ,ψ f‖2 ≤
(√

cϕcψ

2π
‖ϕ‖2‖ψ‖2

)1/2

‖ f‖2‖σ‖2.

Thus theproof is complete.

THEOREM 3. Let ψ and ϕ be admissible windows, ψ ∈ L1(R)∩ L∞(R) and
ϕ ∈ L1(R)∩L∞(R). Let σ ∈ Lr(R2) ,1≤ r ≤ 2. Then there exists a unique bounded
linear operator Lσ,ϕ,ψ : Lp(R)→ Lp(R) for all p∈ [r, r ′] such that

(13) ‖Lσ,ϕ,ψ‖B(Lp(R)) ≤M1−θ
1 Mθ

2‖σ‖p,

where

M1 =
( 1

2π
‖ϕ‖∞‖ψ‖1

) 2
r −1(√cϕcψ

2π
‖ϕ‖2‖ψ‖2

) 1
r′ ,

M2 =
( 1

2π
‖ϕ‖1‖ψ‖∞

) 2
r −1(√cϕcψ

2π
‖ϕ‖2‖ψ‖2

) 1
r′ .

Proof. Let T be the bili near mapping from {L1(R2)∩L2(R2)}×{L1(R)∩L2(R)} to
L1(R)∩L2(R), defined by

T(σ, f ) = Lσ,ϕ,ψ f .(14)

By Proposition 2andPropostion 3.1, we have

‖T(σ, f )‖1 ≤
1
2π
‖ϕ‖∞‖ψ‖1‖σ‖1‖ f‖1,

‖T(σ, f )‖2 ≤
√

cϕcψ

2π
‖ϕ‖2‖ψ‖2‖σ‖2‖ f‖2.
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By themulti -linear interpolationtheory, seeSection 10.1 in [5] for reference, we get a
uniquebounded linear operator T(σ, f ) : Lr(R2)×Lr(R)→ Lr(R) such that

‖T(σ, f )‖r ≤M1‖σ‖r‖ f‖r ,(15)

where

M1 =
( 1

2π
‖ϕ‖∞‖ψ‖1

)1−α(√cϕcψ

2π
‖ϕ‖2‖ψ‖2

)α/2
,

with
1−α

1
+

α
2
=

1
r

or α = 2− 2
r
.

By thedefinition of T in (14), wehave

‖Lσ,ϕ,ψ‖B(Lr (R)) ≤
( 1

2π
‖ϕ‖∞‖ψ‖1

) 2
r −1(√cϕcψ

2π
‖ϕ‖2‖ψ‖2

) 1
r′ ‖σ‖r .(16)

Sincethe adjoint of Lσ,ϕ,ψ is Lσ,ψ,ϕ, so Lσ,ϕ,ψ is a bounded linear map onLr ′(R), with
its operator norm

‖Lσ,ϕ,ψ‖B(Lr′ (R)) = ‖Lσ,ψ,ϕ‖B(Lr (R))

≤
( 1

2π
‖ϕ‖1‖ψ‖∞

) 2
r −1(√cϕcψ

2π
‖ϕ‖2‖ψ‖2

) 1
r′ ‖σ‖r .(17)

Usingan interpolation of (16) and(17), we havethat, for any p∈ [r, r ′],

‖Lσ,ϕ,ψ‖B(Lp(R)) ≤M1−θ
1 Mθ

2‖σ‖p,

with
1−θ

r
+

θ
r ′

=
1
p

or θ =

(
1
r
− 1

p

)/(1
r
− 1

r ′

)
.

4. Compact operators

In this section, westudythe compactnessof thelocalization operatorsLσ,ϕ,ψ : Lp(R)→
Lp(R). We start with asimple case:

LEMM A 2. For 1≤ p < ∞, let ϕ ∈ Lp′(R), σ and ψ be compactly supported
andcontinuous. Then Lσ,ϕ,ψ : Lp(R)→ Lp(R) is compact.

Proof. To prove that Lσ,ϕ,ψ is compact, it is enoughto show that the image of any
bounded sequencehas a convergent subsequence. Let { f j}∞

j=1 be asequenceof func-
tions in Lp(R) such that

‖ f j‖p≤ 1, j = 1,2, . . . .

Because σ is compactly supported, we may assumethat

σ(b,ξ) = 0, for all (b,ξ) such that (|b|2+ |ξ|2)1/2 > M.
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From Proposition 1and the fact that ψ is continuous, we have

|ψb,ξ(x)| ≤ (2π)−1/2|ξ|‖ψ‖∞,

|(Sϕ f j )(b,ξ)| ≤ (2π)−1/2‖ f j‖p‖|ξ|1/p‖ϕ‖p′ ≤ (2π)−1/2|ξ|1/p‖ϕ‖p′ .

Therefore

|Lσ,ϕ,ψ f j(x)|

=

∣∣∣∣
∫∫

R2
σ(b,ξ)(Sϕ f j)(b,ξ)ψb,ξ(x)

dbdξ
|ξ|

∣∣∣∣

≤
∫∫

b∈R
|ξ|≤M

|σ(b,ξ)|((2π)−1/2|ξ|1/p‖ϕ‖p′)((2π)−1/2|ξ|‖ψ‖∞)
dbdξ
|ξ|

≤ 1
2π
‖ϕ‖p′‖ψ‖∞

∫∫
b∈R
|ξ|≤M

|σ(b,ξ)||ξ|1/pdbdξ

≤ 1
2π

M1/p‖ϕ‖p′‖ψ‖∞‖σ‖1,

for all j = 1,2, . . . . Thusthe sequence{Lσ,ϕ,ψ f j}∞
j=1 is uniformly bounded.

Let ε be any positive number. Sinceψ is compactly supported and continuous,
it is thereforeuniformly continuous. So there existsδ1 > 0, such that

|ψ(x)−ψ(y)| ≤ ε, for any |x− y|< δ1.

Let δ = min
{

δ1
1+M , ε

1+M

}
. Then for any |x− y|< δ, |ξ| ≤M,

|ψb,ξ(x)−ψb,ξ(y)|

= (2π)−1/2|ξ|
∣∣eixξψ(ξ(x−b))−eiyξψ(ξ(y−b))

∣∣

≤ (2π)−1/2|ξ|
(
|eixξ|

∣∣ψ(ξ(x−b))−ψ(ξ(y−b))
∣∣+
∣∣eixξ−eiyξ∣∣|ψ(ξ(y−b))|

)

≤ (2π)−1/2|ξ|(|ψ(ξ(x−b))−ψ(ξ(y−b))|+ |x−y||ξ|‖ψ‖∞)

≤ (2π)−1/2|ξ|(ε+ ‖ψ‖∞ε),

and thus for any x,y∈R such that |x− y|< δ,

|(Lσ,ϕ,ψ f j)(x)− (Lσ,ϕ,ψ f j)(y)|

≤ 1
cϕ,ψ

∫∫
b∈R
|ξ|≤M

|σ(b,ξ)||(Sϕ f j)(b,ξ)|
∣∣ψb,ξ(x)−ψb,ξ(y)

∣∣dbdξ
|ξ|

≤ 1
cϕ,ψ

∫∫
b∈R|
ξ|≤M

|σ(b,ξ)|
(
(2π)−1/2|ξ|1/p‖ϕ‖p′

)(
(2π)−1/2|ξ|(ε+ ‖ψ‖∞ε)

)
dbdξ
|ξ|

≤ 1
2πcϕ,ψ

‖σ‖1‖ϕ‖p′M
1/p(1+ ‖ψ‖∞)ε.
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So {Lσ,ϕ,ψ f j}∞
j=1 is equicontinuous on R. Therefore for every compact subset K of

R, the Ascoli–Arzelà theorem ensures that {Lσ,ϕ,ψ f j}∞
j=1 has a subsequencethat con-

verges uniformly on K. Thus by the Cantor diagonal procedure, we can find a subse-
quence{Lσ,ϕ,ψ f jk}∞

k=1 converging pointwise to a functiong onR. By (7) and (2), and
the inequality (10), we have

|(Lσ,ϕ,ψ f j)(x)|p ≤ ((2π)−1‖ϕ‖p′)
p
(∫∫

|σ(b,ξ)||ξ|1/p|ψ(ξ(x−b))| dbdξ
)p

.

Denote the function onthe left hand side of the above inequality by h. By Hölder’s
inequality, wehave
∫
|h(x)|dx

= C
∫ (∫∫

|σ(b,ξ)||ξ|1/p|ψ(ξ(x−b))| dbdξ
)p

dx

= C
∫ ( ∫∫

|b|2+|ξ|2≤M2

|σ(b,ξ)||ξ|1/p|ψ(ξ(x−b))| dbdξ
)p

dx

≤ C
∫ (∫∫ (

|σ(b,ξ)||ξ|1/p|ψ(ξ(x−b))|
)p

dbdξ
)
·
( ∫∫

|b|2+|ξ|2≤M2

1p′ dbdξ
)p/p′

dx

= C(2πM2)p/p′(‖σ(b,ξ)‖p‖ψ‖p)
p < ∞,

where C is the constant ((2π)−1‖ϕ‖p′)
p. So by Lebesgue’s dominated convergence

theorem, the sequence {|Lσ,ϕ,ψ f jk |p}∞
k=1 converges to |g|p in L1(R) as k→ ∞. And

thus,
|Lσ,ϕ,ψ f jk(x)−g(x)|p≤ 2p(|Lσ,ϕ,ψ f jk(x)|p+ |g(x)|p)≤ 2p+1h(x),

and |Lσ,ϕ,ψ f jk − g|p converges to 0 pointwise, so by the Lebesgue’s dominated con-
vergencetheorem,

∫ |Lσ,ϕ,ψ f jk(x)−g(x)|pdx convergesto 0. Thus{Lσ,ϕ,ψ f jk}∞
k=1 con-

vergesto g in Lp(R). ThereforeLσ,ϕ,ψ is compact.

PROPOSITION 5. For 1≤ p < ∞, let σ ∈ L1(R2) andψ ∈ Lp(R),ϕ ∈ Lp′(R).
Then Lσ,ϕ,ψ : Lp(R)→ Lp(R) is compact.

Proof. For any σ,τ ∈ L1(R2), ϕ ∈ Lp′(R) andψ,φ ∈ Lp(R), by (7) andTheorem 2, we
have

‖Lσ,ϕ,ψ−Lτ,ϕ,ψ‖B(Lp(R)) = ‖Lσ−τ,ϕ,ψ‖B(Lp(R))

≤ (2π)−1‖σ− τ‖1|‖ϕ‖p′‖ψ‖p,

and

‖Lσ,ϕ,ψ−Lσ,ϕ,φ‖B(Lp(R)) = ‖Lσ,ϕ,ψ−φ‖B(Lp(R))

≤ (2π)−1‖σ‖1|‖ϕ‖p′‖ψ−φ‖p.
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By the above lemma, and the fact that C0(R2) is dense in L1(R2), andC0(R) is dense
in Lp(R) for 1≤ p < ∞, and the fact that the set of compact operators is closed in
B(Lp(R)), theproposition holds.

THEOREM 4. Under thesamehypothesesonσ,ϕ,ψ asTheorem2, thebounded
linear operator Lσ,ϕ,ψ : Lp(R)→ Lp(R) is compact for 1≤ p≤ ∞.

Proof. From thepreviousproposition, weonly need to show that the conclusion holds
for p = ∞. In fact, the operator Lσ,ϕ,ψ : L∞(R)→ L∞(R) is the adjoint of the opera-
tor Lσ̄,ψ̄,ϕ̄ : L1(R)→ L1(R), which is compact by Proposition 5. Thus by the duality
property, Lσ,ϕ,ψ : L∞(R)→ L∞(R) is compact.

5. Localization operatorsassociated with themodified Stockwell transform

In thepapers [10, 11], themodified Stockwell t ransform isdefined by

(Ss
ϕ f )(b,ξ) = (2π)−1

∫
f (x) e−ixξ|ξ|1/sϕ(ξ(x−b))dx

= ( f ,ϕb,ξ
s ),(18)

where
ϕb,ξ

s (x) = eixξ|ξ|1/sϕ(ξ(x−b)) = |ξ|1/s−1ϕb,ξ(b,ξ)(x).

The connection between themodified Stockwell t ransform andStockwell t ransform is

Ss
ϕ f = |ξ|1/s−1Sϕ f (b,ξ).

Andso thelocalization operatorsassociated with themodified Stockwell t ransformcan
be expressed by

Ls
σ,ϕ,ψ f =

∫
R

∫
R

σ(b,ξ)(Ss
ϕ f )(b,ξ)ϕb,ξ

s
dbdξ
|ξ|(2/s)−1

=

∫∫
R2

σ(b,ξ)(|ξ|1/s−1Sϕ f (b,ξ)(|ξ|1/s−1ϕb,ξ)
dbdξ
|ξ|(2/s)−1

=

∫∫
σ(b,ξ)Sϕ f (b,ξ)ψb,ξ dbdξ

|ξ|
= Lσ,ϕ,ψ f .

So our results in this paper can be extended to the localization operators associated
with themodified Stockwell t ransform.
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S. Molahaj loo and M.W. Wong∗

SQUARE-INTEGRABLE GROUP REPRESENTATIONS AND

LOCALIZATION OPERATORSFOR

MODIFIED STOCKWELL T RANSFORMS

Dedicated to Professor Luigi Rodino ontheoccasion of his60th birthday

Abstract. Recently discovered square-integrable group representations are used to study
localization operators for the modified Stockwell t ransforms. The Schatten–von Neumann
properties of these localization operators are established in this paper, and for trace class
localization operators, the traces and the trace classnorm inequaliti es are presented.

1. Introduction

Let ϕ ∈ L1(R)∩L2(R). Then asahybrid of theGabor transform andthewavelet trans-
form, the Stockwell t ransform Sϕ f of a signal f in L2(R) with respect to the window
ϕ is defined by

(Sϕ f )(b,ξ) = (2π)−1/2|ξ|
∫ ∞

−∞
e−ixξ f (x)ϕ(ξ(x−b))dx

for all b in R and ξ in R \ {0}. Alternatively, we can write for all f in L2(R), b in R
and ξ inR\ {0},

(Sϕ f )(b,ξ) = ( f ,ϕb,ξ)L2(R),

where
ϕb,ξ = (2π)−1/2MξT−bD1

ξϕ,

the modulation operator Mξ, the translation operator T−b and the dilation operator D1
ξ

aredefined by
(Mξh)(x) = eixξh(x),

(T−bh)(x) = h(x−b),

(D1
ξh)(x) = |ξ|h(ξx),

for all x inR andall measurable functionsh onR.

TheStockwell t ransform isa versatile tool first introduced in [11]. More recent
results on the Stockwell t ransform in the contexts of applications can be foundin [6,
10]. The mathematical underpinningsof Stockwell t ransforms are developed in [4, 5,
7, 8, 9, 13].

∗This research has been supported by the Natural Sciences and Engineering Research Council of
Canada.
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Prompted by applications in time-frequency analysis, the Stockwell t ransform
Sϕ has been extended in [6, 7] to a family {Ss

ϕ : 0 < s≤ ∞} of modified Stockwell
transforms, which include the classical Stockwell t ransform when s= 1 and a variant
of the wavelet transform when s= 2. To wit, for all functions in L2(R), the modified
Stockwell t ransform Ss

ϕ f of f for 0< s≤ ∞ is defined by

(Ss
ϕ f )(b,ξ) = ( f ,ϕb,ξ

s )L2(R), b∈ R,ξ ∈ R\ {0},

where
ϕb,ξ

s = (2π)−1/2MξT−bDs
ξϕ,

and for all t in (0,∞] thedilation operator Dt
ξ is defined by

(Dt
ξh)(x) = |ξ|1/th(ξx)

for all x inR andall measurable functionsh onR. More explicitly,

(Ss
ϕ f )(b,ξ) = (2π)−1/2|ξ|1/s

∫ ∞

−∞
e−ixξ f (x)ϕ(ξ(x−b))dx

for all b inR andξ inR\{0}.For a comparisonwith the classical Stockwell t ransform,
we note that

(1) (Ss
ϕ f )(b,ξ) = |ξ|−1/s′(Sϕ f )(b,ξ), b∈ R,ξ ∈ R\ {0},

where s′ is the conjugate index of sgiven by 1/s+1/s′ = 1. An important property of
the modified Stockwell t ransform is the followingresolution of the identity formula in
[6, 7].

THEOREM 1. Let ϕ ∈ L1(R)∩L2(R) besuch that
∫ ∞

−∞
ϕ(x)dx= 1

and ∫ ∞

−∞

|ϕ̂(ξ−1)|2
|ξ| dξ < ∞,

where ϕ̂ is theFourier transformof ϕ defined by

ϕ̂(ξ) = (2π)−1/2
∫ ∞

−∞
e−ixξ ϕ(x)dx, ξ ∈ R.

Then for all f and gin L2(R), we get for 0< s≤ ∞,

( f ,g)L2(R) =
1
cϕ

∫ ∞

−∞
(Ss

ϕ f )(b,ξ)(Ss
ϕg)(b,ξ)

dbdξ
|ξ|1−(2/s′) ,

where

cϕ =

∫ ∞

−∞

|ϕ̂(ξ−1)|2
|ξ| dξ.
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Based on the resolution of the identity formula in Theorem 1, localization op-
erators can be introduced and their Schatten–von Neumann properties investigated.
Results in thisdirectionare announced in [8].

The aim of this paper is to use square-integrable group representations found
by Boggiatto, Fernández and Galbis [4] to construct localization operators. These lo-
calization operators turn out to be the same as the localization operators based onthe
resolution of the identity formulas for the modified Stockwell t ransforms. From this
fact follow theSchatten–vonNeumann properties, atraceformula andtrace classnorm
inequaliti es for the localization operators defined using the resolution of the identity
formulasfor theStockwell t ransforms.

In Section 2, we give abrief recapitulation of Schatten–vonNeumann classes
andlocalization operatorscorrespondingto square-integrablerepresentationsof locally
compact and Hausdorff groups. Square-integrablegrouprepresentations suggested by
the one in [4] aresummarized in Section 3. In Section 4, localization operatorsarising
from these square-integrable representations are introduced. They are shown to coin-
cidewith localization operatorsdefined usingtheresolution of theidentity formulasfor
themodified Stockwell t ransforms. TheSchatten–vonNeumann propertiesof theselo-
calization operatorsare established, and the tracesof trace classlocalization operators
are computed. Wegive in Section 5the trace classnorm inequaliti es for the trace class
localization operators studied in Section 4 and give an explicit formula for the func-
tion that occurs in the lower boundfor the tracenorm of such a trace classlocalization
operator.

2. Schatten–von Neumann classesand localization operators

Let X be an infinite-dimensional, complex and separable Hilbert spacein which the
inner product and norm aredenoted, respectively, by (·, ·) and‖ ·‖. Let A : X→ X be a
compact operator. Then theoperator |A| : X→ X defined by

|A|=
√

A∗A

is positive andcompact. So, using thespectral theorem, there exists for X an orthonor-
mal basis {ϕk : k = 1,2, . . .} consisting of eigenvectorsof |A|. For k = 1,2, . . . , let sk

be the eigenvalueof |A| : X→ X correspondingto the eigenvector ϕk. We say that the
compact operator A : X→ X is in theSchatten–vonNeumannclassSp, 1≤ p< ∞, if

∞

∑
k=1

sp
k < ∞.

If a compact operator A : X→ X is in Sp, 1≤ p< ∞, then wedefinethenorm ‖A‖Sp of
A by

‖A‖Sp =

{
∞

∑
k=1

sp
k

}1/p

.
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By convention, the Schatten–von Neumann class S∞ is taken to be simply the C∗-
algebraB(X) of all bounded linear operatorsonX and thenorm ‖ · ‖S∞ in S∞ is simply
the norm in B(X).

Of particular interest is the Schatten–von Neumann class S1, which is also
known as the trace class. If a compact operator A : X → X is in the trace classS1,
then we can definethe tracetr(A) of A by

tr(A) =
∞

∑
k=1

(Aϕk,ϕk),

where{ϕk : k= 1,2, . . .} is any orthonormal basis for X.

Let G be alocally compact andHausdorff group onwhich theleft Haar measure
is denoted by dµ. Let U(X) be the group of all unitary operators on X and let π :
G→U(X) be an irreducible and unitary representation of G on X. Suppose that the
representationπ is square-integrablein thesensethat there existsanonzero vector ϕ in
X such that

(2)
∫

G
|(ϕ,π(g)ϕ)|2dµ(g)< ∞.

The condition (2) is known as the admissibilit y condition for the square-integrable
representation of G onX. We call any vector ϕ for which ‖ϕ‖= 1 andthe admissibilit y
condition(2) is fulfilled an admissiblewavelet for thesquare-integrablerepresentation
of G onX. For any admissiblewavelet ϕ, wedefine the constant cϕ by

cϕ =

∫
G
|(ϕ,π(g)ϕ)|2dµ(g).

We need the followingresult, which isTheorem 14.5 in [12].

THEOREM 2. Let ϕ bean admissiblewavelet for a square-integrablerepresen-
tationπ : G→U(X) of G onX. Let F ∈ Lp(G), 1≤ p≤∞. For every x in X, wedefine
LF,ϕx in X by

(LF,ϕx,y) =
1
cϕ

∫
G

F(g)(x,π(g)ϕ)(π(g)ϕ,y)dµ(g)

for all y in X. Then LF,ϕ : X→ X is in theSchatten–vonNeumannclassSp and

‖LF,ϕ‖Sp ≤ c−1/p
ϕ ‖F‖Lp(G).

REMARK 1. Thelinear operator LF,ϕ : X→X iscalled thelocalization operator
for the transform X ∋ x 7→ (x,π(·)ϕ) ∈ L2(G).

Thefollowing traceformula isgiven in Theorem 13.6 in [12].

THEOREM 3. Let ϕ bean admissiblewavelet for a square-integrablerepresen-
tation π : G→U(X) of G on X. Let F ∈ L1(G). Then the trace tr(LF,ϕ) of the trace
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classlocalization operator LF,ϕ : X→ X isgiven by

tr(LF,ϕ) =
1
cϕ

∫
G

F(g)dµ(g).

A lower boundfor the norm ‖LF,ϕ‖S1 of the trace class localization operator
LF,ϕ : X→ X can begiven in termsof the functionFϕ onG defined by

Fϕ(g) = (LF,ϕπ(g)ϕ,π(g)ϕ), g∈G.

Indeed, wehave the followingresult, which isTheorem 14.1 in [12].

THEOREM 4. Let ϕ bean admissiblewavelet for a square-integrablerepresen-
tation π : G→U(X) of G onX. Let F ∈ L1(G). Then

1
cϕ
‖Fϕ‖L1(G) ≤ ‖LF,ϕ‖S1 ≤

1
cϕ
‖F‖L1(G).

The function Fϕ is the expectation value of the observable LF,ϕ : X→ X in the
coherent states π(g)ϕ, g∈G. Informationabout coherent states and related topicscan
be foundin [1, 2, 3].

3. Square-integrable representations

Let G be the set R× (R\ {0})×S1, whereS1 is the unit circle centered at the origin.
If we identify S1 with the interval [−π,π], thenG becomesa groupwith respect to the
multiplication · given by

(b1,ξ1,θ1) · (b2,ξ2,θ2) =

(
b1+

b2

ξ1
,ξ1ξ2,θ1+θ2+b1ξ1(1− ξ2)

)

for all (b1,ξ1,θ1) and (b2,ξ2,θ2) inG. In fact, G isaLiegroup onwhich the left Haar
measure is just the Lebesguemeasure. For future reference, let us note that (0,1,0) is
the identity element inG and

(b,ξ,θ)−1 = (−bξ,1/ξ,−θ+b(1− ξ))

for all (b,ξ,θ) inG. For α ∈ (−∞,1), we let Hα be the set defined by

Hα =

{
f ∈ S ′(R) :

∫ ∞

−∞
| f̂ (u)|2|u|αdu< ∞

}
.

Then Hα becomes a Hilbert spacein which the inner product (·, ·)Hα and the norm
‖ · ‖Hα aregiven by

( f ,g)Hα =

∫ ∞

−∞
f̂ (u)ĝ(u)|u|αdu
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and
‖ f‖2Hα =

∫ ∞

−∞
| f̂ (u)|2|u|αdu

for all f andg in Hα. We assumethroughout thispaper that α ∈ (−∞,1).

Let U(Hα) be the group of all unitary operators on Hα. Then we define the
mappingρα : G→U(Hα) by

(3) ρα(b,ξ,θ) f = ei(θ+bξ)|ξ|−(α+1)/2πb,ξ f

for all (b,ξ,θ) inG andall f in Hα, where

(πb,ξ f )(x) = |ξ| f (ξ(x−b)), x∈ R.

THEOREM 5. ρα : G→U(Hα) is an irreducible and unitary representation of
G onHα.

In fact, the following theorem tells us much more about the representation ρα :
G→U(Hα).

