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Preface

This isaue of the Rendiconti del Seminario Matematico incorporates texts of
part of the 30-minute communicationsdelivered at the Second Conferenceon Pseudo
Differential Operatorsand Related Topics, held in Vaxj6, Sweden on 23—27une 2008

Topics for the mnference included Spedra Theory, Time-Frequency (Gabor)
AnalysisandLocdizationOperators, Positivity and Lower BoundProblems, Operators
on Singuar Manifolds, Fourier Integral Operators, Elli ptic and Hyperbalic Problems.

The Véxjo Conferencewas part of the adivity of the Internationd Scciety for
Analysis, its Applications and Computation (ISAAC) for the yea 2008 ISAAC isa
non-profit organizetion established in 1994to promote and advance analysis, its appli-
caions, anditsinteradions with computation. The president at the time was Professor
M. W. Wong (York University, Toronto), whereas the incoming president in 2009is
Profesor M. Ruzhansky (Imperia College, Londor).

During the conference, the participants honoued Professor Luigi Rodino o
the University of Turin, on the occasion d his 60th birthday. The event at Vaxjo
was particularly significant in view of the fad that Profesor Rodino began his long
and productive scientific caree in the field of pseudo-differential operators at Lund
University and the Mittag-L effler Institutein 197374

The meding was organized with 45-minute plenary talks in the morning and
three parallel sessons of 30-minute communicaions in the &ternoon There were
abou 80 talks altogether in the whole Conference  The texts of the plenary talks
were pubished in the Rendiconti del Seminario Matematico Universita e Politemico
di Torino (66 na 4, 2008. Likethat isaue, the present oneisis dedicated to Professor
Luigi Rodino. The contributions concerning Elli ptic Problems appeaed in “ Complex
Variablesand Elli ptic Equations” (Taylor & Francis, Oxford, 54/2009. Finaly the pro-
cealingsin the field of Time Frequency Analysis are gpeaingin the Journal CUBO
(Pernambuco University, Braal).

The ditors of this isaue were dso the scientific organizers of the conference
Accordingly, we wish to thank Vaxjo University, the Vetenskapsradet (the Swedish
ScienceCourxil) andthe Mathematics Department “ Giuseppe Peana” of the University
of Turin for financial suppat. We ae dso grateful to Karoline Johansson and Haidar
Al-Tdlibi of Vaxjo University for their technicd suppat aslocd organizers.

G. Garello (Turin University, Italy)
J. Toft (Vaxj6 University, Sveden)
M.W. Wong (York University, Toronto, Canadg
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Sewnd Conf. Pseudo-Differential Operators

S. Albeverio, R. Cianci and A.Yu. Khrennikov

OPERATOR CALCULUSFOR
p-ADIC VALUED SYMBOLSAND QUANTIZATION

Dedicated to Profesor Luigi Rodino onthe occasion o his 60th birthday

Abstract. The am of this short review is to attrad the atention o the pseudo-diff erentia
community to possbiliti es in the development of operator caculus for symbals (depending
on p-adic conjugate variables) taking values in fields of p-adic numbers. Essentials of this
cdculus were presented in works of the authors of this paper in order to perform p-adic val-
ued quantizaion. Unfortunately, this cdculus dill has not attraced a grea ded of attention
from pure mathematicians, athoughit opens new and interesting damains for the theory of
pseudo-differential operators.

1. Introduction

Quantum formali sm with wave functionsvalued in nonArchimedean fields was devel -
oped in aseries of papersand bools[1]{13], see dso related works of VVladimirov and
Volovich [14]-{15 and the book[16] on guantum formalism with p-adic variables but
complex-valued wave functions. In thisreview article, we present the esentials of this
theory. We restrict attention to the fields of p-adic numbers. General quantum theory
has been developed for an arbitrary non-Archimedeanfield K, see[11].

The basic objeds of thistheory are p-adic Hil bert spaces and symmetric opera-
torsadingin these spaces. Vedorsof a p-adic Hil bert spacewhich are normali zed with
resped to the inner product represent quantum states. In the p-adic case, the normis
not determined by theinner product. Therefore normali zation with resped to the norm
andtheinner product, which coincidesfor red and complex Hil bert spaces, is diff erent
for p-adic Hilbert spaces. We shall proceel in the foll owing way.

Consider the formal differential expressonH = H (0, ;) of operators of quan-
tum medhanics or quantum field theory. Let usredizethisformal expresson as a dif-
ferential operator with veriables x; belongng to the field of p-adic numbers Qp, and
study properties of this operator in a p-adic Hilbert space Thus we would like to
perform a p-adic analogue of Schrddinger’s quantization.