THEOREM 6. The representation ρα : G→ U(Hα) of the groupG on Hα is
square-integrable.

THEOREM 7. Let ϕ ∈ H−α,1∩H−α−1,1, where

Hβ,1 =

{
f ∈ S ′ :

∫ ∞

−∞
| f̂ (u)|2|u+1|βdu< ∞

}
, β ∈ (−∞,1).

Let ψ be the function onR defined by

ψ(t) = (2π)−1/2
∫ ∞

−∞
eitw|w|−αϕ̂(w−1)dw, t ∈ R.

Then for all f i n Hα, themodified Stockwell t ransformSs
ϕ f of f for 0< s≤∞, is given

by

( f ,ρα(b,ξ,θ)ψ)Hα = (2π)1/2e−iθ|ξ|(α+1)/2−(1/s)(Ss
ϕ f )(b,ξ), (b,ξ,θ) ∈G.

REMARK 2. In fact,

ψ = F −1(| • |−αϕ̂(•−1)),

whereF −1 denotes the inverseFourier transform.

THEOREM 8. Let f and g bein Hα. Then for 0< s≤∞ andfor all ϕ∈H−α−1,1,

∫ ∞

−∞

∫ ∞

−∞
(Ss

ϕ f )(b,ξ)(Ss
ϕg)(b,ξ)

dbdξ
|ξ|(2/s)−(α+1)

= ‖ϕ‖2H−α−1,1
( f ,g)Hα .

Theorem 8 can be seen as another set of resolution of the identity formulas for
the modified Stockwell t ransforms Ss

ϕ, 0< s≤ ∞, and is the basis for the localization
operators studied in the followingsection.
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4. Localization operators for modified Stockwell transforms

Let ϕ be anonzero function in H−α,1∩H−α−1,1 and let ψ be the function onR defined
by

(4) ψ(t) = (2π)−1/2
∫ ∞

−∞
eitw|w|−αϕ̂(w−1)dw, t ∈ R.

Without lossof generality, we can chooseϕ in such away that

(5) ‖ψ‖Hα = 1.

Let F ∈ Lp(G), 1≤ p≤ ∞. Then for all f in Hα, we define L̃F,ψ f by

(L̃F,ψ f ,g)Hα

=
1
cψ

∫ π

−π

∫ ∞

−∞

∫ ∞

−∞
F(b,ξ,θ)( f ,ρα(b,ξ,θ)ψ)Hα(ρα(b,ξ,θ)ψ,g)Hα dbdξdθ

for all g in Hα, where

cψ =

∫ π

−π

∫ ∞

−∞

∫ ∞

−∞
|(ψ,ρα(b,ξ,θ)ψ)Hα |2dbdξdθ.

LEMM A 1. Let ϕ andψ beas in (4) and(5). Then

cψ = 4π2‖ϕ‖2H−α−1,1
.

Proof. We note that
∫ π

−π

∫ ∞

−∞

∫ ∞

−∞
|(ψ,ρα(b,ξ,θ)ψ)Hα |2dbdξdθ

=

∫ π

−π

∫ ∞

−∞

∫ ∞

−∞
|(ψ,ei(θ+bξ)|ξ|−(α+1)/2πb,ξψ)Hα |2dbdξdθ

=

∫ π

−π

∫ ∞

−∞

∫ ∞

−∞
|(ψ, |ξ|−(α+1)/2πb,ξψ)Hα |2dbdξdθ.

By Theorem 7,

(ψ,eibξπb,ξψ)Hα = (2π)1/2|ξ|α(Sϕψ)(b,ξ), b∈ R, ξ ∈ R\ {0},
and hence

(ψ,πb,ξψ)Hα = (2π)1/2eibξ|ξ|α(Sϕψ)(b,ξ), b∈ R, ξ ∈ R\ {0}.
So, ∫ π

−π

∫ ∞

−∞

∫ ∞

−∞
|(ψ,ρα(b,ξ,θ)ψ)Hα |2dbdξdθ

= 4π2
∫ ∞

−∞

∫ ∞

−∞
|(Sϕψ)(b,ξ)|2 dbdξ

|ξ|1−α = 4π2‖ϕ‖2H−α−1,1
‖ψ‖2Hα .

Since‖ψ‖Hα = 1, the lemmais proved.
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Now, by Theorem 2, we can conclude that L̃F,ψ : Hα→ Hα is in the Schatten–
vonNeumannclassSp. This fact can beused to provethe followingresult.

THEOREM 9. Let ϕ be as given in (4) and (5), F ∈ Lp(R×R), 1≤ p≤ ∞. If
for 0< s≤ ∞, we defineLs

F,ϕ f for all f i n Hα by

(Ls
F,ϕ f ,g)Hα

=
1

‖ϕ‖2H−α−1,1

∫ ∞

−∞

∫ ∞

−∞
F(b,ξ)(Ss

ϕ f )(b,ξ)(Ss
ϕg)(b,ξ)

dbdξ
|ξ|(2/s)−(α+1)

for all g in Hα, then Ls
F,ϕ : Hα→ Hα is in the Schatten–vonNeumannclassSp. More-

over,
‖Ls

F,ϕ‖Sp ≤ (2π‖ϕ‖2H−α−1,1
)−1/p‖F‖Lp(R×R).

Proof. If we definethe function F̃ onG by

F̃(b,ξ,θ) = F(b,ξ), (b,ξ,θ) ∈G,

then F̃ ∈ Lp(G). But for all f andg in Hα, weget by (3)

(L̃F̃ ,ψ f ,g)Hα

=
1
cψ

∫ π

−π

∫ ∞

−∞

∫ ∞

−∞
F̃(b,ξ,θ)( f ,ρα(b,ξ,θ)ψ)Hα(ρα(b,ξ,θ)ψ,g)Hα dbdξdθ(6)

=
2π
cψ

∫ ∞

−∞

∫ ∞

−∞
F(b,ξ)( f ,πb,ξψ)Hα(πb,ξψ,g)Hα |ξ|−(α+1)dbdξ.

By (1), (3) andTheorem 7, we have

(7) ( f ,πb,ξψ)Hα = (2π)1/2e−ibξ|ξ|α+1−(1/s)(Ss
ϕ f )(b,ξ)

and

(8) (πb,ξψ,g)Hα = (2π)1/2eibξ|ξ|α+1−(1/s)(Ss
ϕg)(b,ξ)

for all b in R and ξ in R \ {0}. Putting (7) and (8) in (6) and using Lemma 1, we get
for all f andg in Hα,

(L̃F̃ ,ψ f ,g)Hα

=
4π2

cψ

∫ ∞

−∞

∫ ∞

−∞
F(b,ξ)(Ss

ϕ f )(b,ξ)(Ss
ϕg)(b,ξ)

dbdξ
|ξ|(2/s)−(α+1)

(9)

= (Ls
F,ϕ f ,g)Hα .

So, Ls
F,ϕ : Hα → Hα is the same as L̃F̃ ,ϕ : Hα → Hα and is hence in the Schatten–von

NeumannclassSp. Finally, using the inequality in Theorem 2 andLemma1, weget

‖Ls
F,ϕ‖Sp = ‖L̃F̃,ψ‖Sp ≤

1
cψ
‖F̃‖Lp(G) = (2π‖ϕ‖2H−α−1,1

)−1/p‖F‖Lp(R×R).
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REMARK 3. It is important to bring out the fact that by (9), the localization
operators Ls

F,ϕ are all equal to L̃F̃,ψ for all s in (0,∞]. This fact can also be seen from
the formula(1). Notwithstanding thevariety of Hilbert spacesHα offered byTheorem
9, it is to benoted, however, that in view of applicationsto signal analysisandimaging,
the Hilbert spaceH0, i.e., L2(R), ismost commonly used.

A formula for tracesof localization operators for the modified Stockwell t rans-
forms isgiven in the following theorem.

THEOREM 10. Let ϕ be as given in (4) and (5). Then for all functions F
in L1(R×R), the trace tr(Ls

F,ϕ) of the trace classlocalization operator Ls
F,ϕ : Hα →

Hα, 0< s≤ ∞, is given by

tr(Ls
F,ϕ) =

1

2π‖ϕ‖2H−α−1,1

∫ ∞

−∞

∫ ∞

−∞
F(b,ξ)dbdξ.

Proof. By Theorem 3, Lemma1 and(9), weget

tr(Ls
F,ϕ) = tr(L̃F̃ ,ψ)

=
1
cψ

∫ π

−π

∫ ∞

−∞

∫ ∞

−∞
F̃(b,ξ,θ)dbdξdθ

=
1

2π‖ϕ‖2H−α−1,1

∫ ∞

−∞

∫ ∞

−∞
F(b,ξ)dbdξ,

as required.

5. Trace classnorm inequali ties

We give in this sectiona result on the trace classnorm inequaliti es for the localization
operatorsLs

F,ϕ : Hα→Hα, 0< s≤ ∞.

THEOREM 11. Let ϕ be as given in (4) and (5). Then for all functions F in
L1(R×R), we get for 0< s≤ ∞

1

2π‖ϕ‖2H−α−1,1

‖Fϕ‖L1(R×R) ≤ ‖Ls
F,ϕ‖S1 ≤

1

2π‖ϕ‖2H−α−1,1

‖F‖L1(R×R),

where

Fϕ(b,ξ) =
∫ ∞

−∞

∫ ∞

−∞
F(b′,ξ′)

∣∣∣∣
(

ϕ,Tξ(b−b′)M(ξ′/ξ)−1D2/(α+1)
ξ′/ξ ϕ

)
H−α,1

∣∣∣∣
2

db′dξ′

for all b inR andξ inR\ {0}.

To proveTheorem 11, wenotethat by Theorem 9, weonly need to establish the
lower boundfor ‖Ls

F,ϕ‖S1. To that end, let us recall that by Remark 3,

Ls
F,ϕ = L̃F̃ ,ψ,
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whereψ is given in (4) and

F̃(b,ξ,θ) = F(b,ξ), (b,ξ,θ) ∈G.

So, by Theorem 4,
1
cψ
‖F̃ψ‖L1(G) ≤ ‖Ls

F,ϕ‖S1.

By Lemma1, Theorem 11 isproved if we show that

‖F̃ψ‖L1(G) = 2π‖Fϕ‖L1(R×R),

where

F̃ψ(b,ξ,θ) =
(

L̃F̃ ,ψρα(b,ξ,θ)ψ,ρα(b,ξ,θ)ψ
)

Hα
, (b,ξ,θ) ∈G.

This followsfrom thenext formula.

THEOREM 12. Under thehypothesesof Theorem11,

F̃ψ(b,ξ,θ)

=
2π
cψ

∫ ∞

−∞

∫ ∞

−∞
F(b′,ξ′)

∣∣∣∣
(

ϕ,Tξ(b−b′)M(ξ′/ξ)−1D2/(α+1)
ξ′/ξ ϕ

)
H−α,1

∣∣∣∣
2

db′dξ′.

We give two proofs of Theorem 12. The first proof is based on the explicit
Fourier transform of ρα(b,ξ,θ)ψ for all (b,ξ,θ) inG and thesecond one, in which the
same Fourier transform is still a key ingredient, explicates the use of the underlying
groupstructure.

First proof of Theorem12. Thestarting point is the formula

(10) (ρα(b,ξ,θ)ψ)∧(u) = ei(θ+bξ)|ξ|(α−1)/2e−ibuϕ̂
(

u
ξ
−1

)
|u|−α, u∈ R,

for all (b,ξ,θ) inG. So

∣∣∣
(
ρα(b,ξ,θ)ψ,ρα(b

′,ξ′,θ′)ψ
)

Hα

∣∣∣

=

∣∣∣∣
∫ ∞

−∞
(ρα(b,ξ,θ)ψ)∧(u)(ρα(b′,ξ′,θ′)ψ)∧(u)|u|αdu

∣∣∣∣

= |ξξ′|(α−1)/2

∣∣∣∣∣

∫ ∞

−∞
ϕ̂
(

u
ξ
−1

)
ϕ̂
(

u
ξ′
−1

)
e−i(b−b′)u|u|−αdu

∣∣∣∣∣
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= |ξξ′|(α−1)/2

∣∣∣∣∣

∫ ∞

−∞
ϕ̂(v)ϕ̂

(
ξ(v+1)− ξ′

ξ′

)
e−i(b−b′)ξv|v+1|−α|ξ|1−αdv

∣∣∣∣∣

=

∣∣∣∣
ξ′

ξ

∣∣∣∣
(α−1)/2

∣∣∣∣∣

∫ ∞

−∞
ϕ̂(u)ei(b−b′)ξvϕ̂

(
v+1− (ξ′/ξ)

ξ′/ξ

)
|v+1|−αdv

∣∣∣∣∣

=

∣∣∣∣
ξ′

ξ

∣∣∣∣
(α−1)/2 ∣∣∣∣

∫ ∞

−∞
ϕ̂(u)

∣∣∣∣
ξ′

ξ

∣∣∣∣(T(b−b′)ξM(ξ′/ξ)−1Dξ′/ξϕ)∧(v)|v+1|−αdv

∣∣∣∣

=

∣∣∣∣
∫ ∞

−∞
ϕ̂(v)(T(b−b′)ξM(ξ′/ξ)−1D2/(α+1)

ξ′/ξ ϕ)∧(v)|v+1|−αdv

∣∣∣∣

=

∣∣∣∣
(

ϕ,T(b−b′)ξM(ξ′/ξ)−1D2/(α+1)
ξ′/ξ ϕ

)
H−α,1

∣∣∣∣

for all (b,ξ,θ) inG. Hence

F̃ψ(b,ξ,θ)

=
1
cψ

∫ π

−π

∫ ∞

−∞

∫ ∞

−∞
F(b′,ξ′)|(ρα(b,ξ,θ)ψ,ρα(b

′,ξ′,θ′)ψ)Hα |2db′dξ′dθ′

=
2π
cψ

∫ ∞

−∞

∫ ∞

−∞
F(b′,ξ′)

∣∣∣∣
(

ϕ,Tξ(b−b′)M(ξ′/ξ)−1D2/(α+1)
ξ′/ξ ϕ

)
H−α,1

∣∣∣∣
2

db′dξ′

for all (b,ξ,θ) inG, asclaimed.

Second proof of Theorem12. Since ρα : G→U(Hα) is a unitary representation of G
onHα, it followsthat

(
ρα(b,ξ,θ)ψ,ρα(b

′,ξ′,θ′)ψ
)

Hα

= (ψ,ρα((b,ξ,θ)−1 · (b′,ξ′,θ′))ψ)Hα

= (ψ,ρα(ξ(b′−b),ξ′/ξ,(θ′−θ+b(ξ′− ξ))ψ)Hα .

To simpli fy notation, we let b̃= ξ(b′−b), ξ̃ = ξ′/ξ and θ̃ = (θ′−θ)+b(ξ′−ξ). Then
by (10),

(
ρα(b,ξ,θ)ψ,ρα(b

′,ξ′,θ′)ψ
)

Hα

=
(

ψ,ρα(b̃, ξ̃, θ̃)ψ
)

Hα

=

∫ ∞

−∞
ψ̂(u)(ρα(b̃, ξ̃, θ̃)ψ)∧(u)|u|αdu

=
∫ ∞

−∞
|u|−αϕ̂(u−1)e−i(θ̃+b̃ξ̃)eib̃u|ξ̃|(α−1)/2ϕ̂

(
u

ξ̃
−1

)
|u|−α|u|αdu
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= e−i(θ̃+b̃ξ̃)|ξ̃|(α−1)/2
∫ ∞

−∞
ϕ̂(u−1)eib̃uϕ̂

(
u

ξ̃
−1

)
|u|−αdu

= eib̃e−i(θ̃+b̃ξ̃)|ξ̃|(α−1)/2
∫ ∞

−∞
ϕ̂(v)eib̃vϕ̂

(
v+1− ξ̃

ξ̃

)
|v+1|−αdv

= eib̃e−i(θ̃+b̃ξ̃)|ξ̃|(α−1)/2
∫ ∞

−∞
ϕ̂(v)(M−b̃T1−ξ̃D1/ξ̃ϕ̂)(v)|v+1|−αdv

= eib̃e−i(θ̃+b̃ξ̃)|ξ̃|(α+1)/2
∫ ∞

−∞
ϕ̂(v)(T−b̃Mξ̃−1Dξ̃ϕ)∧(v)|v+1|−αdv

= eib̃e−i(θ̃+b̃ξ̃)
(

ϕ,T−b̃Mξ̃−1D2/(α+1)

ξ̃
ϕ
)

H−α,1

andthen we can proceed as in thefirst proof.
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SecondConf. Pseudo-Differential Operators

A. Morando, P. Secchi and P. Trebeschi

CHARACTERISTIC INITIAL BOUNDARY VA LUE PROBLEMS

FOR SYMM ETRIZABLE SYSTEMS

Dedicated to Professor Luigi Rodino ontheoccasion of his60th birthday

Abstract. We consider an initial-boundary value problem for a linear Friedrichs symmetriz-
able system, with characteristic boundary of constant rank. Assuming that the problem is
L2 well posed, we show the regularity of the L2 solution, for sufficiently smooth data, in the
framework of anisotropic Sobolev spaces.

1. Introduction

We consider an initial boundary value problem for a linear Friedrichs symmetrizable
system, with characteristic boundary of constant rank. It is well -known that for solu-
tions of symmetric or symmetrizable hyperbolic systems with characteristic boundary
full regularity (i.e. solvabilit y in theusual Sobolev spacesHm) cannot be expected gen-
erally becauseof thepossiblelossof derivativesin thenormal directionto theboundary,
see[23, 12].

The natural spaceis the anisotropic Sobolev spaceHm
∗ , which comes from the

observation that the one-order gain of normal differentiation should be compensated
by two-order lossof tangential differentiation(cf. [4]). The theory hasbeen developed
mostly for characteristic boundaries of constant multiplicity (seethe definition in as-
sumption (B)) and maximally nonnegativeboundary conditions, see[4, 5, 11, 16, 17,
18, 19, 21].

However, there are important characteristic problemsof physical interest where
boundary conditions are not maximally nonnegative. Under the more general Kreiss-
Lopatinski condition (KL), the theory has been developed for problems satisfying the
uniform KL condition with uniformly characteristic boundaries (when the boundary
matrix hasconstant rank in aneighborhood of the boundary), see[8, 1] and references
therein.

In this paper we are interested in the problem of the regularity. We assume
the existenceof the strongL2 solution, satisfying a suitable energy estimate, without
assuming any structural assumption sufficient for existence, such as the fact that the
boundary conditions are maximally dissipative or satisfy the Kreiss–Lopatinski con-
dition. We show that this is enoughin order to get the regularity of solutions, in the
natural framework of weighted anisotropic Sobolev spaces Hm

∗ , provided the data are
sufficiently smooth. Obviously, the present results contain in particular what has been
previously obtained for maximally nonnegativeboundary conditions.

229
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Let Ω be an open bounded subset of Rn (for afixed integer n≥ 2), lying locally
on one side of its smooth, connected boundary Γ := ∂Ω. For any real T > 0, we
set QT := Ω×]0,T[ and ΣT := Γ×]0,T[; in addition we define Q∞ := Ω× [0,+∞[,
Σ∞ := ∂Ω× [0,+∞[, Q := Ω×R and Σ := ∂Ω×R. We are interested in the following
initial boundary valueproblem (written in thesequel IBVP)

Lu= F, in QT(1)

Mu= G, on ΣT(2)

u|t=0 = f , in Ω,(3)

whereL is thefirst order linear partial differential operator

(4) L = ∂t +
n

∑
i=1

Ai(x, t)∂i +B(x, t),

∂t := ∂
∂t , ∂i := ∂

∂xi
, i =1, . . . ,nandAi(x, t),B(x, t) areN×N real matrix-valuedfunctions

of (x, t), for a given integer sizeN≥ 1, defined over Q∞. Theunknown u= u(x, t) and
the data F = F(x, t), f = f (x) are real vector-valued functions with N components,
defined onQT andΩ respectively. In theboundary conditions(2), M isasmooth d×N
matrix-valued function of (x, t), defined on Σ∞, with maximal constant rank d. The
boundary datum G= G(x, t) is ad-vector valued function, defined onΣT .

Let us denote by ν(x) := (ν1(x), . . . ,νn(x)) the unit outward normal to Γ at the
point x∈ Γ; then

(5) Aν(x, t) =
n

∑
i=1

Ai(x, t)νi(x) , (x, t) ∈ Σ∞ ,

is the boundary matrix. Let P(x, t) be the orthogonal projection onto the orthogonal
complement of kerAν(x, t), denoted kerAν(x, t)⊥; it isdefined by

(6) P(x, t) =
1

2πi

∫
C(x,t)

(λ−Aν(x, t))
−1 dλ , (x, t) ∈ Σ∞ ,

whereC(x, t) is a closed rectifiable Jordan curve with positive orientation in the com-
plex plane, enclosingall and only all non-zeroeingenvaluesof Aν(x, t). Denotingagain
by P an arbitrary smooth extension onQ∞ of the aboveprojection, Pu and (I −P)u are
called respectively thenoncharacteristicandthecharacteristiccomponentsof thevec-
tor field u= u(x, t).
We study the problem (1)–(3) under the followingassumptions:

(A) The operator L is Friedrichs symmetrizable, meaning that for all (x, t) ∈ Q∞
there exists a symmetric positive definite matrix S0(x, t) such that the matrices
S0(x, t)Ai(x, t), i = 1, · · · ,n, are also real symmetric; this implies, in particular,

that the symbol A(x, t,ξ) =
n
∑

i=1
Ai(x, t)ξi is diagonalizable with real eigenvalues,

whenever (x, t,ξ) ∈Q∞×Rn.
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(B) Theboundary ischaracteristic, with constant rank, namely the boundary matrix
Aν is singular on Σ∞ and has constant rank 0< r := rankAν(x, t) < N for all
(x, t) ∈ Σ∞; this assumption, together with the symmetrizabilit y of L and that Γ
is connected, yields that thenumber of negative eigenvaluesof Aν (theso-called
incomingmodes) remainsconstant on Σ∞.

(C) kerAν(x, t) ⊆ kerM(x, t), for all (x, t) ∈ Σ∞; moreover d = rankM(x, t) must
equal the number of negative eigenvaluesof Aν(x, t).

(D) Theorthogonal projectionP(x, t) onto kerAν(x, t)⊥, (x, t) ∈ Σ∞, can be extended
asamatrix-valuedC∞ function over Q∞.

Concerning thesolvabilit y of the IBVP (1)–(3), we state the followingwell -posedness
assumption:

(E) Existenceof theL2 weak solution. Assumethat S0, Ai ∈ Lip(Q∞) for i = 1, . . . ,n.
For all T >0 andall matricesB∈L∞(QT), there exist constantsγ0≥ 1 andC0 >0
such that for all F ∈ L2(QT), G∈ L2(ΣT), f ∈ L2(Ω) there existsa uniquesolu-
tion u∈ L2(QT) of (1)–(3), with data (F,G, f ), satisfying the following proper-
ties:

i. u∈C([0,T];L2(Ω));

ii . Pu|ΣT ∈ L2(ΣT);

iii . for all γ ≥ γ0 and 0< τ ≤ T the solution u enjoys the following a priori
estimate

(7)

e−2γτ‖u(τ)‖2L2(Ω)+ γ
∫ τ

0
e−2γt‖u(t)‖2L2(Ω)dt

+

∫ τ

0
e−2γt‖Pu|∂Ω(t)‖2L2(∂Ω)dt

≤C0

(
‖ f‖2

L2(Ω)
+

∫ τ

0
e−2γt

(
1
γ
‖F(t)‖2L2(Ω)+ ‖G(t)‖2L2(∂Ω)

)
dt

)
.

When the IBVP (1)–(3) admits an a priori estimate of type (7), with F = Lu,
G= Mu, for all τ > 0 andall sufficiently smooth functionsu, onesaysthat theproblem
isstronglyL2 well posed, see e.g. [1]. A necessary conditionfor (7) isthevalidity of the
uniformKreiss-Lopatinski condition (UKL) (an estimate of type (7) hasbeen obtained
by Rauch [13]). On the other hand, UKL is not sufficient for the well posednessand
other structural assumptionshave to be taken into account, see[1].

Finally, we require the following technical assumption that for C∞ approxima-
tionsof problem (1)–(3) onestill has the existenceof L2 solutions. This stabilit y prop-
erty holds true for maximally nonnegative boundary conditions and for uniform KL
conditions.

(F) Givenmatrices(S0,Ai ,B)∈ CT(Hσ
∗ )×CT(Hσ

∗ )×CT(Hσ−2
∗ ), whereσ≥ [n+1

2 ]+4,

enjoying properties (A)–(E), let (S(k)0 ,A(k)
i ,B(k)) be C∞ matrix-valued functions
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convergingto (S0,Ai ,B) in CT(Hσ
∗ )× CT(Hσ

∗ )× CT(Hσ−2
∗ ) as k→ ∞, andsatis-

fying properties (A)–(D). Then, for k sufficiently large, property (E) holds also

for the approximating problemswith coefficients(S(k)0 ,A(k)
i ,B(k)).

The solution of (1)–(3), considered in the statements (E), (F), must be intended in the
senseof Rauch [15]. Thismeansthat for all v∈H1(QT) such that v|ΣT

∈ (Aν(kerM))⊥

andv(T, ·) = 0 in Ω, thereholds:
∫ T

0
〈u(t),L∗v(t)〉dt =

∫ T

0
〈F(t),v(t)〉dt−

∫
ΣT

〈Aνg,v〉dσx dt +
∫

Ω
〈 f ,v(0)〉dx,

whereL∗ is the adjoint operator of L andg is a function defined onΣT such that Mg=
G. Notice also that for such a weak solution to (1)–(3), the boundary condition (2)
makes sense. Indeed, in [15, Theorem 1] it is shown that for any u ∈ L2(QT), with
Lu ∈ L2(QT), the traceof Aνu on ΣT exists in H−1/2(ΣT). Moreover, for a given
boundary matrix M(x, t) satisfyingassumption(C), there existsanother matrix M0(x, t)
such that M(x, t) = M0(x, t)Aν(x, t) for all (x, t) ∈ Σ∞. Therefore, for L2 solutions of
(1) onehas

(8) Mu= G onΣT ⇐⇒ M0Aνu|ΣT = G onΣT .

In order to studytheregularity of solutionsto theIBVP(1)–(3), thedataF, G, f need to
satisfy some compatibilit y conditions. The compatibilit y conditionsare defined in the
usual way (see[14]). Given the IBVP (1)–(3), we recursively define f (h) by formally
taking h−1 time derivativesof Lu= F , solving for ∂h

t u and evaluating it at t = 0; for
h= 0 we set f (0) := f . The compatibilit y conditionof order k≥ 0 for the IBVP reads
as

(9)
p

∑
h=0

(
p
h

)
(∂p−h

t M)|t=0 f (h) = ∂h
t G|t=0 , onΓ , p= 0, . . . ,k.

In the framework of the preceding assumptions, we are able to prove the following
theorem.

THEOREM 1. Let m ∈ N and s= max{m, [n+1
2 ] + 5}. Assume that S0,Ai ∈

CT(Hs
∗), for i = 1, . . . ,n, and that B ∈ CT(Hs−1

∗ ) (or B ∈ CT(Hs
∗) if m= s). Assume

also that problem (1)–(3) obeys the assumptions (A)–(F). Then for all F ∈ Hm
∗ (QT),

G∈Hm(ΣT), f ∈Hm
∗ (Ω), with f (h) ∈Hm−h

∗ (Ω) for h= 1, . . . ,m, satisfyingthe compat-
ibilit y condition(9) of order m−1, theuniquesolution uto (1)–(3), with data (F,G, f ),
belongsto CT(Hm

∗ ) andPu|ΣT ∈ Hm(ΣT). Moreover u satisfies thea priori estimate

(10) ‖u‖CT(Hm∗ )+ ‖Pu|ΣT
‖Hm(ΣT ) ≤Cm

(
||| f |||m,∗+ ‖F‖Hm∗ (QT )+ ‖G‖Hm(ΣT )

)
,

with aconstant Cm > 0 depending only onAi ,B.

The function spaces involved in the statement above (cf. also the assumption
(F)), and the norms appearing in the energy estimate (10) are introduced in the next
section.
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2. Function spaces

For every integer m≥ 1, Hm(Ω), Hm(QT) denote the usual Sobolev spaces of order m
over Ω andQT respectively.

In order to define the anisotropic Sobolev spaces, first we need to introduce
the differential operators in tangential direction. Throughout the paper, for every j =
1,2, . . . ,n, thedifferential operator Z j is defined by

Z1 := x1∂1 , Z j := ∂ j , for j = 2, . . . ,n.

Then, for every multi -index α = (α1, . . . ,αn) ∈ Nn, the tangential differential operator
Zα of order |α|= α1+ · · ·+αn is defined bysetting

Zα := Zα1
1 . . .Zαn

n

(we also write, with thestandard multi -index notation, ∂α = ∂α1
1 . . .∂αn

n ).

We denote by Rn
+ the n-dimensional positive half-spaceRn

+ := {x= (x1,x′) ∈
Rn : x1 > 0 x′ := (x2, . . . ,xn) ∈ Rn−1}. For every positive integer m, the tangential
(or conormal) Sobolev spaceHm

tan(R
n
+) andtheanisotropic Sobolev spaceHm

∗ (R
n
+) are

defined respectively by:

Hm
tan(R

n
+) := {w∈ L2(Rn

+) : Zαw∈ L2(Rn
+) , |α| ≤m},(11)

Hm
∗ (R

n
+) := {w∈ L2(Rn

+) : Zα∂k
1w∈ L2(Rn

+) , |α|+2k≤m},(12)

andequipped respectively with norms

‖w‖2Hm
tan(R

n
+)

:= ∑
|α|≤m

‖Zαw‖2L2(Rn
+)
,(13)

‖w‖2Hm∗ (Rn
+)

:= ∑
|α|+2k≤m

‖Zα∂k
1w‖2L2(Rn

+)
.(14)

To extend the definition of the above spaces to an open bounded subset Ω of Rn

(fulfilli ng the assumptions made at the beginning of the previous section), we pro-
ceed as follows. First, we take an open covering {U j}lj=0 of Ω such that U j ∩Ω,

j = 1, . . . , l , are diffeomorphic to B+ := {x1 ≥ 0, |x| < 1}, with Γ corresponding to
∂B+ := {x1 = 0, |x| < 1}, andU0 ⊂⊂ Ω. Next we choose asmooth partition of unity
{ψ j}lj=0 subordinate to the covering{U j}lj=0. We say that a distribution u belongs to
Hm

tan(Ω), if and only if ψ0u∈Hm(Rn) and, for all j = 1, . . . , l , ψ ju∈Hm
tan(R

n
+), in local

coordinates in U j . ThespaceHm
tan(Ω) is provided with thenorm

(15) ‖u‖2Hm
tan(Ω) := ‖ψ0u‖2Hm(Rn)+

l

∑
j=1

‖ψ ju‖2Hm
tan(R

n
+)
.

The anisotropic Sobolev spaceHm
∗ (Ω) isdefined in a completely similar way as theset

of distributionsu in Ω such that ψ0u∈Hm(Rn) andψ ju∈Hm
∗ (R

n
+), in local coordinates
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in U j , for all j = 1, . . . , l ; it isprovided with thenorm

(16) ‖u‖2Hm∗ (Ω) := ‖ψ0u‖2Hm(Rn)+
l

∑
j=1

‖ψ ju‖2Hm∗ (Rn
+)
.

The definitions of Hm
tan(Ω) and Hm

∗ (Ω) do not depend onthe choiceof the coordinate
patches{U j}lj=0 andthe corresponding partition of unity {ψ j}lj=0, and thenormsaris-
ing from different choicesof U j ,ψ j are equivalent.

For an extensivestudy of the anisotropic Sobolev spaces, we refer the reader to
[24], [20]; herewe just remark that the continuousimbeddings

(17)

Hm
tan(Ω) →֒ H p

tan(Ω) , Hm
∗ (Ω) →֒H p

∗ (Ω) , ∀m≥ p≥ 1,

Hm(Ω) →֒ Hm
∗ (Ω) →֒ Hm

tan(Ω) , ∀m≥ 1,

Hm
∗ (Ω) →֒ H [m/2](Ω) , H1

∗ (Ω) = H1
tan(Ω)

hold true. For the sake of convenience, we also set H0
∗ (Ω) = H0

tan(Ω) = L2(Ω). The
spaces Hm

tan(Ω), Hm
∗ (Ω), endowed with their norms(15), (16), becomeHilbert spaces.

Analogously, wedefine thespacesHm
tan(QT) andHm

∗ (QT).

Let Cm([0,T];X) denote theset of all m-timescontinuously differentiablefunc-
tionsover [0,T], taking values in aBanach spaceX. We definethespaces

CT(H
m
tan) :=

m⋂
j=0

C j([0,T];Hm− j
tan (Ω)) , CT(H

m
∗ ) :=

m⋂
j=0

C j([0,T];Hm− j
∗ (Ω)) ,

equipped respectively with the norms

(18)
‖u‖2
CT(Hm

tan)
:=

m
∑
j=0

supt∈[0,T] ‖∂
j
t u(t)‖2Hm− j

tan (Ω)
,

‖u‖2
CT(Hm∗ )

:=
m
∑
j=0

supt∈[0,T] ‖∂
j
t u(t)‖2Hm− j

∗ (Ω)
.

For the initial datum f weset

||| f |||2m,∗ :=
m

∑
j=0
‖ f ( j)‖2

Hm− j
∗ (Ω)

.

3. The scheme of the proof of Theorem 1

Theproof of Theorem 1 is madeof several steps.

In order to simpli fy the forthcoming analysis, hereafter we only consider the
case when the operator L has smooth coefficients. For the general case of coefficients
with thefiniteregularity prescribed in Theorem1, werefer thereader to [9]; thiscaseis
treated byareductionto thesmooth coefficientscase, based uponthestabilit y assump-
tion (F). Thus, from now on, we assume that S0, Ai , B are given functions in C∞(Q∞).
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Just for simplicity, we even assumethat the coefficientsAi of L aresymmetric matrices
(in this case the matrix S0 reduces to IN, the identity matrix of size N); the case of a
symmetrizableoperator can be easily reduced to thisone, just by the application of the
symmetrizer S0 to system (1) (see[9] for details).

Below, we introducethe new unknown uγ(x, t) := e−γtu(x, t) and the new data
Fγ(x, t) := e−γtF(x, t), Gγ(x, t) = e−γtG(x, t). Then problem(1)–(3) becomesequivalent
to

(19)
(γ+L)uγ = Fγ in QT ,
Muγ = Gγ onΣT ,
uγ |t=0 = f in Ω .

Let usnow summarizethemain stepsof theproof of Theorem 1.

1. We firstly consider thehomogeneous IBVP

(20)
(γ+L)uγ = Fγ inQT ,
Muγ = Gγ onΣT ,
uγ |t=0 = 0 inΩ .

We study(20), by reducing it to astationary boundary valueproblem (see(26)),
for which we deducethe tangential regularity. From the tangential regularity of
this stationary problem, wededucethetangential regularity of thehomogeneous
problem (20) (seethenext Theorem 2).

2. Westudythegeneral problem(19). The anisotropicregularity, stated in Theorem
1, isobtained in two steps.

2.i Firstly, from thetangential regularity of problem(20) above, wededucethe
anisotropic regularity of (19) at order m= 1.

2.ii Eventually, weobtain the anisotropic regularity of (19), at any order m> 1,
by an inductionargument.

3.1. The homogeneous IBVP. Tangential regular ity

In this section, we concentrate on the study of the tangential regularity of solutions
to the IBVP (19), where the initial datum f is identically zero, and the compatibilit y
conditions are fulfilled in a more restrictive form than the one given in (9). More
precisely, we consider the homogeneous IBVP (20) where, for a given integer m≥ 1,
we assumethat the dataFγ,Gγ satisfy the followingconditions:

(21) ∂h
t Fγ | t=0 = 0, ∂h

t Gγ | t=0 = 0, h= 0, . . . ,m−1.

One can prove that conditions (21) imply the compatibilit y conditions (9) of order
m−1, in the case f = 0.
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THEOREM 2. Assumethat Ai ,B, for i = 1, . . . ,n, are inC∞(Q∞), andthat prob-
lem (20) satisfies assumptions (A)–(E); then for all T > 0 andm∈ N there exist con-
stantsCm > 0 andγm, with γm≥ γm−1, such that for all γ ≥ γm, for all Fγ ∈ Hm

tan(QT)
and all Gγ ∈Hm(ΣT) satisfying(21) theuniquesolution uγ to (20) belongsto Hm

tan(QT),
the traceof Puγ on ΣT belongsto Hm(ΣT) andthea priori estimate

(22) γ‖uγ‖2Hm
tan(QT )

+‖Puγ|ΣT‖2Hm(ΣT )
≤Cm

(1
γ
‖Fγ‖2Hm

tan(QT )
+ ‖Gγ‖2Hm(ΣT )

)

is fulfilled.

The first step to prove Theorem 2 is reducing the original mixed evolution problem
(20) to a stationary boundary value problem, where the time is allowed to span the
whole real li ne and it is treated then as an additional tangential variable. To make this
reduction, we extend the data Fγ, Gγ and the unknown uγ of (20) to all positive and
negative times, by following methods similar to those of [1, Ch.9]. In the sequel, for
the sake of simplicity, we remove the subscript γ from the unknown uγ and the data
Fγ,Gγ.

Because of (21), we extend F and G through]−∞,0], by setting them equal
to zero for all negative times; then for times t > T, we extend them by “reflection” ,
following Lions–Magenes [7, Theorem 2.2]. Let us denote by F̆ and Ğ the resulting
extensionsof F andG respectively; by construction, F̆ ∈Hm

tan(Q) and Ğ∈Hm(Σ).
As we did for the data, the solution u to (20) is extended to all negative times,

by setting it equal to zero. To extendu also for times t > T, we exploit the assumption
(E). Moreprecisely, for every T ′ > T we consider themixed problem

(23)
(γ+L)u = F̆| ]0,T′[ in QT ′ ,

Mu = Ğ| ]0,T ′[ , onΣT ′ ,
u| t=0 = 0, in Ω

Assumption (E) yields that (23) admitsa uniquesolutionuT′ ∈C([0,T ′];L2(Ω)), such
that PuT′ ∈ L2(ΣT ′) andthe energy estimate

(24)
‖uT′(T

′)‖2
L2(Ω)

+ γ‖uT′‖2L2(QT′ )
+ ‖PuT′ |ΣT′‖

2
L2(ΣT′ )

≤C′
(

1
γ
‖F̆| ]0,T′[‖2L2(QT′ )

+ ‖Ğ| ]0,T′[‖2L2(ΣT′ )

)

is satisfied for all γ ≥ γ′ and some constants γ′ ≥ 1 andC′ > 0 depending only on T ′

(and thenorms‖Ai‖Lip(QT ′ ), ‖B‖L∞(QT′ )).

From theuniquenessof theL2 solution, we infer that for arbitrary T ′′ > T ′ ≥ T
we have uT ′′ = uT ′ (uT := u) over ]0,T ′[. Therefore, we may extend u beyondT, by
setting it equal to theuniquesolution of (23) over ]0,T ′[ for all T ′ > T. Thuswedefine

(25) ŭ(t) :=

{
uT ′(t) , ∀ t ∈]0,T ′[ , ∀T ′ > T ,

0, ∀ t < 0.
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Since ŭ, F̆, Ğ are all i dentically zero for negative times, we can take arbitrary smooth
extensions of the coefficients of the differential operator L and the boundary operator
M (originally defined on Q∞ and Σ∞) on Q and Σ respectively, with the only care to
preserverank Aν = r andrank M = d and kerAν ⊆ kerM for all t < 0. Thisextensions,
that we fix once and for all , are denoted again by Ai ,B,M. Moreover, we denote by L
the correspondingextension onQ of the differential operator (4).

By construction, we havethat ŭ solves theboundary valueproblem (BVP)

(26)
(γ+L)u = F̆ in Q,

Mu = Ğ, onΣ .

Using the estimate (24), for all T ′ > T, and noticing that the extended data F̆ , Ğ, as
well as the solution ŭ, vanish identically for large t > 0, we derive that ŭ enjoys the
followingestimate

(27) γ‖ŭ‖2L2(Q)+ ‖Pŭ|Σ‖2L2(Σ) ≤ C̆

(
1
γ
‖F̆‖2L2(Q)+ ‖Ğ‖

2
L2(Σ)

)
,

for all γ≥ γ̆, andsuitable constants γ̆≥ 1, C̆> 0.

For the sake of simplicity, in the sequel we remove the superscript from the
unknown ŭ and thedata F̆ , Ğ of (26).

Thenext step is to movefrom BVP (26) to a similar BVP posed in the (n+1)-
dimensional positive half-spaceRn+1

+ := {(x1,x′, t) : x1 > 0, (x′, t) ∈ Rn}. To make
this reduction into a problem in Rn+1

+ , we follow a standard localization procedureof
the problem (26) near the boundary of the spatial domain Ω; this is done by taking a
covering {U j}lj=0 of Ω and a partition of unity {ψ j}lj=0 subordinate to this covering,
as in Section 2. Assuming that each patch U j , j = 1, . . . , l , is sufficiently small , we can
write the resulting localized problem in the form

(28)
(γ+L)u = F inRn+1

+ ,
Mu = G, onRn .

As a consequenceof the localization, the data F and G of the problem (28) are func-
tions in Hm

tan(R
n+1
+ ) and Hm(Rn) respectively; without lossof generality, we may also

assumethat theforcingterm F andthesolutionu aresupported in theset B+× [0,+∞[,
and the boundary datum G is supported in ∂B+× [0,+∞[. In (28)1, L is now a differ-
ential operator inRn+1 of the form

(29) L = ∂t +
n

∑
i=1

Ai(x, t)∂i +B(x, t) ,

where the coefficientsAi ,B arematrix-valued functionsof (x, t) belongingto thespace
C∞
(0)(R

n+1
+ ) of therestrictionsontoRn+1

+ of (matrix-valued) functionsinC∞
0 (R

n+1). Let
us remark that the boundary matrix of (28) is now −A1 | {x1=0}. It is a crucial step that
the previously described localization processcan be performed in such a way that A1
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has the following block structure

(30) A1(x, t) =

(
AI ,I

1 AI ,II
1

AII ,I
1 AII ,II

1

)
, (x, t) ∈Rn+1

+ ,

where AI ,I
1 ,AI ,II

1 ,AII ,I
1 ,AII ,II

1 are respectively r × r, r × (N− r), (N− r)× r, (N− r)×
(N− r) sub-matrices. Moreover, AI ,I

1 (x, t) is invertible over the support of u(x, t) and
we have

(31) AI ,II
1 = 0, AII ,I

1 = 0, AII ,II
1 = 0, in {x1 = 0}×Rn

x′,t .

In view of assumption (C), we may even assume that the matrix M in the boundary
condition(28)2 is just M = (Id,0), where Id is the identity matrix of sized. According
to (30), let usdecomposetheunknown u asu= (uI ,uII ); then wehavePu= (uI ,0).

Following the arguments of [3], one can prove that a local counterpart of the
global estimate (27), associated to the stationary problem (26), can be attached to the
local problem (28). More precisely, there exist constantsC0 > 0 and γ0 ≥ 1 such that
for all ϕ ∈ L2(Rn+1

+ ), supported in B+× [0,+∞[, such that Lϕ ∈ L2(Rn+1
+ ) and γ≥ γ0,

we have

(32)

γ‖ϕ‖2
L2(Rn+1

+ )
+ ‖ϕI

| {x1=0}‖2L2(Rn)

≤C0

(
1
γ
‖(γ+L)ϕ‖2

L2(Rn+1
+ )

+ ‖Mϕ| {x1=0}‖2L2(Rn)

)
.

Regular ity of the stationary problem (28)

The analysis performed in the previous section shows that the tangential regularity of
the homogeneous IBVP (20) can be deduced from the study of the regularity of the
stationary BVP (28).

For this stationary problem, we are able to show that if thedataF andG belong
to Hm

tan(R
n+1
+ ) and Hm(Rn) respectively, and the L2 a priori estimate (32) is fulfilled,

then the L2 solution of the problem (28) belongs to Hm
tan(R

n+1
+ ), the traceof its non-

characteristic part uI belongsto Hm(Rn) and the estimateof order m

(33) γ ‖u‖2
Hm

tan(R
n+1
+ )

+‖uI
|{x1=0}‖2Hm(Rn) ≤Cm

(
1
γ
‖F‖2

Hm
tan(R

n+1
+ )

+‖G‖2Hm(Rn)

)

is satisfied with some constantsCm > 0, γm≥ 1 and for all γ≥ γm.

Then we recover the tangential regularity of the solution u to problem (26),
posed on Q = Ω×R, and we find an associated estimate of order m analogous to
(33). Recalli ng that the solution u to (26) is the extension of the solution uγ of the
homogeneous IBVP (20), from the tangential regularity of u we can now derive the
tangential regularity of uγ, namely that uγ ∈ Hm

tan(QT) and Puγ | ΣT ∈ Hm(ΣT). To get
the energyestimate(22), weobservethat the extended data F̆ andĞ aredefined in such
a way that

‖F̆‖Hm
tan(Q) ≤C‖Fγ‖Hm

tan(QT ), ‖Ğ‖Hm(Σ) ≤C‖Gγ‖Hm(ΣT ) ,
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with positive constant C independent of Fγ, Gγ and γ.

In order to prove the announced tangential regularity of the BVP (28), we adapt the
classical technique of Friedrichs’ molli fiers to our setting. More precisely, following
Nishitani andTakayama[10], weintroduce a “tangential” molli fier Jε well suited to the
tangential Sobolev spaces. Let χ be afunction in C∞

0 (R
n+1). For all 0< ε < 1, we set

χε(y) := ε−(n+1)χ(y/ε). We defineJε : L2(Rn+1
+ )→ L2(Rn+1

+ ) by

(34) Jεw(x) :=
∫
Rn+1

w(x1e−y1,x′− y′)e−y1/2χε(y)dy,

which differs from the one introduced in Rauch [15] by the factor e−y1/2. UsingJε we
follow the same lines in Tartakoff [ 22], Nishitani and Takayama [10] to get regularity
of theweak solutionu.

Starting from a classical characterization of the ordinary Sobolev spaces given
in [6, Theorem 2.4.1], the following characterization of tangential Sobolev spaces
Hm

tan(R
n+1
+ ) by meansof Jε can beproved.

PROPOSITION 1. Assumethat χ∈C∞
0 (R

n+1) satisfiesthefollowingconditions:

χ̂(ξ) = O(|ξ|p) asξ→ 0, for some p∈ N;(35)

χ̂(tξ) = 0, for all t ∈ R , impliesξ = 0.(36)

Then for all m∈N with m< p, we havethat u∈ Hm
tan(R

n+1
+ ) if and only if

a. u∈ Hm−1
tan (Rn+1

+ );

b.
∫ 1

0
‖Jεu‖2L2(Rn+1

+ )
ε−2m

(
1+ δ2

ε2

)−1dε
ε is uniformly bounded for 0< δ≤ 1.

In view of Proposition 1, showing that the solution u ∈ Hm−1
tan (Rn+1

+ ) of (28) actually
belongs to Hm

tan(R
n+1
+ ) amounts to provide auniform bound, with respect to δ, for the

integral quantity appearing in b., computed for the molli fied solution Jεu. To get this
bound, the schemeis the following:

1. We noticethat Jεu solves the followingBVP

(37)
(γ+L)Jεu= JεF +[L,Jε]u, inRn+1

+ ,
MJεu= Gε , onRn ,

where [L,Jε] is the commutator between the operators L and Jε, and Gε is a
suitable boundary datum that can be computed from the original datum G and
the functionχε involved in (34) (see[9]).

2. Since the BVP (37) is the same as (28), with data JεF + [L,Jε]u and Gε, the L2

estimate (32) applied to (37) gives that theL2 norm of Jεu can be estimated by

(38)

γ ‖Jεu‖2L2(Rn+1
+ )

+ ‖JεuI
|{x1=0}‖2L2(Rn)

≤C0

(
1
γ
‖JεF +[L,Jε]u‖2L2(Rn+1

+ )
+ ‖Gε‖2L2(Rn)

)
.
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3. From theprecedingestimate, we immediately derive, for the integral quantity in
b. andthe analogousintegral quantity associated to thetraceof noncharacteristic
part of thesolution, the following bound

(39)

γ
∫ 1

0
‖Jεu‖2L2(Rn+1

+ )
ε−2m

(
1+ δ2

ε2

)−1dε
ε

+
∫ 1

0
‖JεuI

|{x1=0}‖2L2(Rn)
ε−2m

(
1+ δ2

ε2

)−1dε
ε

≤C0

(
1
γ

∫ 1

0
‖JεF‖2L2(Rn+1

+ )
ε−2m

(
1+ δ2

ε2

)−1dε
ε

+
1
γ

∫ 1

0
‖[L,Jε]u‖2L2(Rn+1

+ )
ε−2m

(
1+ δ2

ε2

)−1dε
ε

+
∫ 1

0
‖Gε‖2L2(Rn)

ε−2m
(

1+ δ2

ε2

)−1dε
ε

)
.

SinceF ∈Hm
tan(R

n+1
+ ) andG∈Hm(Rn), thefirst andthelast integralsin theright-

handsideof (39) can be estimated by‖F‖2
Hm

tan(R
n+1
+ )

and‖G‖2Hm(Rn) respectively.