We remark that p-adic valued quantum theory suffers from the esence of a
“goodspedral theorem” for symmetric operators. At the same time, thistheory is es-
sentialy simpler (mathematicaly) than ordinary quantum mechanics, since operators
of position andmomentum are bounded in the p-adic case, as was found byAlbeverio
and Khrennikov [3].

The representation theory of groupsin Hilbert spaces forms one of the crner-
stones of ordinary quantum medanics. It is very natural to develop p-adic quantum
medhanics in a similar way. We oonstruct a representation d the Weyl—Heisenberg
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138 S. Albeverio, R. Cianci and A.Yu. Khrennikov

groupin a p-adic Hilbert space namely the spacelL>(Qp,vp) of Lo-functions with
resped to a p-adic valued Gaussan distribution vy, (the symbad b indicaes a p-adic
anaogue of dispersion), see[3].1 Here the situation dffers very much from that of
ordinary quantum mechanics. If we denote by U(a) and V (B) the groups of unitary
operators correspondngto pasition and momentum operators, respedively, then these
groups are defined only for parameters a and 3 belongngto balls Ur(p) and Uy y,), re-
spedively, where R(b) andr (b) depend onthe dispersionb of the Gaussan distribution
andthey are wupded by akind o Heisenberg uncertainty relation.

We shall aso study the representation o the translation group onthe space
L2(Qp,Vp). Herethe result aso differsfrom that of ordinary quantum medanics, and
is more similar to onethat holdsin quantum field theory where Gaussan distributions
oninfinite dimensional spaces are used.

Let p be Gaussan measure on the infinite-dimensional red Hilbert spaces . It
is impassble to construct a representation o trangdations from all of % in La(# , ),
because of the well-known fad that the translation " of a Gaussan measure on # by
avedor h € # can besinguar with resped to . Itiswell known that p is equivalent
to wif and ony if h belongs to a catain proper (“Cameron-Martin”) subspace In a
similar way we cana construct in the spacel>(Qp,vp) a representation o transla-
tions by all elements h in Qp; in fad, we have to restrict consideration to translations
belongngto some ball (which is an additive subgroupin Qp) whaose radius dependson
the dispersionb. Thisfad is conneded with the norexistence of trandlation-invariant
measures in the p-adic case (similarly for infinite-dimensional spaces over the field of
red numbers), see[6].

2. Banach and Hilbert spaces

2.1. p-adic numbersand their quadratic extensions

The field of red numbers R is constructed as the completion o the field of rational
numbers Q with resped to the metric pr(X,y) = |[x—Y|, where |- | is the usual red
valuation (absolute value). The fields of p-adic numbers Q are wnstructed in a cor-
respondng way, by using aher valuations. For any prime number p > 1, the p-adic
valuation | - | is defined in the following way. First we define it for natural num-
bers. Every natural number n can be represented as the product of prime numbers:
n=2233...p'r.... Then we define |n|p = p~'p, and in addition set [0], = 0 and
|—n|p = |n|p. We extend the definition of the p-adic valuation | - |, to al rational num-
bers by setting [n/m|p = |n|p/|m|p for m == 0. The completion o Q with resped to the
metric pp(X,y) = |X—Y|p is the locdly compaa field of p-adic numbers Qp. By the
well-known Ostrovsky theorem, the red valuation (absolute value) | - | and the p-adic
valuations| - |, are the only possble valuationson Q. Thusif one wants to construct a

1We remark that vy, is not a p-adic valued measure, i.e. a bounded linea functional on the space of
continuows functions. It isjust adistribution, a generalized function, which is primarily defined onthe space
of analytic test functions. A analogue of the Ly-space ca be cnstructed by completing the spaceof test
functions with resped to a natural norm.
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physicd model starting with rational numbers, then there ae only two posshiliti es: to
proced to red numbers or to ore of the fields of p-adic numbers.?

The p-adic valuation satisfies the so-cdl ed strongtriangle inequality: [X+y|p <
max[|X|p, |y|p], which makes pp into an ultrametric. SetU;(a) = {x€ Qp: |[x—alp<r}
andU; (a) = {xe Qp:|x—alp <r}, withr=p"andn=0,£1,£2,..; these ae
(“closed” and*open”) ballsin Qp. Set S (a) = {x€ Qp: |Xx—a|p=r}; these aespheres
in Qp. Any p-adic ball Uy = U, (0) is an additive subgoup d Q. Theball U1(0) is
aso aring, cdled the ring of p-adic integers and denoted by Zy. For any x € Qp, we
have aunique canoricd expansion (convergingin the | - |p-norm) of the form

Q) x:ufn/p”_y...u0+...+gkpk+...,

wherea; =0,1,...,p— 1, arethe “digits’ of the p-adic expansion. The dementsx € Zp
have an expansionx = ag+ayp+---+0xp +-- -, i.e., they arenatural generali zations
of natural numbers. Moreover, even negative natural numbers can be represented as
eementsof Zp, 9., 1= (p—1)+(p—1)p+(p—1)p?+...+(p—1)p"+... This
isthe source of the terminology“ p-adic integer”.