It remains to provide auniform estimate for the middle integral involving the
commutator [L,Jε]u. For this term weget the followingestimate

(40)

∫ 1

0
‖[L,Jε]u‖2L2(Rn+1

+ )
ε−2m

(
1+ δ2

ε2

)−1dε
ε

≤C
∫ 1

0
‖Jεu‖2L2(Rn+1

+ )
ε−2m

(
1+ δ2

ε2

)−1dε
ε

+Cγ2‖u‖2
Hm−1

tan (Rn+1
+ )

+C‖F‖2
Hm

tan(R
n+1
+ )

.

The estimate(40) isobtained bytreatingseparately thedifferent contributionsto
the commutator [L,Jε] associated to the different terms in the expression(29) of
L (see[9] for details). The termsof the the commutator involving the tangential
derivatives [Ai∂i ,Jε], for i = 2, . . . ,n (note that [∂t ,Jε] = 0) and the zero-th order
term [B,Jε] are estimated by using [10, Lemma9.2]. Theterm [A1∂1,Jε], involv-
ing the normal derivative ∂1, needs a more careful analysis; to estimate it, it is
essential to make use of the structure (30), (31) of the boundary matrix in (28).
Actually, by inverting AI ,I

1 in (28)1, we can write ∂1uI as the sum of space-time
tangential derivativesby

∂1uI = ΛZu+R,

where

ΛZu=−(AI ,I
1 )−1



(

∂tuI +
n

∑
j=2

A jZ ju

)I

+AI ,II
1 ∂1uII


 ,

R= (AI ,I
1 )−1(F− γu−Bu)I .

Here, we use the fact that, if a matrix A vanishes on {x1 = 0}, we can write
A∂1u = HZ1u, where H is a suitable matrix; this trick transforms some normal
derivativesinto tangential derivatives.
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Combiningtheinequaliti es(39) and(40), andarguing byfiniteinduction onm to
estimate‖u‖Hm−1

tan (Rn+1
+ ) in theright-handsideof (40), weget thedesired uniform

boundsof the integrals

∫ 1

0
‖Jεu‖2L2(Rn+1

+ )
ε−2m

(
1+ δ2

ε2

)−1dε
ε ,

∫ 1

0
‖JεuI

|{x1=0}‖2L2(Rn)
ε−2m

(
1+ δ2

ε2

)−1dε
ε ,

appearing in the left-hand side of (39). From this, in view of Proposition 1and
[6, Theorem 2.4.1], we conclude that u ∈ Hm

tan(R
n+1
+ ) and uI ∈ Hm(Rn). The a

priori estimate (33) isdeduced from (39), by followingthe same arguments.

3.2. The nonhomogeneous IBVP. Casem= 1

For nonhomogeneous IBVP, we mean theproblem (1)–(3) where the initial datum f is
different from zero.

As announced before, we firstly prove the statement of Theorem 1 for m= 1,
namely weprovethat, under the assumptions(A)–(F), for all F ∈H1

∗ (QT), G∈H1(ΣT)
and f ∈ H1

∗ (Ω), with f (1) ∈ L2(Ω), satisfying the compatibilit y conditionM|t=0 f|∂Ω =

G|t=0, the unique solution u to (1)–(3), with data (F,G, f ), belongs to CT(H1
∗ ) and

Pu|ΣT
∈ H1(ΣT); moreover, there exists a constant C1 > 0 such that u satisfies the a

priori estimate

(41) ‖u‖CT(H1∗ )+‖Pu|ΣT
‖H1(ΣT )

≤C1

(
||| f |||1,∗+‖F‖H1∗ (QT )

+‖G‖H1(ΣT )

)
.

To this end, we approximate the data with regularized functions satisfying one more
compatibilit y condition. In this regard we get the following result, for the proof of
which we refer to [9] and the referencestherein.

LEMM A 1. Assume that problem (1)–(3) obeys the assumptions (A)–(E). Let
F ∈H1

∗ (QT), G∈H1(ΣT), f ∈H1
∗ (Ω), with f (1) ∈ L2(Ω), such that M|t=0 f|∂Ω = G|t=0.

Then there exist Fk ∈ H3(QT), Gk ∈ H3(ΣT), fk ∈ H3(Ω), such that M|t=0 fk = Gk|t=0,

∂tM|t=0 fk+M|t=0 f (1)k = ∂tGk|t=0 on∂Ω, andsuch that Fk→ F in H1
∗ (QT), Gk→G in

H1(ΣT), fk→ f in H1
∗ (Ω), f (1)k → f (1) in L2(Ω), ask→+∞.

Given thefunctionsFk,Gk, fk asin Lemma1, wefirst calculatethroughequation

Lu= Fk,u|t=0 = fk, the initial time derivatives f (1)k ∈ H2(Ω), f (2)k ∈ H1(Ω). Then we
take afunctionwk ∈ H3(QT) such that

wk|t=0 = fk , ∂twk|t=0 = f (1)k , ∂2
ttwk|t=0 = f (2)k .

Noticethat thisyields

(42) (Lwk)|t=0 = Fk|t=0 , ∂t(Lwk)|t=0 = ∂tFk|t=0 .
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Now we look for a solution uk of problem (1)–(3), with data Fk,Gk, fk, of the form
uk = vk+wk, wherevk is solution to

(43)
Lvk = Fk−Lwk, in QT

Mvk = Gk−Mwk, on ΣT

vk|t=0 = 0, in Ω.

Let usdenote again ukγ = e−γtuk, vkγ = e−γtvk andso on. Then (43) isequivalent to

(44)
(γ+L)vkγ = Fkγ− (γ+L)wkγ, in QT

Mvkγ = Gkγ−Mwkγ, on ΣT

vkγ|t=0 = 0, in Ω.

We easily verify that (42) yields
(
Fkγ− (γ+L)wkγ

)
|t=0 = 0, ∂t

(
Fkγ− (γ+L)wkγ

)
|t=0 = 0

andM|t=0 fk|∂Ω = Gk|t=0, ∂tM|t=0 fk|∂Ω +M|t=0 f (1)k|∂Ω = ∂tGk|t=0 yield

(Gkγ−Mwkγ)|t=0 = 0, ∂t(Gkγ−Mwkγ)|t=0 = 0.

Thus the data of problem (44) obey conditions (21) for h = 0,1; then we may apply
to (44) Theorem 2 for γ large enoughand find vk ∈ H2

tan(QT), with Pvk|ΣT
∈ H2(ΣT).

Accordingly, we infer that uk ∈ H2
tan(QT) →֒ CT(H1

∗ ) andPuk|ΣT
∈ H2(ΣT). Moreover

uk ∈ L2(QT) solves

(45)
Luk = Fk, in QT

Muk = Gk, on ΣT

uk|t=0 = fk, in Ω.

Arguing as in the previous section, we take a covering {U j}lj=0 of Ω and a related

partition of unity {ψ j}lj=0, and we reduce problem (45) into a corresponding prob-

lem posed in the positive half-spaceRn
+, with new data Fk ∈ H3(Rn

+×]0,T[), Gk ∈
H3(Rn−1×]0,T[), fk ∈ H3(Rn

+), and boundary matrix M = (Id,0). We also write
the similar problem solved by the first order derivatives Zuk = (Z1uk, . . . ,Zn+1uk) ∈
H1

tan(QT) = H1
∗ (QT) (where Zn+1 = ∂t). Since assumption (E) is satisfied, applying

the apriori estimate (7) to a differenceof solutions uh−uk of those problems readily
gives

‖uk−uh‖CT(H1∗ )+ ‖P(uk−uh)|ΣT
‖H1(ΣT )

≤C
(
||| fk− fh|||1,∗+ ‖Fk−Fh‖H1∗ (QT )

+ ‖Gk−Gh‖H1(ΣT )

)
.

From Lemma 1, we infer that {uk} is a Cauchy sequence in CT(H1
∗ ) and {Puk|ΣT

}
is a Cauchy sequencein H1(ΣT). Therefore there exists a function in CT(H1

∗ ) which
is the limit of {uk}. Passing to the limit in (45) as k→ ∞, we seethat this function
is a solution to (1)–(3). The uniquenessof the L2 solution yields u ∈ CT(H1

∗ ) and
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Pu|ΣT ∈ H1(ΣT). Applying the apriori estimate (7) to the solution uk of (45) and its
first order derivatives, and passing to the limit finally gives (41). This completes the
proof of Theorem 1 for m= 1 in the case of C∞ coefficients. As we already said, here
wedo not deal with the caseof lessregular coefficients, for which thereader is referred
to [9, Sect. 5].

3.3. The nonhomogeneous IBVP. Proof for m≥ 2

Without entering in too many details (we still refer to [9, Sect. 6] for a more exten-
sive discussion), we briefly describe the different steps of the proof, for the reader’s
convenience.

We proceed by finite induction onm. Assume that Theorem 1 is valid up to
m− 1. Let f ∈ Hm

∗ (Ω), F ∈ Hm
∗ (QT), G ∈ Hm(ΣT), with f (k) ∈ Hm−k

∗ (Ω), with k =
1, . . . ,m. Assume also that the compatibilit y conditions(9) hold at theorder m−1. By
the inductive hypothesis there exists a unique solution u of problem (1)–(3) such that
u∈ CT(Hm−1

∗ ).

In order to show that u ∈ CT(Hm
∗ ), we have to increase the regularity of u by

order one, that is by one more tangential derivative and, if m is even, also by one
more normal derivative. This can be done as in [16, 17], with the small change of the
elimination of the auxili ary system (introduced in [16, 17]) as in [2, 19]. At every step,
we can estimate some derivativesof u throughequations, where in the right-handside
we can put other derivativesof u that have already beenestimatedat previous steps. The
reason why the main ideain [16] works, even though here we do not have maximally
nonnegativeboundary conditions, is that for the increase of regularity we consider the
problem of the type of (1)–(3), solved by the purely tangential derivatives, where we
can use the inductive assumption, and other systemsof equations solved by the mixed
tangential and normal derivatives where the boundary matrix vanishes identically, so
that no boundary condition is needed and we can apply an energy method, under the
assumption of thesymmetrizablesystem.
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SecondConf. Pseudo-Differential Operators

P. Wahlberg

A TRANSFORMATION OF ALMOST PERIODIC

PSEUDODIFFERENTIAL OPERATORS

TO FOURIER MULT IPLIER OPERATORS

WITH OPERATOR-VALUED SYMBOLS

Dedicated to Professor Luigi Rodino ontheoccasion of his60th birthday

Abstract. We present results for pseudodifferential operators on Rd whose symbol a(·,ξ)
is almost periodic (a.p.) for each ξ ∈ Rd and belongs to a Hörmander classSm

ρ,δ. We study

a linear transformation a 7→ U(a) from a symbol a(x,ξ) to a frequency-dependent matrix
U(a)(ξ)λ,λ′ , indexed by (λ,λ′) ∈ Λ×Λ where Λ is a countable set in Rd. The map a 7→
U(a) transforms symbolsof a.p. pseudodifferential operators to symbolsof Fourier multiplier
operators acting on vector-valued function spaces. Weshow that the map preserves operator
positivity and identity, respects operator composition and respects adjoints.

1. Introduction

The paper concerns pseudodifferential operators (abbreviated to ΨDO) on Rd in the
Kohn–Nirenberg quantization, where the symbol a(·,ξ) is almost periodic (a.p.) for
each ξ ∈ Rd, and belongs to a Hörmander classSm

ρ,δ. This symbol class is denoted
APSm

ρ,δ and the corresponding operators are called a.p. pseudodifferential operators.
We study the symbol transformationa 7→U(a) given by

U(a)(ξ)λ,λ′ = Mx(a(x,ξ−λ′)e−2πix·(λ′−λ))

where Mx denotes the mean value functional of a.p. functions. This transformation
was introduced, for operator kernels rather than symbols, by E. Gladyshev [4, 5], for
the purposes of stochastic processes. The connection between stochastic processes
and operator theory originates from the fact that the so-called covariancefunction of a
stochastic processis the kernel of a positive operator. Gladyshev studied a particular
classof stochastic processes called almost periodically correlated, which means that
the symbol of the covarianceoperator isalmost periodic in thefirst variable.

The element U(a)(ξ) can be considered a matrix indexed by (λ,λ′) ∈ Λ×Λ
where Λ ⊂ Rd is the countable set of frequencies that occur in {a(·,ξ)}ξ∈Rd . Thus
U(a)(ξ) isan operator that actsbetweensequencespacesandthefunctionξ 7→U(a)(ξ)
may be considered theoperator-valuedsymbol of aFourier multiplier operator denoted
U(a)(D).

Let a ∈ APSm
ρ,δ and let l2s be the space of sequences (xλ)λ∈Λ such that the

247
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weighted norm

‖x‖l2s =
(

∑
λ∈Λ

(1+ |λ|2)s|xλ|2
)1/2

is finite. Using results by M.A. Shubin, we first observe that the norm of the operator
a(x,D) : Hs(Rd

B) 7→ Hs−m(Rd
B) is equal to the norm of a(x,D) : Hs(Rd) 7→ Hs−m(Rd)

for any s∈ R. Here Hs(Rd) denotes the classical Sobolev Hilbert space, and Hs(Rd
B)

denotes the Sobolev–Besicovitch spaceof a.p. functions, completed from the trigono-
metric polynomials in thenorm

‖ f‖Hs(Rd
B)
=

(

∑
λ∈Rd

(1+ |λ|2)s| fλ|2
)1/2

,

where fλ =Mx( f (x)e−2πix·λ) istheBohr–Fourier coefficient of an a.p. function f . Then
we prove that the norm of the matrix U(a)(0) : l2s 7→ l2s−m is bounded by the norm of
the operator a(x,D) : Hs(Rd

B) 7→ Hs−m(Rd
B). We also show that a(x,D) is positive

on S (Rd) if and only if it is positive on the trigonometric polynomials on Rd and
a(x,D) > 0 onTP(Λ) if and only if U(a)(0) is a positive definite matrix. Thus much
informationabout theoperator a(x,D) can beread off fr om the evaluation of thematrix
symbol U(a) at the origin.

Weprovethat U(a)(ξ) isa continuoustransformation l2s 7→ l2s−m for any ξ∈Rd,
and the map Rd ∋ ξ 7→U(a)(ξ) ∈ L (l2s , l2s−m) is continuous. Moreover, U(a)(D) > 0
if a(x,D)> 0. The latter result on preservation of positivity wasproved by Gladyshev
[5] for uniformly continuous operator kernels. Here U(a)(D) acts on vector-valued
functionspaces likeS (Rd, l2s). Then we show our main result that the transformation
a 7→ U(a) respects operator composition. More precisely, denote the symbol prod-
uct, corresponding to operator composition, by a(x,D) ◦ b(x,D) = (a#0b)(x,D). If
a∈ APSm1

ρ,δ andb∈ APSm2
ρ,δ, m1,m2 ∈R, then wehave

U(a#0b)(ξ) =U(a)(ξ) ·U(b)(ξ).

Finally, we prove that the requirement that the symbol is almost periodic in the first
variable is invariant under a common family of quantizations that is defined using a
parameter t ∈ R. The family includes the Kohn–Nirenberg (t = 0) and the Weyl (t =
1/2) correspondences.

In conclusion, the transformation a 7→U(a) is a linear, injective map that pre-
servesoperator identity, positivity, adjoint andcomposition. In theproofsof our results
we usemainly resultsby Shubin [9, 10, 11, 12].

In scalar-valued functionspaces, translation-invariant (or convolution or Fourier
multiplier) operatorscommute, but for vector-valued functionspaces, theproduct inC
is replaced by the matrix product, so translation-invariant operators are not commu-
tative. The transformation a(x,D) 7→ a 7→U(a)(D) transfers the non-commutativity
of almost periodic pseudodifferential operators with symbols in Sm

ρ,δ into the non-
commutativity of thematrix product.
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A brief comment on some parts of the literature on a.p. pseudodifferential op-
eratorsfollows. Coburn, Moyer andSinger [1] developed an index theory for pseudod-
ifferential operators on Rd with almost periodic principal symbol. Shubin has made
many important contributionsto the theory of partial differential operatorswith almost
periodic coefficientsanda.p. pseudodifferential operators. For example, he introduced
theSobolev–Besicovitchspaces[9] and proved the equality of thespectrafor a.p. pseu-
dodifferential operatorsacting onL2(Rd) and the Besicovitch spaceB2(Rd), provided
the operator isbounded or elli ptic [11, 12].

Lately Turunen, Ruzhansky and Vainikko have worked on pseudodifferential
operatorswith symbols that are periodic in the first variable [14, 15, 8]. The operators
may be considered to act on functionsdefined onthe torusTd, and the theory of pseu-
dodifferential operatorson manifoldsmay be used. However, the use of Fourier series
representationsgivesa more elementary and global treatment.

2. Notation and preliminar ies

We use 〈x〉= (1+ |x|2)1/2, x∈ Rd, and theFourier transform is defined by

F f (ξ) = f̂ (ξ) =
∫
Rd

f (x)e−2πix·ξ dx, f ∈S (Rd).

For a multii ndex α = (α1, . . . ,αd), wedefine thepartial differential operator

∂α f (x) = ∂α
x f (x) =

∂|α| f (x)
∂xα1

1 · · ·∂xαd
d

, x∈ Rd.

We use C for a generic positive constant that may vary over equaliti es and in-
equaliti es, wedenotebyCm(Rd) thespaceof functions such that ∂α f iscontinuousfor
|α|6 mandC∞ =

⋂
mCm is thespaceof smooth functions. Thesymbol Cb(Rd) stands

for thespaceof continuousandsupremumbounded functions, andC∞
b (R

d) is thespace
of functionswhose derivativesof all ordersare continuousand bounded in supremum
norm. The spaceof compactly supported smooth (test) functions is denoted C∞

c (R
d).

The Schwartz spaceof smooth rapidly decreasing functions is denoted S (Rd) and its
dual S ′(Rd) is the spaceof tempered distributions. A spaceof trigonometric polyno-
mials isdenoted TP(S) andconsistsof functionsof the form

f (x) =
N

∑
n=1

ane2πiξn·x, an ∈C, ξn ∈ S⊆ Rd.

We will consider functionsdefined onRd and taking values in a Hilbert or Ba-
nach spaceX, and then C(Rd,X) denotes the spaceof continuousX-valued functions,
and likewise for other function spaces. The spaceof bounded linear transformations
between two Hilbert spacesH andH ′ isdenotedL (H,H ′), andL (H,H) = L (H). The
operator norm isdenoted ‖ · ‖L (H,H′) or ‖ · ‖L (H).
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A subset Y of a completemetric spaceX is precompact if it is totally bounded,
which meansthat Y can be covered byafiniteunion of ballsof radiusε, for any ε > 0.
Thisdefinition isequivalent to theproperty that the closureof Y is compact.

Wedefine astandard family of symbol classes, theso called Hörmander classes.
Moreprecisely, the followingsymbol classesareglobal versionsof Hörmander spaces
[3, 6, 13].

DEFINITION 1. For m∈ R and 0 6 ρ,δ 6 1 the space Sm
ρ,δ is defined as the

spaceof all a∈C∞(R2d) such that

(1) sup
x,ξ∈Rd

〈ξ〉−m+ρ|α|−δ|β||∂α
ξ ∂β

xa(x,ξ)|< ∞, α,β ∈Nd.

We impose the conditions

0< ρ 6 1, 06 δ < 1, δ 6 ρ.

Followingconvention, we set S−∞
ρ,δ =

⋂
m∈R Sm

ρ,δ and S∞
ρ,δ =

⋃
m∈R Sm

ρ,δ.

ThespaceSm
ρ,δ is a Fréchet spacewith seminormsdefined by (1).

We consider the Kohn–Nirenberg quantization of pseudodifferential operators.
A symbol function a defined onthe phase spaceR2d gives rise to an operator a(x,D)
accordingto the formula

(2) a(x,D) f (x) =
∫
R2d

e2πiξ·(x−y)a(x,ξ) f (y)dydξ, f ∈S (Rd).

When a∈Sm
ρ,δ, the corresponding operator classisdenotedLm

ρ,δ. For thesymbol classes
Sm

ρ,δ, the oscill atory integral (2) is generally not absolutely convergent and should be
read as the iterated integral

(3) a(x,D) f (x) =
∫
Rd

e2πiξ·xa(x,ξ) f̂ (ξ)dξ.

In order to extendtheoperator to act on other functionspacesthanS (Rd) onemodifies
the definition(2) into

(4) a(x,D) f (x) = lim
ε→+0

∫
R2d

ψ(εy)ψ(εξ)e2πiξ·(x−y)a(x,ξ) f (y)dydξ

whereψ ∈C∞
c (R

d) equalsone in aneighborhood of theorigin. Integrating by partswe
may rewrite (4) as

a(x,D) f (x) =
∫
R2d

e2πiξ·(x−y)(1+ |ξ|2)−N(1−∆ξ)
Ma(x,ξ)

× (1−∆y)
N((1+ |x− y|2)−M f (y))dydξ,
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where ∆ denotes the normalized Laplacian ∆ = (2π)−2∑d
1 ∂2

j , which is an absolutely

convergent integral for f ∈C∞
b (R

d) provided that 2M > d and 2N > d+m. By differ-
entiation under the integral it follows that a(x,D) : C∞

b (R
d) 7→C∞

b (R
d) continuously.

Thisprocedureis standard andfundamental in pseudo-differential calculus [3, 6, 13].

For an admissiblepair of symbolsa, b we definethesymbol product #0 by

c= a#0b ⇐⇒ c(x,D) = a(x,D)b(x,D).

We have the followingwell -known result in the theory of pseudodifferential operators
[3, 6]. Thesymbol product isa continuousbili near map from Sm1

ρ,δ×Sm2
ρ,δ to Sm1+m2

ρ,δ ,

(5) Sm1
ρ,δ#0Sm2

ρ,δ ⊆ Sm1+m2
ρ,δ , m1,m2 ∈ R.

3. Almost periodic functionsand pseudodifferential operators

We will work with spaces of almost periodic functions [2, 7, 12]. The basic space
of uniform almost periodic functions is denoted CAP(Rd) and defined as follows. A
set U ⊂ Rd is called relatively dense if there exists a compact set K ⊂ Rd such that
(x+K)∩U 6= /0 for any x ∈ Rd. An element τ ∈ Rd is called an ε-almost period of
a function f ∈Cb(Rd) if supx | f (x+ τ)− f (x)| < ε. Then CAP(Rd) is defined as the
spaceof all f ∈ Cb(Rd) such that, for any ε > 0, the set of ε-almost periods of f is
relatively dense. With the assumption that the uniform almost periodic functions is a
subspaceof Cb(Rd), this original definition byH. Bohr is equivalent to the following
three[2, 7, 12]:

(i) theset of translations{ f (·− x)}x∈Rd is precompact in Cb(Rd);

(ii ) f = g◦ iB where iB is the canonical homomorphism fromRd into theBohr com-
pactificationRd

B of Rd andg∈C(Rd
B). Hence f can be extended to a continuous

function onRd
B;

(iii ) f is the uniform limit of trigonometric polynomials.

ThespaceCAP(Rd) isa conjugate-invariant complex algebraof uniformly con-
tinuous functions. For f ∈ CAP(Rd) themean valuefunctional

(6) M( f ) = lim
T→+∞

T−d
∫

s+KT

f (x)dx,

whereKT = {x∈Rd : 06 x j 6 T, j = 1, . . . ,d}, existsuniformly over s∈Rd. By Mx

we understand the mean value in the variable x of a function of several variables. The
Bohr (–Fourier) transformation[7] isdefined by

fλ = Mx( f (x)e−2πiλ·x), λ ∈Rd,

and fλ 6= 0 for at most countably many λ ∈ Rd. Theset {λ ∈ Rd : fλ 6= 0} iscalled the
set of frequencies for f .



252 P. Wahlberg

A function f ∈ CAP(Rd) may be reconstructed from its Bohr–Fourier coeffi-
cients ( fλ)λ∈Λ using Bochner–Fejér polynomials [7, 12]. We give abrief overview of
theresultsweneed. Let βn∈Rd, n= 1,2, . . . , be arational basis for theset of frequen-
cies Λ for f . This means that (βn)

∞
n=1 is linearly independent over Q and each λ ∈ Λ

can bewritten

λ =
N

∑
n=1

qnβn, qn ∈Q,

with unique coefficients (qn)
N
n=1. Every countable set Λ ⊂ Rd has a rational basis

contained in Λ [7]. The compositeBochner–Fejér kernel isdefined as

Kn;β1,...,βn(x) = ∑
|ν1|6(n!)2,...,|νn|6(n!)2

(
1− |ν1|

(n!)2

)
· · ·
(

1− |νn|
(n!)2

)

×exp
(

2πi
(ν1

n!
β1+ · · ·+

νn

n!
βn

)
·x
)
.

We denote its coefficients

(7) Kn;ν1,...,νn =

(
1− |ν1|

(n!)2

)
· · ·
(

1− |νn|
(n!)2

)
, |ν j |6 (n!)2, 16 j 6 n.

Since (βn)
∞
n=1 is linearly independent over Q, and sinceMx(e2πiλ·x) = 0 when λ 6= 0,

we haveM(Kn;β1,...,βn) = 1.

For a given f ∈ CAP(Rd) the Bochner–Fejér polynomial of order n is defined
by

(8)

Pn( f )(x) = My
(

f (y)Kn;β1,...,βn(x− y)
)

= ∑
|ν1|6(n!)2,...,|νn|6(n!)2

Kn;ν1,...,νn f ν1
n! β1+···+ νn

n! βn

×exp
(

2πi
(ν1

n!
β1+ · · ·+

νn

n!
βn

)
·x
)
.

It follows from M(Kn;β1,...,βn) = 1 andKn;β1,...,βn(x)> 0 [7] that

(9) ‖Pn( f )‖L∞ 6 ‖ f‖L∞.

If we define the function onΛ

Kn(λ) =

{
Kn;ν1,...,νn if λ = ν1

n! β1+ · · ·+ νn
n! βn, |ν j |6 (n!)2, 16 j 6 n,

0 otherwise,

then we may write (8) in shorter form as

(10) Pn( f )(x) = ∑
λ∈Λ

Kn(λ) fλe2πiλ·x.
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Weobservethat Kn(λ) hasfinitesupport and 06 Kn(λ)6 1. For an arbitrary λ ∈Λ we
may write for somen> 0 and |ν j |6 (n!)2, 16 j 6 n,

λ =
ν1

n!
β1+ · · ·+

νn

n!
βn

=
ν1(n+m)!/n!

(n+m)!
β1+ · · ·+

νn(n+m)!/n!
(n+m)!

βn+0 ·βn+1+ · · ·+0 ·βn+m,

wherem> 0 isarbitrary. It follows that

Kn+m(λ) = Kn+m;ν1(n+m)!/n!,...,νn(n+m)!/n!,0,...,0.

For n and ν1, . . . ,νn fixed, it follows from (7) that the right hand side approaches1 as
m→ ∞, because

1− |ν j |(n+m)!/n!
((n+m)!)2 = 1− |ν j |

n!(n+m)!
→ 1, m→ ∞, 16 j 6 n.

We may concludethat Kn(λ)→ 1 asn→+∞, for any λ ∈ Λ.

We state the fundamental approximation result for the Bochner–Fejér polyno-
mials [7, 12]. If f ∈ CAP(Rd) then we have theuniform limit

(11) sup
x∈Rd
|Pn( f )(x)− f (x)| → 0, n→ ∞.

The limit in (11) holds for any f ∈ CAP(Rd) whose set of frequencies is contained in
Λ.

The next lemma resembles [12, Corollary 2.1]. We give aproof for complete-
ness.

LEMM A 1. For a precompact set F ⊂ CAP(Rd), the limit

sup
x∈Rd
|Pn( f )(x)− f (x)| → 0, n→ ∞

is uniformover f ∈ F .

Proof. Denote‖ ·‖= ‖ ·‖L∞ . Dueto the assumptionthat F is precompact, there exists
for each integer k > 0 a finite set { fk, j}Nk

j=1 ⊂ F such that ‖ f − fk, j‖ < 1/k holds for
each f ∈ F for some j, 16 j 6 Nk. Let Λk be the union of the frequencies that occur
in { fk, j}Nk

j=1 and let Λ be the linear hull over Q of
⋃

k>1 Λk. Define the Bochner–Fejér
kernels{Kn;β1,...,βn(x)}n>1 asabovefrom the countableset Λ.

Let ε > 0 and pick an integer k> ε−1. According to limit (11) we have‖ fk, j −
Pn( fk, j )‖< ε for all 16 j 6 Nk if n> Nε for asufficiently large integer Nε. Let f ∈ F
and pick an fk, j such that ‖ f − fk, j‖< 1/k< ε. We have, using(9),

‖ f −Pn( f )‖ 6 ‖ f − fk, j‖+ ‖ fk, j−Pn( fk, j )‖+ ‖Pn( fk, j − f )‖
6 ‖ f − fk, j‖+ ‖ fk, j−Pn( fk, j )‖+ ‖ fk, j − f‖< 3ε, n> Nε.
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For m∈ N, the spaceCAPm(Rd) is defined as all f ∈Cm(Rd) such that ∂α f ∈
CAP(Rd) for |α| 6 m, and CAP∞(Rd) =

⋂
m∈N CAPm(Rd). Then CAP∞ = CAP∩C∞

b
[12].

Themean valuedefinesan inner product

(12) ( f ,g)B = M( f g), f ,g∈CAP(Rd).

The completion of CAP(Rd) in the norm ‖ · ‖B is the Hilbert spaceof Besicovitch a.p.
functionsB2(Rd) [12].

Inspired by theusual Sobolev spacenorm

‖ f‖Hs(Rd) =

(∫
Rd
(1+ |ξ|2)s| f̂ (ξ)|2dξ

)1/2

,

Shubin [9] hasdefined Sobolev–Besicovitchspacesof a.p. functionsHs(Rd
B) for s∈R,

as the completion of TP(Rd) in thenorm correspondingto the inner product

( f ,g)Hs(Rd
B)
= ∑

ξ∈Rd

(1+ |ξ|2)s fξgξ, f ,g∈ TP(Rd).

ThespacesHs(Rd
B) areHilbert spacescontainingTP(Rd) asadensesubspace, H0(Rd

B)
= B2(Rd), and onedefines

H∞(Rd
B) =

⋂
s∈R

Hs(Rd
B), H−∞(Rd

B) =
⋃
s∈R

Hs(Rd
B).

Wehavethe inclusionCAP∞(Rd)⊂H∞(Rd
B), but there isnoresult correspond-

ing to the Sobolev embedding theorem for the Sobolev–Besicovitch spaces. In fact,
H∞(Rd

B) is not embedded in CAP(Rd) [12]. The reason is that the frequenciesmay be
contained in a bounded set, for example as in

f (x) =
∞

∑
k=1

1
k

e2πiξk·x, |ξk|= 1.

This function is clearly a member of H∞(Rd
B), and if the frequencies {ξk}∞

k=1 are lin-
early independent over Z, then ‖ f‖L∞ = ∑∞

k=1 1/k= ∞ [12].

Next wedefinethesymbol spaces for almost periodic pseudodifferential opera-
tors.

DEFINITION 2. For m∈ R, the spaceAPSm
ρ,δ is defined as the spaceof all a∈

Sm
ρ,δ(R

2d) such that a(·,ξ)∈CAP(Rd) for all ξ∈Rd. The corresponding operator class
in the Kohn–Nirenberg quantization is denoted APLm

ρ,δ, and its members are called
almost periodic pseudodifferential operators.

For fixed ξ ∈ Rd, wedenote theBohr–Fourier coefficientsof a(·,ξ) by

(13) aλ(ξ) = (a(·,ξ))λ = Mx(a(x,ξ)e−2πiλ·x), ξ ∈ Rd, λ ∈ Rd.
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LEMM A 2. For a∈ APSm
ρ,δ theset of frequencies

Λ = Λ(a) = {λ ∈Rd : ∃ξ ∈Rd : aλ(ξ) 6= 0}

is countable.

Proof. Asalready mentioned Λξ = {λ∈Rd : aλ(ξ) 6= 0} iscountablefor each ξ ∈Rd.
Using Λ =

⋃
ξ∈Rd Λξ, it suffices to show that

⋃
ξ∈Rd Λξ ⊂

⋃
ξ∈Qd Λξ. If λ ∈ ⋃

ξ∈Rd Λξ
there exists ξ ∈ Rd such that aλ(ξ) 6= 0. By themean value theorem wehave

(14) a(x,ξ+η)−a(x,ξ) = (∇2 Rea(x,ξ+θ1η)+ i ∇2 Ima(x,ξ+θ2η)) ·η

where∇2 denotesthegradient in thesecondRd variable and 06 θ1,θ2 6 1. It follows
that |aλ(ξ+η)−aλ(ξ)|6Mx(|a(x,ξ+η)−a(x,ξ)|)6C|η|. Hencethere existsξ′ ∈Qd

such that aλ(ξ′) 6= 0.

Without lossof generality we may assume that Λ is a linear spaceover Q. Fur-
thermoreit followsfrom (14) that ∂α

ξ a(·,ξ)∈CAP(Rd) for all α∈Nd andξ∈Rd, since

a ξ-derivative is a uniform limit of CAP(Rd) functions. Thus ∂α
ξ ∂β

xa(·,ξ) ∈ CAP(Rd)

for all α,β ∈ Nd andξ ∈ Rd.

LEMM A 3. Supposea∈ APSm
ρ,δ andλ ∈ Λ. Then aλ ∈C∞(Rd) and

∂α(aλ)(ξ) = (∂α
ξ a)λ(ξ), α ∈ Nd,(15)

(∂β
xa)λ(ξ) = (2πiλ)βaλ(ξ), β ∈ Nd.(16)

Proof. By differentiation under the mean value we obtain (15). To prove (16), we
integrateby partswhich gives

(∂β
xa)λ(ξ) = Mx((∂β

xa)(x,ξ)e−2πiλ·x)

= Mx(a(x,ξ)(−∂x)
β(e−2πiλ·x))

= (2πiλ)βaλ(ξ).

Lemma3 gives

∂α(aλ)(ξ) = (∂α
ξ a)λ(ξ) = (2πiλ)−β(∂α

ξ ∂β
xa)λ(ξ), λ 6= 0.

From (13) andDefinition 1we thusobtain the estimate

(17) |∂α(aλ)(ξ)|6Ck,α〈λ〉−k〈ξ〉m−ρ|α|+δk, k∈N, α ∈ Nd.
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LEMM A 4. If a∈ APSm
ρ,δ and f ∈ TP(Rd) then

(18) a(x,D) f (x) = ∑
λ∈Rd

e2πix·λa(x,λ) fλ.

Proof. Since f (x) = ∑λ fλe2πix·λ is a finitesum we haveby the definition(4)

(19)

a(x,D) f (x) =∑
λ

fλ lim
ε→+0

∫
R2d

ψ(εy)ψ(εξ)e2πi(ξ·x−y·(ξ−λ))a(x,ξ)dydξ

=∑
λ

fλ lim
ε→+0

∫
Rd

a(x,ξ)e2πiξ·xψ(εξ)
(∫

Rd
ψ(εy)e−2πiy·(ξ−λ)dy

)
dξ

=∑
λ

fλ lim
ε→+0

∫
Rd

a(x,ξ+λ)e2πix·(ξ+λ)ψ(ε(ξ+λ))ε−dψ̂(ξ/ε)dξ.

Let usdefineg(ξ)= a(x,ξ+λ)e2πix·(ξ+λ) ∈C∞(Rd). Usingthefact that
∫

ε−dψ̂(ξ/ε)dξ
= ψ(0) = 1 weobtain

∣∣∣∣g(0)−
∫
Rd

g(ξ)ψ(ε(ξ+λ))ε−dψ̂(ξ/ε)dξ
∣∣∣∣

6

∫
Rd
|g(0)−g(ξ)|ε−d|ψ̂(ξ/ε)|dξ+

∫
Rd
|1−ψ(ε(ξ+λ))||g(ξ)|ε−d|ψ̂(ξ/ε)|dξ

=

∫
Rd
|g(0)−g(εξ)||ψ̂(ξ)|dξ+

∫
Rd
|1−ψ(ε(εξ+λ))||g(εξ)||ψ̂(ξ)|dξ.

The integrand of the first term tends to zero as ε→ 0 for each ξ ∈ Rd. For 0< ε < 1
it isdominated byC(1+〈ξ〉|m|〈λ〉|m|)|ψ̂(ξ)|which isintegrable, so byLebesgue’sdom-
inated convergencetheorem the first integral approacheszero as ε→ 0. Likewise, the
secondintegral approacheszero asε→ 0, sincetheintegrandapproacheszero asε→ 0
for each ξ ∈Rd, and isdominated byC|ψ̂(ξ)|〈ξ〉|m|〈λ〉|m| which is integrable. We con-
clude that

lim
ε→+0

∫
Rd

a(x,ξ+λ)e2πix·(ξ+λ)ψ(ε(ξ+λ))ε−dψ̂(ξ/ε)dξ = a(x,λ)e2πix·λ

which inserted into (19) proves(18).

AsShubin has shown [9, 12], most of thebasic resultsof pseudodifferential cal-
culuswith symbolsin Sm

ρ,δ, such asasymptotic expansions, theformulafor composition
of two operatorsandtheformal adjoint of an operator, aretruefor APSm

ρ,δ, with the con-

clusionthat all i nvolved symbols satisfy a(·,ξ)∈CAP(Rd) for all ξ ∈Rd. In particular
we have[12, Theorem 3.1]: If a∈ APSm1

ρ,δ andb∈ APSm2
ρ,δ then a#0b∈ APSm1+m2

ρ,δ .

We will need threemoreresults from Shubin’sarticle [12].

THEOREM 1 (M.A. Shubin). Let A∈ APLm
ρ,δ.
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(i) If u,v∈ CAP∞(Rd) then

(Au,v)B = lim
R→+∞

|BR|−1(A(ϕRu),ϕRv)L2

where{ϕR}R>1⊂C∞
c (R

d) is a family of functionsthat satisfy

ϕR(x) =

{
1 for |x|6 R,
0 for |x|> R+Rκ,

|∂αϕR(x)|6CαR−κ|α|,

where 0 < κ < 1. Here BR ⊂ Rd denotes the ball of radius R centered at the
origin and|BR| its volume.

(ii ) If u ∈ S (Rd) and uk = u∗ψk ∈ CAP∞(Rd), where {ψk}∞
k=1 ⊂ CAP(Rd) are

chosen in a particular way (see[12, Lemma 4.3]), then

(Au,u)L2 = lim
k→+∞

(Auk,uk)B.

(iii ) ‖A‖L (L2(Rd)) = ‖A‖L (B2(Rd)).

Theresult (iii ) isan immediate consequenceof (i) and (ii ).

FromLemma4 weseethat 〈D〉s isaunitary operator fromHs(Rd
B) to H0(Rd

B) =
B2(Rd), just as in the case of Hs(Rd). The well -known result that a ∈ S0

ρ,δ implies

a(x,D) ∈ L (L2(Rd)) [6] has the followingconsequence.

COROLL ARY 1. If a∈ APSm
ρ,δ then for any s∈R

‖a(x,D)‖L (Hs(Rd),Hs−m(Rd)) = ‖a(x,D)‖
L (Hs(Rd

B),H
s−m(Rd

B))
< ∞.

Proof. We have

‖a(x,D)‖L (Hs(Rd),Hs−m(Rd)) = sup
‖ f‖Hs(Rd)61

‖a(x,D) f‖Hs−m(Rd)

= sup
‖〈D〉s f‖L2(Rd)61

‖〈D〉s−ma(x,D)〈D〉−s〈D〉s f‖L2(Rd)

= sup
‖ f‖

L2(Rd)
61
‖〈D〉s−ma(x,D)〈D〉−s f‖L2(Rd)

= sup
‖ f‖B2(Rd)61

‖〈D〉s−ma(x,D)〈D〉−s f‖B2(Rd)

= sup
‖ f‖

Hs(Rd
B)
61
‖a(x,D) f‖Hs−m(Rd

B)

= ‖a(x,D)‖
L (Hs(Rd

B),H
s−m(Rd

B))
.
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In fact, the fourth equality is Theorem 1 (iii ). The finiteness of the operator norm
follows from theobservationthat thesymbol

〈ξ〉s−m#0a#0 〈ξ〉−s∈ S0
ρ,δ,

due to (5), and the above mentioned L2(Rd)-continuity for operators with symbol in
S0

ρ,δ.

4. A transformation of symbols for a.p. pseudodifferential operators

DEFINITION 3. Let a∈ APSm
ρ,δ andlet Λ = Λ(a) denote the frequencieswhose

Bohr–Fourier coefficientsaλ are not identically zero. We set

(20) U(a)(ξ)λ,λ′ = aλ′−λ(ξ−λ′), λ,λ′ ∈ Λ, ξ ∈ Rd,

where aλ(ξ) is theBohr–Fourier coefficient defined in (13).

We note the property

U(a)(ξ)λ,λ′ =U(a)(ξ+µ)λ+µ,λ′+µ, µ∈ Λ.

By Lemma1 the inverse transformation of a 7→U(a)λ,λ′ is

a(x,ξ) = lim
n→∞ ∑

λ∈Λ
Kn(λ)U(a)(ξ)−λ,0(ξ)e2πiλ·x

which convergesuniformly in x for each ξ. For a∈ Sm
ρ,δ the map a 7→U(a)λ,λ′ is thus

injective.

For fixed ξ ∈ Rd wemay look uponU(a)(ξ) asamatrix,

U(a)(ξ) = [U(a)(ξ)λ,λ′ ]λ,λ′∈Λ,

indexed by (λ,λ′) ∈ Λ×Λ. This matrix defines an operator on complex-valued se-
quencesdefined onΛ, which aredenoted z= (zλ)λ∈Λ, accordingto

(U(a)(ξ) ·z)λ = ∑
λ′∈Λ

U(a)(ξ)λ,λ′zλ′ .

It follows from (15) that

(21) ∂α
ξ (U(a))(ξ) =U(∂α

ξ a)(ξ).

Moreover, denoting translation by(T0,−ηa)(x,ξ) = a(x,ξ+η) we have

(22) U(T0,−ηa)(ξ)λ,λ′ = (T0,−ηa)λ′−λ(ξ−λ′) =U(a)(ξ+η)λ,λ′.

Sincetheoperator-valuedfunctionU(a) dependsonthefrequency variableonly,
it may be used to define aFourier multiplier operator for vector-valued functions ac-
cording to

(23) U(a)(D)F(x) =
∫
Rd

e2πiξ·xU(a)(ξ) · F̂(ξ)dξ,
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whereF(x) = (Fλ(x))λ∈Λ is thevector-valued function

Rd ∋ x 7→ (Fλ(x))λ∈Λ.

The inner product for vector-valued functionsis

(F,G)L2(Rd,l2) = (F,G)L2(Rd,l2(Λ)) =

∫
Rd
(F(x),G(x))l2 dx

=
∫
Rd

∑
λ∈Λ

Fλ(x)Gλ(x)dx, F,G∈ L2(Rd, l2).

If the symbol a doesnot depend onx, i.e. a(x,D) is a Fourier multiplier (convolution)
operator, then aλ(ξ) = 0 when λ 6= 0 followsfrom (13). ThusU(a)(ξ) is thepointwise
multiplier operator

(U(a)(ξ) ·z)λ = ∑
λ′∈Λ

aλ′−λ(ξ−λ′)zλ′ = a0(ξ−λ)zλ = a(ξ−λ)zλ,

and

(U(a)(D)F(x))λ =

∫
Rd

e2πiξ·xa(ξ−λ)F̂λ(ξ)dξ = (Tλa)(D)Fλ(x).

Thus U(a)(D) acts pointwise in the λ variable by a convolution in x. If a does not
depend onξ, then U(a) does not depend onξ either, and U(a)λ,λ′ = aλ′−λ. Thus, in
this case wehave

(U(a)(D)F(x))λ = (U(a) ·F(x))λ = ∑
λ′∈Λ

aλ′−λFλ′(x),

which is an operator that actspointwise in x, by a convolution over the index set Λ. In
particular wehaveU(1)(ξ)λ,λ′ = δλ′−λ which denotestheKronecker delta. Thismeans
that U(1)(D) = I .

The abovediscussion is not precise sincewe havenot yet proved in what sense
U(a)(ξ) is a continuous operator for fixed ξ ∈ Rd, and whether the operator-valued
functionξ 7→U(a)(ξ) iscontinuousand bounded. Let us therefore addresstheseques-
tions.

We shall first evaluate the operator-valued function U(a)(ξ) in the origin. It
will t urn out that U(a)(0) contains much information about continuity, positivity and
invertibilit y of a(x,D). We need thesequencespaces

(24) l p
s = l p

s (Λ) =



(xλ)λ∈Λ : ‖x‖l p

s
=

(

∑
λ∈Λ
〈λ〉ps|xλ|p

)1/p

< ∞



 ,

parametrized by s∈ R and normed by ‖ · ‖l p
s

where 1 6 p 6 ∞. In some places we
will use the symbol l2c which denotes the spaceof square-summable sequences with
compact support.
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PROPOSITION 1. For a∈ APSm
ρ,δ we havefor any s∈ R

(25) ‖U(a)(0)‖L (l2s ,l2s−m)
6 ‖a(x,D)‖

L (Hs(Rd
B),H

s−m(Rd
B))

< ∞.

Proof. Let f ,g∈ TP(Λ). Lemma4 gives

(26)

(a(x,D) f ,g)B = ∑
λ,λ′

Mx(a(x,λ)e2πix·(λ−λ′)) fλgλ′

= ∑
λ,λ′

aλ′−λ(λ) fλgλ′

= (U(a)(0) · f̌ , ǧ)l2

where f̌λ = f−λ. We abbreviate Hs = Hs(Rd
B). Using the duality (Hs)′ = H−s under

the form (·, ·)B, weobtain

‖a(x,D)‖L (Hs,Hs−m) = sup
‖ f‖Hs61

‖a(x,D) f‖Hs−m

= sup
‖ f‖Hs61,‖g‖Hm−s61

|(a(x,D) f ,g)B|

> sup
‖ f·‖l2s61,‖g·‖l2m−s

61
|(U(a)(0) · f̌ , ǧ)l2|

= ‖U(a)(0)‖L (l2s ,l2s−m)
,

wherewedenote‖ f·‖2l2s = ∑λ〈λ〉2s| fλ|2.

Asa consequenceof (26) andTheorem1 (i) and(ii ) wehavethefollowingresult
on positivity. Ascustomary wesay that A isapositiveoperator ona topological vector
spaceX if (Af , f )H > 0 for all f ∈ X, whereX ⊂H andH is aHilbert space, naturally
associated with X. (We avoid the requirement (Af , f )H > 0 for all f ∈ H since the
expression (Af , f )H may not be well -defined if A is not a bounded operator on H.)
This isdenoted A> 0 (wherethespacesX andH areunderstoodfrom the context). We
will use the following pairs (X,H): (S (Rd),L2(Rd)), (TP(Rd),B2(Rd)), (l2c , l

2) and
(S (Rd, l2c),L

2(Rd, l2)).

COROLL ARY 2. If a∈ APSm
ρ,δ then a(x,D)> 0 onS (Rd) if and only if a(x,D)

> 0 onTP(Rd). Moreover, a(x,D)> 0 onTP(Λ) if and only if U(a)(0)> 0 on l2c .

The next result gives a continuity statement of the operator-valued map ξ 7→
U(a)(ξ).

PROPOSITION 2. If a∈ APSm
ρ,δ then we have

‖U(a)(ξ)‖L (l1|m|,l∞) 6C〈ξ〉m,(27)

U(a) ∈C(Rd,L (l1|m|, l
∞)).(28)
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Proof. Using the inequality 〈x+ y〉u 6C〈x〉u〈y〉|u|, Definition 3and (17) we obtain

|U(a)(ξ)λ,λ′ |6C〈ξ−λ′〉m 6C〈ξ〉m〈λ′〉|m|.

Hence

‖U(a)(ξ) ·x‖l∞ 6C〈ξ〉m‖x‖l1|m|
which proves(27). To prove(28), wenote that

(U(a)(ξ)−U(a)(ξ+η))λ,λ′ =U(a−T0,−ηa)(ξ)λ,λ′(29)

follows from (22). Thus, by the mean value theorem (14), and again Definition 3and
(17),

∣∣∣(U(a)(ξ)−U(a)(ξ+η))λ,λ′
∣∣∣

6 |η|
∣∣(∇2Rea)λ′−λ(ξ−λ′+θ1η)+ i(∇2 Ima)λ′−λ(ξ−λ′+θ2η)

∣∣

6C|η|
(
〈ξ−λ′+θ1η〉m−ρ + 〈ξ−λ′+θ2η〉m−ρ)

6C|η|〈λ′〉m−ρ
(
〈ξ+θ1η〉|m−ρ|+ 〈ξ+θ2η〉|m−ρ|

)

6C|η|〈λ′〉|m|〈η〉|m−ρ|〈ξ〉|m−ρ|,

and therefore
‖U(a)(ξ)−U(a)(ξ+η)‖L (l1|m|,l∞)

= sup
‖x‖

l1|m|
61

sup
λ∈Λ
|((U(a)(ξ)−U(a)(ξ+η)) ·x)λ|

6C|η|〈η〉|m−ρ|〈ξ〉|m−ρ|

→ 0, |η| → 0.

Thisproves(28).

The next result gives a sharpening of condition (28), since we have l1|m| ⊂ l2|m|
and l2|m|−m⊂ l∞.

PROPOSITION 3. If a∈ APSm
ρ,δ then we havefor any s∈R

U(a)(ξ) ∈ L (l2s , l2s−m), ξ ∈ Rd,(30)

U(a) ∈C(Rd,L (l2s , l
2
s−m)).(31)

Proof. From (22) we seethat U(a)(ξ) =U(T0,−ξa)(0). SinceT0,−ξa∈ APSm
ρ,δ for any

ξ ∈Rd, (30) follows from Proposition 1.

In order to prove(31), it suffices to prove continuity in theorigin, since

U(a)(ξ+η)−U(a)(η) =U(T0,−ηa)(ξ)−U(T0,−ηa)(0).
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We use(29) andagain Proposition 1andCorollary 1, which give

‖U(a)(ξ)−U(a)(0)‖L (l2s,l2s−m)
= ‖U(T0,−ξa−a)(0)‖L (l2s,l2s−m)

6 ‖(T0,−ξa−a)(x,D)‖L (Hs(Rd),Hs−m(Rd)).

In thenext step we use

‖b(x,D)‖L (Hs(Rd),Hs−m(Rd)) = ‖〈D〉s−mb(x,D)〈D〉−s‖L (L2)

for b∈Sm
ρ,δ, andthefact that theL (L2)-norm of an operator with symbol in S0

ρ,δ may be

estimated byafinitesum of seminormsof thesymbol in S0
ρ,δ (see[6, Theorem 18.1.11]

and [3, Theorem 2.80]). By (5) it thus suffices to provethat

(32) T0,−ξa−a→ 0 in Sm
ρ,δ as ξ→ 0.

Themean valuetheorem (14) gives

a(x,η+ ξ)−a(x,η) = (∇2Rea(x,η+θ1ξ)+ i∇2 Ima(x,η+θ2ξ)) ·ξ

with 06 θ1,θ2 6 1, so we have
∣∣∣∂α

η∂β
x(T0,−ξa−a)(x,η)

∣∣∣

6 |ξ|
∣∣∣∂α

η∂β
x∇2Rea(x,η+θ1ξ)+ i∂α

η∂β
x∇2 Ima(x,η+θ2ξ)

∣∣∣

6C|ξ|
(
〈η+θ1ξ〉m−ρ(|α|+1)+δ|β|+ 〈η+θ2ξ〉m−ρ(|α|+1)+δ|β|

)

6C|ξ|〈ξ〉|m−ρ(|α|+1)+δ|β||〈η〉m−ρ(|α|+1)+δ|β|.

Thisproves(32), and therefore(31).

Thefollowingresult concernspositivity.

PROPOSITION 4. If a ∈ APSm
ρ,δ then we have: a(x,D) > 0 on S (Rd) implies

U(a) (D)> 0 onS (Rd, l2c). Moreover, U(a)(D)> 0 onS (Rd, l2c) impliesa(x,D)> 0
onTP(Λ).

Proof. Supposea(x,D)> 0 onS (Rd). For f ∈S (Rd) andMη f (x) = e2πiη·x f (x) we
have, for any η ∈ Rd,

06 (a(x,D)Mη f ,Mη f )L2(Rd)

=

∫∫
R2d

e2πix·(ξ−η)a(x,ξ) f̂ (ξ−η) f (x)dxdξ

=

∫∫
R2d

e2πix·ξa(x,ξ+η) f̂ (ξ) f (x)dxdξ

= ((T0,−ηa)(x,D) f , f )L2(Rd).
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Thus (T0,−ηa)(x,D) > 0 onS (Rd) for all η ∈ Rd. By Corollary 2 and (22) it follows
that U(a)(ξ)> 0 on l2c for all ξ ∈Rd. If F ∈S (Rd, l2c) we obtain

(U(a)(D)F,F)L2(Rd,l2) =
∫
Rd
(U(a)(ξ) · F̂(ξ), F̂(ξ))l2 dξ > 0,

sincethe integrandisnonnegative everywhere. ThusU(a)(D)> 0 onS (Rd, l2c).

Suppose on the other hand that U(a)(D) > 0 on S (Rd, l2c). Let z∈ l2c and
pick ϕ ∈C∞

c (R
d) with support in the unit ball such that ϕ > 0 and ‖ϕ‖L2 = 1. With

ϕε(x) = ε−d/2ϕ(x/ε) andFε(x)λ = F−1ϕε(x)zλ we then have

06 (U(a)(D)Fε,Fε)L2(Rd,l2) =

∫
Rd
(U(a)(ξ) ·z,z)l2ϕε(ξ)2 dξ

→ (U(a)(0) ·z,z)l2, ε→ 0,

wherewehaveused (31) andtheshrinkingsupport of ϕε. ThereforeU(a)(0)> 0 onl2c
which implies that a(x,D)> 0 onTP(Λ) accordingto Corollary 2.

The previous result is similar to Gladyshev’s results [4, 5], which were formu-
lated in the framework of almost periodically correlated (or cyclostationary) stochas-
tic processes and vector-valued weakly stationary stochastic processes. The so-called
covarianceoperator of a second-order stochastic processis a positive operator, and an
almost periodically correlated stochastic processhasa covarianceoperator whosesym-
bol isalmost periodic in thefirst variable. Weakly stationary stochastic processeshave
translationinvariant covarianceoperators, that is, they are convolution(or Fourier mul-
tiplier) operators. Gladyshev showed that the transformation (20), a 7→U(a), which
he formulated in terms of operator kernels, transforms a uniformly continuous kernel
corresponding to a positive a.p. pseudodifferential operator to the kernel of a positive
translation-invariant operator acting on vector-valued function spaces. The kernel of
the operator (2) is

ka(x,y) =
∫
Rd

e2πiξ·(x−y)a(x,ξ)dξ = (F−1
2 a)(x,x− y),

understoodasan oscill atory integral. HereF2 denotespartial Fourier transform in the
secondRd variable. Thestudy of almost periodically correlated stochastic processesis
in many respects rather similar to the theory of positive a.p. pseudodifferential oper-
ators. The symbol classes Sm

ρ,δ are however rarely used for stochastic processes. One
usually restricts to operatorswhosekernelsare continuousfunctions.

Thenext result concernscomposition.

THEOREM 2. If a∈ APSm1
ρ,δ and b∈ APSm2

ρ,δ, m1,m2 ∈R, then

(33) U(a#0b)(ξ) =U(a)(ξ) ·U(b)(ξ), ξ ∈ Rd.

Proof. Let Λ denotethelinear hull over Q of Λ(a)∪Λ(b). Accordingto (30) in Propo-
sition 3, U(a)(ξ) ∈ L (l2s , l2s−m1

) andU(b)(ξ) ∈ L (l2s , l2s−m2
) for any s∈ R. Therefore
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the sum

(34)

(U(a)(ξ) ·U(b)(ξ))λ,λ′ = ∑
µ∈Λ

U(a)(ξ)λ,µU(b)(ξ)µ,λ′

= ∑
µ∈Λ

aµ−λ(ξ−µ)bλ′−µ(ξ−λ′)

isabsolutely convergent for all (λ,λ′) ∈ Λ×Λ, and thematrix U(a)(ξ) ·U(b)(ξ) maps
l2s to l2s−m1−m2

continuously for any s∈ R andany ξ ∈ Rd.

We study the left hand side of (33) by regularizing the symbol b in two steps.
First we pick a test function ϕ ∈C∞

c (R
d) which equals one in a neighborhood of the

origin, set ϕε(ξ) = ϕ(εξ) and define

bε(x,ξ) = b(x,ξ)ϕε(ξ) ∈ S−∞
ρ,δ , 06 ε 6 1.

By [6, Proposition 18.1.2] ϕε → 1 in Sθ
1,0 as ε→ 0 for any θ > 0. Since convergence

in Sθ
1,0 implies convergencein Sθ

ρ,δ and bε = b#0ϕε, it follows from (5) that bε→ b in

Sm2+θ
ρ,δ asε→ 0, and

a#0b= lim
ε→0

a#0bε in Sm1+m2+θ
ρ,δ , θ > 0.

Convergencein Sm
ρ,δ for any m∈ R implies theuniform convergence

sup
x∈Rd
|a#0b(x,ξ)−a#0bε(x,ξ)| → 0, ε→ 0,

for any ξ ∈Rd, and thereforewe havefor theBohr–Fourier coefficients

(35) (a#0b)µ(ξ) = lim
ε→0

(a#0bε)µ(ξ), µ∈ Rd, ξ ∈ Rd.

In the secondstep we regularize the symbol bε. Fix α,β ∈ Nd and define the

family of functionsF = {∂α
ξ ∂β

xbε(·,ξ)}ξ∈Rd ⊂ CAP(Rd). The family F dependscon-

tinuously in theCAP(Rd) norm on ξ by (14), and hascompact support with respect to
ξ. ThusF is precompact, and byLemma 1 the Fourier series reconstruction with the
Bochner–Fejér polynomials

(36)

∂α
ξ ∂β

xbε(x,ξ) = lim
n→∞

Pn(∂α
ξ ∂β

xbε(·,ξ))(x)

= lim
n→∞ ∑

λ∈Λ
Kn(λ)(∂α

ξ ∂β
xbε)λ(ξ)e2πiλ·x

is uniformly convergent in both variables, i.e. inR2d. By Lemma3 wehave

(∂α
ξ ∂β

xbε)λ(ξ) = ∂α
ξ (∂

β
xbε)λ(ξ) = (2πiλ)β∂α

ξ (bε)λ(ξ),

which means that we can rewrite (36) as the uniform limit over R2d

(37) ∂α
ξ ∂β

xbε(x,ξ) = lim
n→∞

∂α
ξ ∂β

x

(

∑
λ∈Λ

Kn(λ)(bε)λ(ξ)e2πiλ·x
)
.
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Let usdenote, observingthat (bε)λ(ξ) = bλ(ξ)ϕ(εξ),

bε,n(x,ξ) = ϕ(εξ) ∑
λ∈Λ

Kn(λ)bλ(ξ)e2πiλ·x.

Thefact that bε(x, ·) andbε,n(x, ·) havesupport in a compact set, commonfor all x∈Rd,
in combinationwith theuniform limit (37), implies that

sup
x,ξ∈Rd

〈ξ〉−m+ρ|α|−δ|β|
∣∣∣∂α

ξ ∂β
x (bε,n(x,ξ)−bε(x,ξ))

∣∣∣→ 0, n→ ∞,

for any m∈ R. Thisholds for any α,β ∈ Nd, and hencebε,n→ bε in Sm
ρ,δ asn→ ∞ for

any m∈R. Thismeansby (5) that a#0bε,n→ a#0bε in Sm
ρ,δ asn→∞ for any m∈R. As

abovewethusobtain

(38) (a#0b)µ(ξ) = lim
ε→0

lim
n→∞

(a#0bε,n)µ(ξ), µ∈Rd, ξ ∈ Rd,

using (35).

Since the symbol cλ(x,ξ) = e2πiλ·xbλ(ξ)ϕ(εξ) gives the pseudodifferential op-
erator

(39) cλ(x,D)g(x) =
∫
Rd

e2πiξ·xbλ(ξ−λ)ϕ(ε(ξ−λ))ĝ(ξ−λ)dξ, g∈S (Rd),

it follows that

a(x,D)(cλ(x,D)g)(x) =
∫
Rd

e2πix·ξa(x,ξ)F (cλ(x,D)g)(ξ)dξ

=

∫
Rd

e2πix·ξa(x,ξ)bλ(ξ−λ)ϕ(ε(ξ−λ))ĝ(ξ−λ)dξ

=
∫
Rd

e2πix·(ξ+λ)a(x,ξ+λ)bλ(ξ)ϕ(εξ)ĝ(ξ)dξ,

and thus
a#0cλ(x,ξ) = a(x,ξ+λ)bλ(ξ)ϕ(εξ)e2πiλ·x.

Thisgives
(a#0bε,n)(x,ξ) = ∑

λ∈Λ
Kn(λ)a(x,ξ+λ)bλ(ξ)ϕ(εξ)e2πiλ·x.

Hence

lim
n→∞

(a#0bε,n)µ(ξ) = ϕ(εξ) lim
n→∞ ∑

λ∈Λ
Kn(λ)aµ−λ(ξ+λ)bλ(ξ)

= ϕ(εξ) ∑
λ∈Λ

aµ−λ(ξ+λ)bλ(ξ),(40)

due to 06 Kn 6 1, Kn(λ)→ 1 as n→ ∞ for all λ ∈ Λ, the absolutely convergent sum
(34), and thedominated convergencetheorem. Now (38) and (40) yield

(a#0b)µ(ξ) = ∑
λ∈Λ

aµ−λ(ξ+λ)bλ(ξ), µ∈ Λ, ξ ∈ Rd.
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Finally we have

U(a#0b)(ξ)λ,λ′ = (a#0b)λ′−λ(ξ−λ′)
= ∑

µ∈Λ
aλ′−λ−µ(ξ−λ′+µ)bµ(ξ−λ′)

= ∑
µ∈Λ

aµ−λ(ξ−µ)bλ′−µ(ξ−λ′).

A comparisonwith (34) completestheproof.

To summarizeour findingshitherto, the transformationa 7→U(a) maps a sym-
bol a∈Sm

ρ,δ defined onthephasespaceRd×Rd to an operator-valuedsymbol U(a) that

dependsonthefrequency variableξ∈Rd only. Theoperator correspondingto thesym-
bol U(a) actsonsequence-spacevalued functionspaces, e.g. S (Rd, l2c). Theoperator
corresponding to the symbol U(a) is thus a convolution (Fourier multiplier) operator.
The map a(x,D) 7→U(a)(D) is linear, injective, preserves identity and positivity, and
respectsoperator composition,

a(x,D)b(x,D) 7→U(a#0b)(D) =U(a)(D) ·U(b)(D).

Convolution operatorsdo not commutewhen functionspacesarevector-valued asthey
do for scalar-valued function spaces. The transformation a 7→U(a) encodes the non-
commutativity of a(x,D) and b(x,D) in the matrix product of the symbolsU(a) and
U(b). That is, with the notation for the commutator [A,B] = AB−BA, we have

[a(x,D),b(x,D)] 7→U(a)(D) ·U(b)(D)−U(b)(D) ·U(a)(D),

where the right handsideoperator actsby

[U(a)(D),U(b)(D)]F(x)

=

∫
Rd

e2πix·ξ (U(a)(ξ) ·U(b)(ξ)−U(b)(ξ) ·U(a)(ξ))· F̂(ξ)dξ.

In our final result we show that the basic assumption of this paper, i.e. that
symbols are almost periodic in the first variable, is invariant under the quantization.
Moreprecisely, let us introducethe family of quantizations

(41) at(x,D) f (x) =
∫
R2d

e2πiξ·(x−y)a((1− t)x+ ty,ξ) f (y)dydξ

parametrized by t ∈ R. The Kohn–Nirenberg quantization is obtained for t = 0 and
the Weyl quantization has t = 1/2. The following result says that if an operator is
expressed in two different quantizations, then if its symbol isalmost periodic in thefirst
variable in one quantization, it will have the same property in any other quantization.
In other words, thefact that wehaveworked in theKohn–Nirenberg quantizationisnot
essential.
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PROPOSITION 5. If a ∈ APSm
ρ,δ, s, t ∈ R, s 6= t, and at(x,D) = bs(x,D), then

b∈ APSm
ρ,δ.

Proof. We use atechniquethat is similar to the proof of Theorem 2. If a,b∈S (R2d)
and f ∈S (Rd) then the integral over ξ in (41) isapartial Fourier transform, so weget

at(x,D) f (x) =
∫
Rd

F2a((1− t)x+ ty,y− x) f (y)dy

=

∫
Rd

F2a(x+ ty,y) f (y+ x)dy

=

∫∫
R2d

â(z,y)e2πit z·ye2πiz·x f (y+ x)dydz.

Thus if at(x,D) = bs(x,D) we have

b̂(x,ξ) = e−2πi(s−t)x·ξâ(x,ξ),

which extends by continuity to a,b ∈ S ′(R2d) [3]. This transformation is often de-
noted [6]

(42) b(x,ξ) = e−2πi(s−t)Dx·Dξ a(x,ξ) := (Ta)(x,ξ).

According to [3, Theorem 2.37], we have

(43) e−2πi(s−t)Dx·Dξ : Sm
ρ,δ 7→ Sm

ρ,δ continuously, m∈R.

Therefore it suffices to provethat (Ta)(·,ξ) ∈CAP(Rd) for all ξ ∈ Rd.

We proceed with a regularization of thesymbol a as in theproof of Theorem 2.
Thus let ϕ ∈C∞

c (R
d) equal one in aneighborhood of theorigin, set ϕε(ξ) = ϕ(εξ) and

define aε(x,ξ) = a(x,ξ)ϕε(ξ). Then aε → a in Sm+θ
ρ,δ as ε→ 0 for any θ > 0. By the

continuity (43) wehaveTaε→ Ta in Sm+θ
ρ,δ asε→ 0. Moreover, if we define

aε,n(x,ξ) = ϕ(εξ) ∑
λ∈Λ

Kn(λ)aλ(ξ)e2πiλ·x

then we obtain aε,n→ aε in Sm′
ρ,δ as n→ ∞ for any m′ ∈ R, as in the proof of Theorem

2. Again by the continuity (43) it followsthat Taε,n→ Taε in Sm′
ρ,δ asn→ ∞. It follows

that for each fixed ξ ∈ Rd we have theuniform limits

(Ta)(·,ξ) = lim
ε→0

lim
n→∞

(Taε,n)(·,ξ).

SinceCAP(Rd) is closed under uniform convergence[7], the proof is complete if we
show that (Taε,n)(·,ξ) ∈ CAP(Rd) for any ξ ∈Rd, ε > 0 andn∈N.

We have, since(aε)λ(ξ) = aλ(ξ)ϕ(εξ),

F (aε,n)(η,z) = ∑
λ∈Λ

Kn(λ)δλ(η)F (aε)λ(z),
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whereδλ = δ0(·−λ) denotesa translated Diracdistribution. Hencewehave

e−2πi(s−t)η·z
F (aε,n)(η,z) = ∑

λ∈Λ
Kn(λ)e−2πi(s−t)λ·zδλ(η)F (aε)λ(z)

= ∑
λ∈Λ

Kn(λ)δλ(η)F (T(s−t)λ(aε)λ)(z)

and, sinceTa= F−1MF where (M f )(η,z) = e−2πi(s−t)η·z f (η,z),

(Taε,n)(x,ξ) = ∑
λ∈Λ

Kn(λ)(T(s−t)λ(aε)λ)(ξ)e2πiλ·x

= ∑
λ∈Λ

Kn(λ)(aε)λ(ξ− (s− t)λ)e2πiλ·x.

Hence(Taε,n)(·,ξ) isa trigonometric polynomial, becausethesum isfinite, so wemay
concludethat (Taε,n)(·,ξ) ∈ CAP(Rd) for any ξ ∈ Rd, ε > 0 andn∈ N.

REMARK 1. Wehaveworked in theKohn–Nirenbergquantizationandthetrans-
formation a 7→U(a). For the Weyl quantization, the corresponding transformation is
a 7→V(a) where

V(a)(ξ)λ,λ′ = aλ′−λ

(
ξ− λ+λ′

2

)
.

With the Weyl product defined by a1/2(x,D)b1/2(x,D) = (a#b)1/2(x,D), we then have
V(a#b)(ξ) =V(a)(ξ) ·V(b)(ξ), correspondingto Theorem 2. Moreover,V(a)(ξ)λ,λ′ =

V(a)(ξ)λ′,λ, i.e. V(a)(ξ) =V(a)(ξ)∗ whereA∗ denotestheHermitian (conjugatetrans-
pose) matrix, which gives V(a)(D) = V(a)(D)∗. Since a1/2(x,D) = a1/2(x,D)∗, we
obtain as a consequence that the transformation a1/2(x,D) 7→ V(a)(D), as well as
a(x,D) 7→U(a)(D), respectsadjoints.
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THE KLEIN-GORDON EQUATION

IN ANTI-DE SITTER SPACETIME

Dedicated to Professor Luigi Rodino ontheoccasion of his60th birthday

Abstract. In this article, we apply the fundamental solution constructed in a previous paper,
and obtain the representation of the solution to the Cauchy problem for the Klein-Gordon
equation�gφ−m2φ = f in anti-de Sitter spacetime.

1. Introduction

In this article, we study the Cauchy problem for the Klein–Gordonequation, namely
�gφ−m2φ = f , in anti-deSitter spacetime.

In themodel of theuniverseproposed by deSitter, theline element hastheform

ds2 = −
(

1− 2Mbh

r
− Λr2

3

)
c2dt2+

(
1− 2Mbh

r
− Λr2

3

)−1

dr2

+ r2(dθ2+ sin2dφ2).

The constant Mbh may have an interpretation as the “massof the black hole”, while
Λ is the cosmological constant. The corresponding metric with this line element is
called theSchwarzschild–deSitter metric. Hubble’sdiscovery in 1929 of an expanding
universe(see, e.g., [9]), which can beunderstoodasdueto a cosmological constant, has
initiated a lot of work with the aim to study how Λ affects, e.g., quantum mechanics,
quantum field theory, and celestial mechanics. In principle, the cosmological constant
should takepart in phenomenaonevery physical scale [10].

The Cauchy problem for the linear and semili near Klein–Gordonequation in
Minkowski spacetime (Mbh = Λ = 0) is well i nvestigated. (See, e.g., [8], [11] and ref-
erences therein.) In particular, for the semili near equation utt −∆u+ u= F(u), with
initial conditions u(0,x) = εϕ0(x), ut(0,x) = εϕ1(x), Keel and Tao [8] proved that if
n= 1,2,3 and 1< p< 1+2/n, then there exists a (non-Hamiltonian) nonlinearity F
satisfying |DαF(u)| ≤C|u|p−|α| for 0≤ α ≤ [p] andsuch that there is no finite energy
global solution supported in the forward light cone, for any nontrivial smooth com-
pactly supported ϕ0 and ϕ1 and for any ε > 0.

The Cauchy problem for the linear wave equation (m= 0) without sourceterm
on the maximally extended Schwarzschild–de Sitter spacetime in the case of non-
extremal black-hole corresponding to parameter values 0< Mbh < 1/3

√
Λ, is consid-

ered byDafermosandRodnianski [5]. They proved that in theregion bounded byaset
of black/whiteholehorizonsandcosmological horizons, solutionsconvergepointwise
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to a constant faster than any given polynomial rate, where the decay is measured with
respect to natural future-directed advanced and retarded time coordinates.

Catania and Georgiev [4] studied the Cauchy problem for the semili near wave
equation�gφ = |φ|p in the Schwarzschild metric (3+1)-dimensional spacetime, that
is the case of Λ = 0 in 0< Mbh < 1/3

√
Λ. They established that the problem in the

Regge–Wheeler coordinates is locally well -posed in Hσ for any σ ∈ [1, p+1). Then
for the special choiceof the initial data they proved the blow-up of the solution in two
cases: (a) p∈ (1,1+

√
2) andsmall i nitial datasupported far away from theblack hole;

(b) p ∈ (2,1+
√

2) and large data supported near the black hole. In both cases, they
also gave an estimate from abovefor the li fespan of thesolution.

In the present paper we focus on another limit case as Mbh→ 0 in the interval
0 < Mbh < 1/3

√
Λ, namely, we set Mbh = 0 to ignore completely influence of the

black hole. Thus, the line element in the deSitter spacetimehas the form

ds2 =−
(

1− r2

R2

)
c2dt2+

(
1− r2

R2

)−1

dr2+ r2(dθ2+ sin2 θdφ2) .

TheLamaître–Robertsontransformation[9]

r ′ =
r√

1− r2/R2
e−ct/R , t ′ = t +

R
2c

ln

(
1− r2

R2

)
, θ′ = θ , φ′ = φ,

leads to the following form for the line element:

ds2 =−c2dt ′2+e2ct′/R
(

dr ′2+ r ′2dθ′2+ r ′2sin2 θ′dφ′2
)
.

By defining coordinates x′, y′, z′ connected with r ′, θ′, φ′ by the usual equations con-
nectingCartesian coordinatesand polar coordinates in a Euclidean space, the line ele-
ment may bewritten [9, Sec.134]

ds2 =−c2dt ′2+e2ct′/R
(

dx′2+dy′2+dz′2
)
.

The new coordinates r ′, θ′, φ′, t ′ can take all values from −∞ to ∞. Here R is the
“ radius” of the universe. In the Robertson–Walker spacetime [3, 7] one can choose
coordinates so that themetric has the form

ds2 =−dt2+S2(t)dσ2 .

In particular, the metric in the de Sitter and anti-de Sitter spacetime in the Lamaître–
Robertsoncoordinates[9] has this form with S(t) = et andS(t) = e−t , respectively.

In thepaper [16], westudy theCauchy problem for theKlein–Gordonequation
in Robertson–Walker spacetime by applying the Lamaître-Robertson transformation
and byemploying the fundamental solutions constructed there for the Klein–Gordon
operator in Robertson–Walker spacetime, that is for S := ∂2

t −e−2t△+M2. The fun-
damental solution E = E (x, t;x0, t0), that is solution of S E = δ(x− x0, t − t0), with
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a support in the forward light cone and the fundamental solution with a support in
the backward light cone are constructed in [16]. The fundamental solution with the
support in the forward light cone has been used in [16] to represent solutions of the
Cauchy problem and to proveLp−Lq estimates for the solutionsof the equation with
andwithout a sourceterm.

The matter waves in the de Sitter spacetime are described by the function φ,
which satisfies equations of motion. In the de Sitter and anti-de Sitter spacetime the
equation for thescalar field with mass m is the covariant Klein–Gordonequation

�gφ−m2φ = f or
1√
|g|

∂
∂xi

(√
|g|gik ∂φ

∂xk

)
−m2φ = f ,

with the usual summation convention, where x = (x0,x1, . . . ,xn) and gik is a metric
tensor. Written explicitly in coordinates in thedeSitter spacetime it has the form

(1) φtt +nφt −e−2t∆φ+m2φ = f .

Here t is x0, while△ is the Laplaceoperator on the flat metric in Rn. If we introduce
the new unknown function u= e

n
2 tφ, then the equation(1) takes the form of the linear

Klein–Gordonequationfor u on deSitter spacetime

(2) utt −e−2t△u+M2u= f ,

wherethe “curvedmass” M isdefined bythe equationM2 := m2−n2/4. In the caseof
0≤m≤ n/2, equation (2) can be regarded as Klein–Gordonequation with imaginary
mass. Equationswith imaginary massappear in several physical models such astheφ4

field model, tachion(super-light) fields, Landau–Ginzburg–Higgsequationand others.

The equation (2) is strictly hyperbolic. That implies the well -posednessof the
Cauchy problem in thedifferent functional spaces. Consequently, thesolution operator
is well -defined in those functional spaces. Then, the speed of propagation is variable,
namely, it is equal to e−t . The second-order strictly hyperbolic equation (2) possesses
two fundamental solutionsresolvingtheCauchy problem without sourceterm f . They
can bewritten in termsof theFourier integral operators, which give completedescrip-
tion of thewavefront setsof thesolutions. Moreover, theintegrabilit y of the character-
istic roots,

∫ ∞
0 |λi(t,ξ)|dt < ∞, i = 1,2, leadsto the existenceof theso-called “horizon”

for that equation. More precisely, any signal emitted from the spatial point x0 ∈ Rn

at time t0 ∈ R remains inside the ball Bn
t0(x0) := {x∈ Rn | |x− x0| < e−t0} for all ti me

t ∈ (t0,∞). In particular, it can cause anonexistenceof the Lp−Lq decay for the solu-
tions. In [14] this phenomenonis ill ustrated by a model equation with a permanently
bounded domain of influence, power decay of characteristic roots, andwithout Lp−Lq

decay. The abovementioned Lp−Lq decay estimatesareoneof theimportant tools for
studying nonlinear problems(see, e.g. [11]). Equation (2) is neither Lorentz invariant
nor invariant with respect to usual scalingandthat createsadditional difficulties.

In thepresent paper we consider Klein–Gordon operator in anti-deSitter space-
time, that is

S := ∂2
t −e2t△+M2 ,
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where M is the curved mass, M ∈ C, and x ∈ Rn, t ∈ R. Results of [16] (by means
of the time inversiontransformation t→−t) provideuswith the fundamental solution
E = E (x, t;x0, t0),

E tt −e2t∆E +M2E = δ(x− x0, t− t0),

with support in the “forward light cone” D+(x0, t0), x0 ∈Rn, t0 ∈R, and for the funda-
mental solutionwith support in the “backward light cone” D−(x0, t0), x0 ∈ Rn, t0 ∈ R,
defined as follows

D±(x0, t0) :=
{
(x, t) ∈ Rn+1 ; |x− x0| ≤ ±(et0−et)

}
.(3)

In fact, any intersection of D−(x0, t0) with thehyperplanet = const < t0 determinesthe
so-called dependencedomain for thepoint (x0, t0), while the intersection of D+(x0, t0)
with the hyperplane t = const > t0 is the so-called domain of influence of the point
(x0, t0). The equation(2) isnon-invariant with respect to time inversion. Moreover, the
dependencedomain iswider than any given ball i f timeconst > t0 is sufficiently large,
while the domain of influenceis permanently, for all ti me const < t0, in the ball of the
radius et0. In fact, the representation formulas obtained in [16] for the solution of the
Cauchy problem in the de Sitter spacetime cannot be applied to the solutions of the
Cauchy problem for the equation in the anti-de Sitter spacetime. The present paper is
aimed to fill up that gap.

Define for t0 ∈R in the domain D+(x0, t0)∪D−(x0, t0) the function

E(x, t;x0, t0) = (4et0+t)iM
(
(et +et0)2− (x− x0)

2
)− 1

2−iM
(4)

× F

(
1
2
+ iM,

1
2
+ iM;1;

(et0−et)2− (x− x0)
2

(et0 +et)2− (x− x0)2

)
,

where F
(
a,b;c;ζ

)
is the hypergeometric function (See, e.g., [2].). In (4) we use the

notationx2 = |x|2 for x∈ Rn. Let E(x, t;0, t0) be function(4), andset

E±(x, t;0, t0) :=

{
E(x, t;0, t0) in D±(0, t0),

0 elsewhere.

Since the function E = E(x, t;0, t0) is smooth in D±(0, t0) and is locally integrable, it
follows that E+(x, t;0, t0) and E−(x, t;0, t0) are distributions whose supports are in
D+(0, t0) andD−(0, t0), respectively. In order to makethepresent paper self-contained
we make the transformationt →−t in Theorem 0.1 [16] and introducethenext result.

THEOREM 1 ([16]). Suppose that M ∈ C. The distributions E+(x, t;0, t0) and
E−(x, t;0, t0) are the fundamental solutions for theoperator S = ∂2

t −e2t∂2
x +M2 rela-

tiveto the point (0, t0), that is S E±(x, t;0, t0) = δ(x, t− t0), or

∂2

∂t2E±(x, t;0, t0)−e2t ∂2

∂x2E±(x, t;0, t0)+M2E±(x, t;0, t0) = δ(x, t− t0).
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To motivate our construction for the higher-dimensional case n≥ 2 we follow
the approach suggested in [13] andrepresent the fundamental solutionE+(x, t;0, t0) as
follows

E+(x, t;0, t0) =

∫ et−et0

et0−et
(4et0+t)iM

(
(et0 +et)2− r2

)− 1
2−iM

× F
(

1
2 + iM, 1

2 + iM;1;
(et0−et)2− r2

(et0 +et)2− r2

)
E string(x, r)dr, t > t0,

where the distributionE string(x, t) is the fundamental solution of the Cauchy problem
for thestringequation:

∂2

∂t2E
string− ∂2

∂x2E
string = 0, E string(x,0) = δ(x), E string

t (x,0) = 0.

Hence, E string(x, t) = 1
2{δ(x+ t)+δ(x− t)}. The integral makes sense in the topology

of the spaceof distributions. The fundamental solutionE−(x, t;0, t0) for t < t0 admits
a similar representation.

We appeal to the wave equation in Minkowski spacetime to obtain in the next
theorem very similar representationsof thefundamental solutionsof thehigher-dimen-
sional equation in the anti-de Sitter spacetime. In fact, the transformation t →−t in
Theorem 0.2 [16] implies thenext theorem.

THEOREM 2 ([16]). If x ∈ Rn, n≥ 2, and M ∈ C, then for the operator S =
∂2

t −e2t△+M2 the fundamental solution E+,n(x, t;x0, t0) with support in the forward
cone D+(x0, t0), x0 ∈ Rn, t0 ∈ R, suppE+,n ⊆ D+(x0, t0), is given by the following
integral (t > t0)

E+,n(x, t;x0, t0) = 2
∫ et−et0

0
dr (4et0+t)iM

(
(et0 +et)2− r2

)− 1
2−iM

(5)

× F
(

1
2 + iM, 1

2 + iM;1;
(et0−et)2− r2

(et0 +et)2− r2

)
E w(x− x0, r).

Here the distributionE w(x, t) is a fundamental solution to the Cauchy problemfor the
wave equation

E w
tt −△E w = 0, E w(x,0) = δ(x) , E w

t (x,0) = 0.

The fundamental solutionE−,n(x, t;x0, t0) with support in the backward cone, that is,
suppE−,n⊆ D−(x0, t0), x0 ∈ Rn, t0 ∈ R, isgiven by the following integral (t < t0)

E−,n(x, t;x0, t0) = −2
∫ 0

et−et0
dr (4et0+t)iM

(
(et0 +et)2− r2

)− 1
2−iM

(6)

× F
(

1
2 + iM, 1

2 + iM;1;
(et0−et)2− r2

(et0 +et)2− r2

)
E w(x− x0, r).
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In particular, formula(5) shows that Huygens’sPrinciple is not valid for wavespropa-
gating in the anti-deSitter spacetime(cf. [12]).

Next we use Theorem 1 to solve the Cauchy problem for the one-dimensional
equation

(7) utt −e2tuxx+M2u= f (x, t) , t > 0, x∈ R ,

with vanishing initial data:

(8) u(x,0) = ut(x,0) = 0.

THEOREM 3. Assume that f ∈ C∞ and that for every fixed t it has compact
support, suppf (·, t)⊂ R. Then the function u= u(x, t) defined by

u(x, t) =
∫ t

0
db

∫ x+et−eb

x−(et−eb)
dy f (y,b)(4eb+t)iM

(
(et +eb)2− (x− y)2

)− 1
2−iM

× F

(
1
2 + iM, 1

2 + iM;1;
(eb−et)2− (x− y)2

(eb+et)2− (x− y)2

)

isaC∞ solutionto theCauchy problemfor equation(7) with vanishing initial data (8).

The representation of the solution of the Cauchy problem for the one-dimen-
sional case of equationwithout sourceterm is given by the next theorem.

THEOREM 4. Thesolution u= u(x, t) of theCauchy problem

(9) utt −e2tuxx+M2u= 0, u(x,0) = ϕ0(x) , ut(x,0) = ϕ1(x) ,

with ϕ0,ϕ1 ∈C∞
0 (R) can berepresented as follows

u(x, t) = 1
2e−

t
2

[
ϕ0(x+et−1)+ϕ0(x−et +1)

]

+

∫ et−1

0

[
ϕ0(x− z)+ϕ0(x+ z)

]
K0(z, t)dz

+

∫ et−1

0

[
ϕ1(x− z)+ϕ1(x+ z)

]
K1(z, t)dz,

where the kernelsK0(z, t) andK1(z, t) aredefined respectively by

K0(z, t) := −
[ ∂

∂b
E(z, t;0,b)

]
b=0

= −(4et)iM((et +1)2− z2)−iM 1

[(et −1)2− z2]
√
(et +1)2− z2

×
[(

et −1− iM(e2t−1− z2)
)
F
(

1
2 + iM, 1

2 + iM;1;
(et −1)2− z2

(et +1)2− z2

)

+
(
1−e2t + z2)(1

2− iM
)

F
(
− 1

2 + iM, 1
2 + iM;1;

(et −1)2− z2

(et +1)2− z2

)]
,

0≤ z< et −1,
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K1(z, t) := E(z, t;0,0) = (4et)iM((et +1)2− z2)− 1
2−iM

× F

(
1
2 + iM, 1

2 + iM;1;
(et −1)2− z2

(et +1)2− z2

)
, 0≤ z≤ et −1.

The kernels K0(z, t) and K1(z, t) play leading roles in the derivation of Lp−Lq

estimates. Their main properties follow from the ones of the function E(x, t;x0, t0),
which are listed in Proposition 1 of Section 2.

Next we turn to thehigher-dimensional equationwith n≥ 2.

THEOREM 5. If n isodd, n= 2m+1, m∈N, then thesolution u= u(x, t) to the
Cauchy problem

(10) utt −e2t∆u+M2u= f (x, t), u(x,0) = 0, ut(x,0) = 0,

with f ∈C∞(Rn+1) andwith vanishing initial data isgiven by

u(x, t) = 2
∫ t

0
db

∫ et−eb

0
dr1

(
∂
∂r

(1
r

∂
∂r

)n−3
2 rn−2

ωn−1c(n)0

∫
Sn−1

f (x+ ry,b)dSy

)

r=r1

× (4eb+t)iM
(
(et +eb)2− r2

1

)− 1
2−iM

(11)

× F

(
1
2 + iM, 1

2 + iM;1;
(eb−et)2− r2

1

(eb+et)2− r2
1

)
,

where c(n)0 = 1 ·3 · . . . · (n−2), andωn−1 is the area of theunit sphereSn−1⊂ Rn.

If n iseven, n= 2m, m∈ N, then thesolution u= u(x, t) is given by

u(x, t) = 2
∫ t

0
db

∫ et−eb

0
dr1

(
∂
∂r

(
1
r

∂
∂r

)n−2
2 2rn−1

ωn−1c(n)0

∫
Bn

1(0)

f (x+ ry,b)√
1−|y|2

dVy

)

r=r1

× (4eb+t)iM
(
(et +eb)2− r2

1

)− 1
2−iM

(12)

× F

(
1
2 + iM, 1

2 + iM;1;
(eb−et)2− r2

1

(eb+et)2− r2
1

)
.

Here Bn
1(0) := {|y| ≤ 1} is theunit ball i nRn, while c(n)0 = 1 ·3 · . . . · (n−1).

Thus, in both cases, of even and oddn, one can write

u(x, t) = 2
∫ t

0
db

∫ et−eb

0
dr v(x, r;b)(4eb+t)iM

(
(et +eb)2− r2

)− 1
2−iM

× F

(
1
2 + iM, 1

2 + iM;1;
(eb−et)2− r2

(eb+et)2− r2

)
,(13)

where the functionv(x, t;b) is asolution to theCauchy problem for thewave equation
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vtt −△v= 0, v(x,0;b) = f (x,b) , vt(x,0;b) = 0.

The next theorem represents the solutions of the equation with the initial data
prescribed at t = 0.

THEOREM 6. Thesolution u= u(x, t) to theCauchy problem

(14) utt −e2t△u+M2u= 0, u(x,0) = ϕ0(x) , ut(x,0) = ϕ1(x) ,

with ϕ0, ϕ1 ∈C∞
0 (R

n), n≥ 2, can berepresented as follows:

u(x, t) = e−
t
2 vϕ0(x,φ(t))+ 2

∫ 1

0
vϕ0(x,φ(t)s)K0(φ(t)s, t)φ(t)ds

+2
∫ 1

0
vϕ1(x,φ(t)s)K1(φ(t)s, t)φ(t)ds, x∈ Rn, t > 0,(15)

φ(t) := et −1, andwhere the kernelsK0 andK1 havebeen defined in Theorem4. Here
for ϕ ∈C∞

0 (R
n) andfor x∈Rn, n= 2m+1, m∈ N,

vϕ(x,φ(t)s) :=

(
∂
∂r

(
1
r

∂
∂r

)n−3
2 rn−2

ωn−1c(n)0

∫
Sn−1

ϕ(x+ ry)dSy

)

r=φ(t)s

while for x∈ Rn, n= 2m, m∈N,

vϕ(x,φ(t)s) :=

(
∂
∂r

(
1
r

∂
∂r

)n−2
2 2rn−1

ωn−1c(n)0

∫
Bn

1(0)

1√
1−|y|2

ϕ(x+ ry)dVy

)

r=sφ(t)

.

The function vϕ(x,φ(t)s) coincides with the value v(x,φ(t)s) of the solution v(x, t) of
the Cauchy problem

vtt −△v= 0, v(x,0) = ϕ(x), vt(x,0) = 0.

Asa consequenceof the above theorems, we obtain in a forthcoming paper the
following Lp−Lq decay estimate for the particles with “ large” massm, m≥ n/2, that
is, with nonnegative curved massM ≥ 0.

‖(−△)−su(x, t)‖Lq(Rn)

≤ Ce
t
(

2s−n( 1
p− 1

q )
) ∫ t

0
‖ f (x,b)‖Lp(Rn)(1+ t−b)1−sgnMdb(16)

+C(1+ t)1−sgnM(et −1)2s−n( 1
p− 1

q )
{
‖ϕ0(x)‖Lp(Rn)+(1−e−t)‖ϕ1‖Lp(Rn)

}

provided that 1< p≤ 2, 1
p +

1
q = 1, 1

2(n+1)
(1

p− 1
q

)
≤ 2s≤ n

( 1
p− 1

q

)
< 2s+1.

We emphasizethat the estimate(16) impliesexponential decay for largetime. It
is essentially different from the decay estimate obtained in [16] for the wave equation
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in thedeSitter spacetime. Thisdifferenceiscaused by thestriking differencebetween
the global geometriesof the forward and backward light conesof the equation(7).

The paper is organized as follows. In Section 2we apply the fundamental so-
lutions to solve the Cauchy problem with the source term and with vanishing initial
datagiven at t = 0. Moreprecisely, we give arepresentationformulafor thesolutions.
In that section we also give several basic properties of the function E(x, t;x0, t0). In
Sections 3–4, we use the formulas of Section 2 to derive and to complete the list of
representation formulas for the solutions of the Cauchy problem for the case of one-
dimensional spatial variable. The higher-dimensional equationwith the sourceterm is
considered in Section 5, where we derive arepresentation formula for the solutionsof
theCauchy problem with thesourceterm andwith vanishinginitial datagiven at t = 0.
In the same section this formula is used to complete the proof of Theorem 6. Appli -
cations of all these results to the nonlinear equations will be done in a forthcoming
paper.

2. Application to theCauchy problem: source term and n = 1

Consider now the Cauchy problem for the equation (7) with vanishing initial data (8).
The coefficients of the equation (7) are independent of x, therefore the equation is
translation invariant in x that impliesE+(x, t; y,b) = E+(x− y, t;0,b). Using the fun-
damental solution from Theorem 1 one can write the convolution

u(x, t) =

∫ ∞

−∞

∫ ∞

−∞
E+(x, t;y,b) f (y,b)dbdy(17)

=

∫ t

0
db

∫ ∞

−∞
E+(x− y, t;0,b) f (y,b)dy,

which is well -defined sincesuppf ⊂ {t ≥ 0}. Then according to the definition of the
distributionE+ weobtain thestatement of Theorem 3. Thus, Theorem 3 is proven.

The following corollary implies the existence of an operator transforming the
solutionsof the Cauchy problem for the string equation to the solutionsof the Cauchy
problem for the inhomogeneousequationwith time-dependent speed of propagation.

COROLL ARY 1. The solution u= u(x, t) of the Cauchy problem (7)-(8) can be
represented by (13), where the functions v(x, t;τ) := 1

2( f (x+ t,τ) + f (x− t,τ)), τ ∈
[0,∞), form a one-parameter family of solutions to the Cauchy problem for the string
equation, that is, vtt − vxx = 0, v(x,0;τ) = f (x,τ), vt(x,0;τ) = 0.

Proof. From the convolution(17) we derive

u(x, t) =

∫ t

0
db

∫ et−eb

eb−et
dy f (x+ y,b)(4eb+t)iM

(
(et +eb)2− y2

)− 1
2−iM

× F

(
1
2 + iM, 1

2 + iM;1;
(eb−et)2− y2

(eb+et)2− y2

)
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= 2
∫ t

0
db

∫ et−eb

0
dy 1

2{ f (x+ y,b)+ f (x− y,b)}

× (4eb+t)iM ((e−t +e−b)2− y2
)− 1

2−iM
F

(
1
2 + iM, 1

2 + iM;1;
(eb−et)2− y2

(eb+et)2− y2

)
.

The corollary isproven.

In the next propositionwe collect some elementary auxili ary formulas in order
to make the proofsof the main theoremsmore transparent. The proof of that proposi-
tion is straightforward andweomit it .

PROPOSITION 1. Let E(x, t;x0, t0) be function defined by (4). Onehas

E(x, t;y,b) = E(y,b;x, t),(18)

E(x, t;y,b) = E(x− y, t;0,b), E(x, t;0,b) = E(−x, t;0,b),(19)

E(x, t;0, ln(et − x)) =
1
2

1√
et
√

et − x
,(20)

∂
∂b

(
ebE(eb−et , t;0,b)

)
= 1

4e−t/2eb/2,(21)

∂
∂b

(
bebE(eb−et , t;0,b)

)
= 1

4e−t/2eb/2(2+b),(22)

lim
y→x+et−eb

∂
∂x

E(x− y, t;0,b) = 1
16(1+4M2)e−2(b+t)eb/2et/2(eb−et),(23)

lim
y→x−et+eb

∂
∂x

E(x− y, t;0,b) = 1
16(1+4M2)e−2(b+t)et/2eb/2(et −eb),(24)

[
∂
∂b

E(x, t;0,b)

]

b=ln(et−x)
= 1

16e−3t/2 (−4et + x(1+4M2))√
et − x

,(25)

[
∂

∂b
E(x, t;0,b)

]

b=0
=

(4et)iM ((1+et)2− x2
)−iM

2[(et −1)2− x2]
√
(1+et)2− x2

(26)

×
{
(2iM−1)

(
e2t −1− x2)F

(
− 1

2 + iM, 1
2 + iM,1,

(−1+et)2− x2

(1+et)2− x2

)

−2
(
1−et + iM

(
e2t −1− x2))F

(
1
2 + iM, 1

2 + iM,1,
(−1+et)2− x2

(1+et)2− x2

)}
.

3. The Cauchy problem: second data and n = 1

In this section we prove Theorem 4 in the case of ϕ0(x) = 0. More precisely, we
have to prove that the solution u(x, t) of the Cauchy problem (9) with ϕ0(x) = 0 and
ϕ1(x) = ϕ(x) can berepresented as follows
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u(x, t) =

∫ et−1

0

[
ϕ(x+ z)+ϕ(x− z)

]
K1(z, t)dz(27)

=

∫ 1

0

[
ϕ(x+φ(t)s)+ϕ(x−φ(t)s)

]
K1(φ(t)s, t)φ(t)ds,

whereφ(t) = et −1. Theproof of the theorem isdivided into several steps.

PROPOSITION 2. The solution u= u(x, t) of the Cauchy problem(9) for which
ϕ0(x) = 0 andϕ1(x) = ϕ(x) can berepresented as follows

u(x, t) =

∫ t

0
db
[

1
4e−t/2eb/2(2+b)+ 1

16be−3t/2eb/2(eb−et)(1+4M2)
]

×
[
ϕ(x+et−eb)+ϕ(x−et +eb)

]
(28)

+

∫ t

0
db

∫ x+et−eb

x−(et−eb)
dyϕ(y)b

[
e2b
(

∂
∂y

)2

E(x− y, t;0,b)−M2E(x− y, t;0,b)
]
.

Proof. We look for the solution u= u(x, t) of the form u(x, t) = w(x, t)+ tϕ(x). Then
(9) implies

wtt −e2twxx+M2w= te2tϕ(2)(x)−M2tϕ(x), w(x,0) = 0, wt(x,0) = 0.

We set f (x, t) = te2tϕ(2)(x)−M2tϕ(x) and due to Theorem 3 obtain

w(x, t) = w̃(x, t)−M2
∫ t

0
bdb

∫ x+et−eb

x−(et−eb)
dyϕ(y)E(x− y, t;0,b),

where

w̃(x, t) :=
∫ t

0
be2bdb

∫ x+et−eb

x−(et−eb)
dyϕ(2)(y)E(x− y, t;0,b) .

Then we integrateby parts:

w̃(x, t) =

∫ t

0
be2bdb

[
ϕ(1)(x+et−eb)E(eb−et , t;0,b)

−ϕ(1)(x−et +eb)E(et −eb, t;0,b)

]

−
∫ t

0
be2bdb

∫ x+et−eb

x−(et−eb)
dyϕ(1)(y)

∂
∂y

E(x− y, t;0,b) .

But ϕ(1)(x+et −eb) =−e−b ∂
∂bϕ(x+et−eb), ϕ(1)(x−et +eb) = e−b ∂

∂bϕ(x−et +eb).
Then, E(eb−et , t;0,b) = E(−eb+et , t;0,b) due to (19), andwe obtain
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w̃(x, t) = −
∫ t

0
db

(
−ϕ(x+et−eb)

∂
∂b

(
bebE(−et +eb, t;0,b)

)

−ϕ(x−et +eb)
∂

∂b

(
bebE(et −eb, t;0,b)

))

−
∫ t

0
be2bdb

∫ x+et−eb

x−(et−eb)
dyϕ(1)(y)

∂
∂y

E(x− y, t;0,b) .

Onemore integration by parts leads to

w̃(x, t) = −2tetϕ(x)E(0, t;0, t)

−
∫ t

0
db

(
−ϕ(x+et−eb)

∂
∂b

(
bebE(−et +eb, t;0,b)

)

−ϕ(x−et +eb)
∂

∂b

(
bebE(et −eb, t;0,b)

))

−
∫ t

0
be2bdb

∫ x+et−eb

x−(et−eb)
dyϕ(1)(y)

∂
∂y

E(x− y, t;0,b) .

Since E(0, t;0, t) = e−t/2 weuse (22) of Proposition 1to derive the representation

w̃(x, t)+ tϕ(x) =

∫ t

0
db1

4e−t/2eb/2(2+b)
(

ϕ(x+et−eb)+ϕ(x−et +eb)
)

−
∫ t

0
be2bdb

∫ x+et−eb

x−(et−eb)
dyϕ(1)(y)

∂
∂y

E(x− y, t;0,b) .

Integration by parts in the secondterm leads to

w̃(x, t)+ tϕ(x) =
∫ t

0
db1

4e−t/2eb/2(2+b)
(

ϕ(x+et−eb)+ϕ(x−et +eb)
)

+

∫ t

0
be2bdbϕ(x+et−eb)

[ ∂
∂x

E(x− y, t;0,b)
]

y=x+et−eb

−
∫ t

0
be2bdbϕ(x−et +eb)

[ ∂
∂x

E(x− y, t;0,b)
]

y=x−et+eb

+

∫ t

0
be2bdb

∫ x+et−eb

x−(et−eb)
dyϕ(y)

( ∂
∂y

)2
E(x− y, t;0,b) .

Applying(23) and(24) of Proposition 1and ∂
∂yE(x− y, t;0,b) =− ∂

∂xE(x− y, t;0,b),

w̃(x, t)+ tϕ(x) =

∫ t

0

[
1
4e−t/2eb/2(2+b)+ 1

16be−3t/2eb/2(eb−et)(1+4M2)
]

×
[
ϕ(x+et−eb)+ϕ(x−et +eb)

]
db

+

∫ t

0
be2bdb

∫ x+et−eb

x−(et−eb)
dyϕ(y)

(
∂
∂y

)2

E(x− y, t;0,b) .

Finally, weget (28). Theproposition isproven.
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COROLL ARY 2. The solution u= u(x, t) of the Cauchy problem (9) with ϕ0(x)
= 0 andϕ1(x) = ϕ(x) can berepresented by

u(x, t) =
∫ t

0

[
1
4e−t/2eb/2(2+b)+ 1

16be−3t/2eb/2(eb−et)(1+4M2)
]

×
[
ϕ(x+et−eb)+ϕ(x−et +eb)

]
db

+

∫ t

0
db

∫ et−eb

0
dz
[
ϕ(x− z)+ϕ(x+ z)

]

× b

[
e2b
(

∂
∂z

)2

E(z, t;0,b)−M2E(z, t;0,b)

]
,

aswell asby (27), where

K1(z, t) =
[

1
4e−t/2(2+ ln(et − z))− 1

16(1+4M2)e−3t/2zln(et − z)
] 1√

et − z

+

∫ ln(et−z)

0
b

[
e2b
(

∂
∂z

)2

E(z, t;0,b)−M2E(z, t;0,b)

]
db.(29)

Proof of theCorollary. By means of the statement (28) of Proposition 2, the change
y= x− z, and (19) weobtain

u(x, t) =

∫ t

0
db
[

1
4e−t/2eb/2(2+b)+ 1

16be−3t/2eb/2(eb−et)(1+4M2)
]

×
[
ϕ(x+et−eb)+ϕ(x−et +eb)

]

−
∫ t

0
db

∫ −(et−eb)

0
dzϕ(x− z)

[
be2b

(
∂
∂z

)2

E(z, t;0,b)−M2bE(z, t;0,b)

]

+

∫ t

0
db

∫ 0

−(et−eb)
dzϕ(x+ z)

[
be2b

(
∂
∂z

)2

E(z, t;0,b)−M2bE(z, t;0,b)

]
.

To prove(27) with K1(z, t) defined by (29) we apply (19) andwrite

u(x, t) =
∫ t

0
db
[

1
4e−t/2eb/2(2+b)+ 1

16be−3t/2eb/2(eb−et)(1+4M2)
]

×
[
ϕ(x+et−eb)+ϕ(x−et +eb)

]

+

∫ t

0
db

∫ et−eb

0
dz
[
ϕ(x− z)+ϕ(x+ z)

]

×
[
be2b

(
∂
∂z

)2

E(z, t;0,b)−M2bE(z, t;0,b)

]
.

Next wemake changez= et−eb, dz=−ebdb, db=−(et−z)−1dz, andb= ln(et−z)
in thefirst integral:



284 K. Yagdjian andA. Galstian

∫ t

0
db
[

1
4e−t/2eb/2(2+b)+ 1

16(1+4M2)be−3t/2eb/2(eb−et)
]

×
[
ϕ(x+et−eb)+ϕ(x−et +eb)

]

=

∫ et−1

0

[
ϕ(x+ z)+ϕ(x− z)

][
1
4e−t/2(2+ ln(et − z))

− 1
16(1+4M2)e−3t/2zln(et − z)

] 1√
et − z

dz.

Then

u(x, t) =

∫ et−1

0

[
ϕ(x+ z)+ϕ(x− z)

][
1
4e−t/2(2+ ln(et − z))

− 1
16(1+4M2)e−3t/2zln(et − z)

] 1√
et − z

dz

+

∫ t

0
db

∫ et−eb

0
dz
[
ϕ(x+ z)+ϕ(x− z)

]

×
[
be2b

(
∂
∂z

)2

E(z, t;0,b)−M2bE(z, t;0,b)

]
.

In the last integral we changetheorder of integration,

u(x, t) =

∫ et−1

0

[
ϕ(x+ z)+ϕ(x− z)

][
1
4e−t/2(2+ ln(et − z))

− 1
16(1+4M2)e−3t/2zln(et − z)

] 1√
et − z

dz

+

∫ et−1

0
dz
[
ϕ(x+ z)+ϕ(x− z)

]∫ ln(et−z)

0
dbb

×
[
e2b
(

∂
∂z

)2

E(z, t;0,b)−M2E(z, t;0,b)

]
,

and obtain (27), whereK1(z, t) is defined by (29). The corollary is proven.

Thenext lemma completes theproof of Theorem 4 in the caseof ϕ0 = 0.

LEMM A 1. The kernel K1(z, t) defined by (29) coincideswith onegiven in The-
orem 4.

Proof. Dueto Lemma1.2 [16], (19), and byintegration by parts, we have

∫ ln(et−z)

0
b

[
e2b
(

∂
∂z

)2

E(z, t;0,b)−M2E(z, t;0,b)

]
db

= ln(et − z)
[ ∂

∂b
E(z, t;0,b)

]
b=ln(et−z)

−E(z, t;0, ln(et − z))+E(z, t;0,0).
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On theother hand, (20) and (25) of Proposition 1imply

∫ ln(et−z)

0
b

[
e2b
(

∂
∂z

)2

E(z, t;0,b)−M2E(z, t;0,b)

]
db

= ln(et − z)
e−2t
√

et
(
−4et + z(1+4M2)

)

16
√

et − z
− 1

2e−
t
2 (et − z)−

1
2 +E(z, t;0,0).

Thus, for the kernel K1(z, t) defined by (29) wehave

K1(z, t) =
[

1
4e−t/2(2+ ln(et − z))− 1

16(1+4M2)e−3t/2zln(et − z)
] 1√

et − z

+

∫ ln(et−z)

0
b

[
e2b
(

∂
∂z

)2

E(z, t;0,b)−M2E(z, t;0,b)

]
db

=
[

1
4e−t/2(2+ ln(et − z))− 1

16(1+4M2)e−3t/2zln(et − z)
] 1√

et − z

+ ln(et − z)
e−2t
√

et
(
−4et + z(1+4M2)

)

16
√

et − z
− 1

2e−
t
2 (et − z)−

1
2 +E(z, t;0,0)

= E(z, t;0,0) .

The last line coincideswith K1(z, t) of Theorem 4. The lemmaisproven.

4. The Cauchy problem: first data and n = 1

In this section, weproveTheorem4 in the caseof ϕ1(x) =0. Thus, wehaveto provethe
representation given by Theorem 4 for the solution u= u(x, t) of the Cauchy problem
(9) with ϕ1(x) = 0, that is equivalent to

u(x, t) = 1
2e−

t
2

[
ϕ0(x+et−1)+ϕ0(x−et +1)

]

+
∫ 1

0

[
ϕ0(x−φ(t)s)+ϕ0(x+φ(t)s)

]
K0(φ(t)s, t)φ(t)ds,

whereφ(t) = et −1. Theproof of this case consistsof several steps.

PROPOSITION 3. The solution u= u(x, t) of the Cauchy problem (9) can be
represented as follows

u(x, t) = 1
2e−

t
2

[
ϕ0(x+et−1)+ϕ0(x−et +1)

]

+
∫ t

0
db
[

1
4e

b
2 e−

t
2 + 1

16(1+4M2)e−2te
b
2 e

t
2 (eb−et)

]

×
[
ϕ0(x+et−eb)+ϕ0(x−et +eb)

]

+
∫ t

0
db

∫ x+et−eb

x−(et−eb)
dyϕ0(y)

[
e2b
(

∂
∂y

)2

E(x− y, t;0,b)−M2E(x− y, t;0,b)

]
.
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Proof. We set u(x, t) = w(x, t)+ϕ0(x), then

wtt −e2twxx+M2w= e2tϕ(2)
0 (x)−M2ϕ0(x) , w(x,0) = 0, wt(x,0) = 0.

Next weplug f (x, t) = e2tϕ(2)
0 (x)−M2ϕ0(x) into the formulagiven byTheorem 3 and

obtain

w(x, t) = w̃(x, t)−
∫ t

0
db

∫ x+et−eb

x−(et−eb)
dyM2ϕ0(y)E(x− y, t;0,b),(30)

wherewehavedenoted

w̃(x, t) :=
∫ t

0
e2bdb

∫ x+et−eb

x−(et−eb)
dyϕ(2)

0 (y)E(x− y, t;0,b) .

Next we integrateby partsandapply (19):

w̃(x, t) =
∫ t

0
e2bdb

(
ϕ(1)

0 (x+et−eb)E(−et +eb, t;0,b)

−ϕ(1)
0 (x−et +eb)E(et −eb, t;0,b)

)

−
∫ t

0
e2bdb

∫ x+et−eb

x−(et−eb)
dyϕ(1)

0 (y)
∂
∂y

E(x− y, t;0,b) .

On theother hand,

ϕ(1)
0 (x+et −eb) =−e−b ∂

∂b
ϕ0(x+et−eb), ϕ(1)

0 (x−et +eb) = e−b ∂
∂b

ϕ0(x−et +eb)

implies that

w̃(x, t) =

∫ t

0
ebdb

(
− ∂

∂b
ϕ0(x+et−eb)E(−et +eb, t;0,b)

− ∂
∂b

ϕ0(x−et +eb)E(et −eb, t;0,b)

)

−
∫ t

0
e2bdb

∫ x+et−eb

x−(et−eb)
dyϕ(1)

0 (y)
∂
∂y

E(x− y, t;0,b) .

Onemore integration by parts leads to

w̃(x, t)+ϕ0(x) = 1
2e−

t
2

(
ϕ0(x+et−1)+ϕ0(x−et +1)

)

+

∫ t

0
db

(
ϕ0(x+et−eb)

∂
∂b

(
ebE(−et +eb, t;0,b)

)

+ϕ0(x−et +eb)
∂

∂b

(
ebE(et −eb, t;0,b)

))

−
∫ t

0
e2bdb

∫ x+et−eb

x−(et−eb)
dyϕ(1)

0 (y)
∂
∂y

E(x− y, t;0,b) ,
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whereE(0, t;0, t) = e−t/2, and E(et−1, t;0,0) = E(1−et , t;0,0) = e−
t
2/2 havebeen

used. Next we apply (21) of Proposition 1andan integration by parts to obtain

w̃(x, t)+ϕ0(x) = 1
2e−

t
2

(
ϕ0(x+et−1)+ϕ0(x−et +1)

)

+

∫ t

0
db1

4e
b
2 e−

t
2

(
ϕ0(x+et−eb)+ϕ0(x−et +eb)

)

−
∫ t

0
e2bdb

[
ϕ0(y)

∂
∂y

E(x− y, t;0,b)
]y=x+et−eb

y=x−(et−eb)

+

∫ t

0
e2bdb

∫ x+et−eb

x−(et−eb)
dyϕ0(y)

( ∂
∂y

)2
E(x− y, t;0,b).

From (23) and (24) of Proposition 1, we have

w̃(x, t)+ϕ0(x) = 1
2e−

t
2

[
ϕ0(x+et−1)+ϕ0(x−et +1)

]

+
∫ t

0
db1

4e
b
2 e−

t
2

[
ϕ0(x+et −eb)+ϕ0(x−et +eb)

]

−
∫ t

0
e2bdb 1

16(1+4M2)e−2(b+t)eb/2et/2(et −eb)
[
ϕ0(x+et−eb)+ϕ0(x− (et −eb))

]

+

∫ t

0
e2bdb

∫ x+et−eb

x−(et−eb)
dyϕ0(y)

( ∂
∂y

)2
E(x− y, t;0,b) ,

Then thelast equationtogether with (30) provesthedesired representation. Thepropo-
sition isproven.

Completion of theproof of Theorem4. We make the change z= et −eb, dz= −ebdb,
andb= ln(et−z) in thesecondterm of therepresentation given bythepreviouspropo-
sition:

∫ t

0

[
1
4e

b
2 e−

t
2 + 1

16(1+4M2)e−2te
b
2 e

t
2 (eb−et)

]

×
[
ϕ0(x+et−eb)+ϕ0(x−et +eb)

]
db

=
∫ et−1

0

[
1
4e−

t
2 − 1

16(1+4M2)e−2te
t
2 z
] 1√

et − z

[
ϕ0(x− z)+ϕ0(x+ z)

]
dz.

Next we apply (19) to thelast term of that representation, andthen we changetheorder
of integration:

∫ t

0
db

∫ x+et−eb

x−(et−eb)
dyϕ0(y)

[
e2b
(

∂
∂y

)2

E(x− y, t;0,b)−M2E(x− y, t;0,b)

]

=
∫ et−1

0
dz
[
ϕ0(x+ z)+ϕ0(x− z)

]∫ ln(et−z)

0
db

×
[
e2b
(

∂
∂z

)2

E(z, t;0,b)−M2E(z, t;0,b)

]
.
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On the other hand, since the function E(z, t;0,b) solves the Klein–Gordonequation,
the last integral isequal to

∫ et−1

0
dz
[
ϕ0(x+ z)+ϕ0(x− z)

]∫ ln(et−z)

0
db
( ∂

∂b

)2
E(z, t;0,b)db

=

∫ et−1

0
dz
[
ϕ0(x+ z)+ϕ0(x− z)

][ ∂
∂b

E(z, t;0, ln(et − z))− ∂
∂b

E(z, t;0,0)
]
.

Application of (25) and (26) gives

[
1
4e−

t
2 − 1

16(1+4M2)e−2te
t
2 z
] 1√

et − z
+

∂
∂b

E(z, t;0, ln(et − z))− ∂
∂b

E(z, t;0,0)

=
[

1
4e−

t
2 − 1

16(1+4M2)e−2te
t
2 z
] 1√

et − z
+ 1

16e−3t/2 (−4et + z(1+4M2))√
et − z

−
(
4et)iM (

(1+et)2− z2)−iM 1

2[(et −1)2− z2]
√
(1+et)2− z2

×
{
(2iM−1)

(
e2t −1− z2)F

(
− 1

2 + iM, 1
2 + iM,1,

(−1+et)2− z2

(1+et)2− z2

)

−2
(
1−et + iM

(
e2t −1− z2))F

(
1
2 + iM, 1

2 + iM,1,
(−1+et)2− z2

(1+et)2− z2

)}
.

The terms on the line after the last equality all cancel out, leaving the last threelines
that add upto K0(z, t). Thiscompletesthe proof of Theorem 4.

5. The n-dimensional case, n≥ 2

Proof of Theorem5. Let usconsider the caseof x∈Rn, wherefirst n= 2m+1, m∈N.
First, for the given function u= u(x, t), we define the spherical means of u about the
point x:

Iu(x, r, t) =
1

ωn−1

∫
Sn−1

u(x+ ry, t)dSy ,

whereωn−1 denotesthe areaof theunit sphereSn−1⊂Rn. Then wedefine an operator
Ωr by

Ωr(u)(x, t) :=
(1

r
∂
∂r

)m−1
r2m−1Iu(x, r, t) .

One can show that there are constants c(n)j , j = 0, . . . ,m−1, where n= 2m+1, with

c(n)0 = 1 ·3 ·5· · ·(n−2), such that

(1
r

∂
∂r

)m−1
r2m−1ϕ(r) = r

m−1

∑
j=0

c(n)j r j ∂ j

∂r j ϕ(r) .
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One can recover the functionsaccordingto

u(x, t) = lim
r→0

Iu(x, r, t) = lim
r→0

1

c(n)0 r
Ωr(u)(x, t) ,(31)

u(x,0) = lim
r→0

1

c(n)0 r
Ωr(u)(x,0), ut(x,0) = lim

r→0

1

c(n)0 r
Ωr(∂tu)(x,0).(32)

It is well known that ∆xΩrh = ∂2

∂ r2 Ωrh for every function h ∈C2(Rn). Therefore we
arrive at the followingmixed problem for the functionv(x, r, t) := Ωr(u)(x, r, t):




vtt(x, r, t)−e2tvrr (x, r, t)+M2v(x, r, t) = F(x, r, t), t ≥ 0, r ≥ 0, x∈Rn,

v(x,0, t) = 0, for all t ≥ 0, x∈ Rn,

v(x, r,0) = 0, vt(x, r,0) = 0, for all r ≥ 0, x∈ Rn,

F(x, r, t) := Ωr( f )(x, t), F(x,0, t) = 0, for all x∈ Rn .

It must be noted here that the spherical mean Iu defined for r > 0 has an extension as
an even function for r < 0 and hence Ωr(u) has a natural extension as an oddfunc-
tion. That allows replacing the mixed problem with the Cauchy problem. Namely,
let functions ṽ and F̃ be the continuations of the functions v and the forcing term F ,
respectively, by

ṽ(x, r, t) =

{
v(x, r, t) if r ≥ 0
−v(x,−r, t) if r ≤ 0,

F̃(x, r, t) =

{
F(x, r, t) if r ≥ 0
−F(x,−r, t) if r ≤ 0.

Then ṽ solves the Cauchy problem
{

ṽtt (x, r, t)−e2t ṽrr (x, r, t)+M2ṽ(x, r, t) = F̃(x, r, t), t ≥ 0, r ∈ R, x∈ Rn,

ṽ(x, r,0) = 0, ṽt(x, r,0) = 0 for all r ∈R, x∈ Rn.

Hence, accordingto Theorem 3, onehas the representation

ṽ(x, r, t) =
∫ t

0
db

∫ r+et−eb

r−(et−eb)
F̃(x, r1,b)E(r, t; r1,b)dr1.

Since u(x, t) = limr→0
(
ṽ(x, r, t)/(c(n)0 r)

)
, we consider the case of r < t in the above

representationto obtain:

u(x, t) =
1

c(n)0

∫ t

0
db

∫ et−eb

0
dr1E(0, t; r1,b) lim

r→0

F̃(x, r + r1,b)+ F̃(x, r− r1,b)
r

.

Then by definition of F̃, we replacelimr→0

{
F̃(x, r − r1,b)+ F̃(x, r + r1,b)

}
/r with

2
(

∂
∂r F(x, r,b)

)
r=r1

in the last formula. The definitionsof F(x, r, t) and of the operator

Ωr yield:

u(x, t) =
2

c(n)0

∫ t

0
db

∫ et−eb

0

(
∂
∂r

(1
r

∂
∂r

)m−1
r2m−1I f (x, r, t)

)

r=r1

E(0, t; r1,b)dr1,



290 K. Yagdjian andA. Galstian

where x∈ Rn, n= 2m+1, m∈ N. Thus, the solution to the Cauchy problem is given
by (11). We employ the method of descent to complete the proof for the case of even
n, n= 2m, m∈N. Theorem 5 isproven.

Proof of Theorem6. First we consider the case of ϕ0(x) = 0. Moreprecisely, we have
to prove that the solution u(x, t) of the Cauchy problem (14) with ϕ0(x) = 0 can be
represented by (15) with ϕ0(x) = 0. Thenext lemmawill beused in both cases.

LEMM A 2. Consider the mixed problem




vtt −e2tvrr +M2v= 0, for all t ≥ 0, r ≥ 0,

v(r,0) = τ0(r), vt(r,0) = τ1(r) for all r ≥ 0,

v(0, t) = 0, for all t ≥ 0,

and denote by τ̃0(r) and τ̃1(r) the continuations of the functions τ0(r) and τ1(r) for
negative r as odd functions: τ̃0(−r) = −τ0(r) and τ̃1(−r) = −τ1(r) for all r ≥ 0,
respectively. Then the unique solution v(r, t) to the mixed problem is given by the
restriction of (27) to r ≥ 0:

v(r, t) = 1
2e−

t
2

[
τ̃0(r +et −1)+ τ̃0(r−et +1)

]

+
∫ 1

0

[
τ̃0(r−φ(t)s)+ τ̃0(r +φ(t)s)

]
K0(φ(t)s, t)φ(t)ds

+

∫ 1

0

[
τ̃1

(
r +φ(t)s

)
+ τ̃1

(
r−φ(t)s

)]
K1(φ(t)s, t)φ(t)ds,

where K0(z, t) andK1(z, t) are defined in Theorem4 andφ(t) = et −1.

Proof. This lemma isa direct consequenceof Theorem 4.

Now let us consider the case of x∈ Rn, where n= 2m+1. First for the given
functionu= u(x, t) we define the spherical meansof u about point x. One can recover
the functionsby meansof (31), (32), and

ϕi(x) = lim
r→0

Iϕi (x, r) = lim
r→0

1

c(n)0 r
Ωr(ϕi)(x) , i = 0,1.

Then we arrive at the followingmixed problem




vtt (x, r, t)−e2tvrr (x, r, t)+M2v(x, r, t) = 0, for all t ≥ 0, r ≥ 0, x∈ Rn,
v(x,0, t) = 0 for all t ≥ 0, x∈ Rn,
v(x, r,0) = 0, vt(x, r,0) = Φ1(x, r) for all r ≥ 0, x∈ Rn,

with theunknown functionv(x, r, t) := Ωr(u)(x, r, t), where

Φi(x, r) := Ωr(ϕi)(x) =
(1

r
∂
∂r

)m−1
r2m−1 1

ωn−1

∫
Sn−1

ϕi(x+ ry)dSy ,(33)

Φi(x,0) = 0, i = 0,1, for all x∈ Rn .(34)



Klein-Gordonequation in anti-de Sitter spacetime 291

Then, due to Lemma2 and to u(x, t) = limr→0
(
v(x, r, t)/(c(n)0 r)

)
, we obtain:

u(x, t) =
1

c(n)0

lim
r→0

1
r

∫ 1

0

[
Φ̃1
(
x, r +φ(t)s

)
+ Φ̃1

(
x, r−φ(t)s

)]
K1(φ(t)s, t)φ(t)ds.

The last limit isequal to

2
∫ 1

0

(
∂
∂r

Φ1(x, r)

)

r=φ(t)s
K1(φ(t)s, t)φ(t)ds

= 2
∫ 1

0

(
∂
∂r

(1
r

∂
∂r

) n−3
2 rn−2

ωn−1

∫
Sn−1

ϕ1(x+ ry)dSy

)

r=φ(t)s
K1(φ(t)s, t)φ(t)ds.

Thus, Theorem 6 in the case of ϕ0(x) = 0 isproven.

Now we turn to the case of ϕ1(x) = 0. Thus, we arrive at the following mixed
problem





vtt (x, r, t)−e2tvrr (x, r, t)+M2v(x, r, t) = 0, for all t ≥ 0, r ≥ 0, x∈ Rn,

v(x, r,0) = Φ0(x, r), vt(x, r,0) = 0 for all r ≥ 0, x∈ Rn,

v(x,0, t) = 0 for all t ≥ 0, x∈ Rn,

with the unknown function v(x, r, t) := Ωr(u)(x, r, t) defined by (33), (34). Then, ac-

cording to Lemma2 andto u(x, t) = lim
r→0

v(x, r, t)/(c(n)0 r), we obtain:

u(x, t) =
1

c(n)0

e−
t
2

(
∂
∂r

Φ0(x, r)

)

r=φ(t)

+
2

c(n)0

∫ 1

0

(
∂
∂r

Φ0(x, r)

)

r=φ(t)s
K0(φ(t)s, t)φ(t)ds

= e−
t
2 vϕ0(x,φ(t))+ 2

∫ 1

0
vϕ0(x,φ(t)s)K0(φ(t)s, t)φ(t)ds.

Theorem 6 isproven.
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