For p1 # p2, thefields of p-adic numbers Qp, and Qp, are not isomorphic &s
topdogicd fields. Thus by moving into the p-adic domain ore obtains, in fad, an
infinite series of fields for the modeling df, e.g., spacegeometry. None of these fields
isisomorphic to thefield of red numbersR. The aucial differenceisin the topdogy.

Fields of p-adic numbers are disordered. It isimpossble to introduce alinea
order on Q, (at leest in a natural way, e.g., matching algebraic operations). This fad
induwesinteresting departuresfrom thered case. It also playsafundamental rolein the
application o p-adic numbersto string theory and cosmology. For alongtime, physi-
cistsdiscussed theideathat at Planck distances (which are extremely small) spacetime
isdisordered. In particular, it canna be described by red numbers. On the other hand,
p-adic numbers provide an excdlent posshility for the mathematicd formulation of
thisphysicd idea

In applicdions to physics, the following complicaed problem arises: “Which
p shoud be used for modeling?” There ae various opinions. Igor Volovich proved
that some amplitudes used in “ordinary string theory”, i.e., based onthe red model of
spacetime, can bereproducedin thelimit p— oo fromthe correspondngamplit udes of
p-adic string theory [16]. The authors of this paper think that thisisnat crucial for the
new geometry. Thereforethe p seleded for physicd modeling (at least in a theoreticd
model) does nat play an important role. One can switch from one scde to ancther as
one doesin the red case by switching in the expansion (1) from one p to ancther, see
[11] for adetail ed presentation dof thisideology. Of course, eat physicd phenomenon
has its own scde. One ca discuss concrete scdes, e.g., in the p-adic gpproach to
quantum physics. The aithors of this paper propcsed seleding p = [1/a] : theinteger
part of the fine structure constant a. However, all such physicd discussons have no
dired relation to the present paper. For a mathematician, it may be more important to

2We remark that experimental data is always rational. It is a cnsequence of the finite predsion o any
measurement.
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know that typicdly the case p = 2 shoud betreaed separately, and proofs obtained for
p > 2 typicdly do nd work for p= 2.

Let T € Qp andsuppasethat X2 = T havenosolutionin Qp. The symba Qp(1/7)
denotes the correspondng guedratic extension o Qp. Its elements have the form z=
X+ /Ty, where x,y € Q. The operation o conjugation is defined by z= x — \/Ty.
We remark that zz = x? — 1y? for z€ Qp(1/T), and that zz € Qp for any z € Qp(/1).
The extension o the p-adic valuation from Q onto Qp(+/T) is denoted by the same
symbal |-|p. We have 7|, = /|zZ]p for ze Qp(1/T). Besides quadratic extensions, we
shall also operatewith thefield of complex p-adic numbersC,,. Its constructionisvery
complicated. Unlike in the red case, we caand obtain an algebraicdly closed field
by taking a quadratic extension, nor indeed by taking an algebraic extension o any
finite order. The dgebraic dosure Q% of Qp is constructed as an infinite tower of finite
extensions. In particular, it is an infinite-dimensional li near spaceover Qp (compare
with the red case where the dgebraic dosure C isjust two dimensional over R). The
p-adic valuationis defined onthe tower of finite extensionsin a mnsistent way. In this
way we obtain the p-adic valuation onQ%. However, thisis not the end o the story
concerninga p-adic analogue of complex numbers. Thefield Qf is not complete with
resped to such an extension o the p-adic valuation. Finaly, we completeit and oltain
that its completion, denoted by Cy, is algebraically dosed! The latter is a natrivial
result, Krasner's theorem. As the reader has e, the construction of p-adic complex
numbersis quite complicated. However, it might be even worse—if Krasner’stheorem
were nat true.

2.2. Banach spaces

Esentials of non-Archimedean functional analysis can be foundin, e.g., the book d
van Rogji [18].

The symbal K denates a nontArchimedean field with the valuation (absolute
value) | - k. Itisamap from K to [0, +e) such that

(1) |Xk=0&x=0;

2 |xylk = x|k [yl

Q) [x+ylk < max(|Xk, [Ylk)-
Thelatter fedure of the valuationisthe strongtriangleinequality. It playsafundamen-
tal rolein the determination o spedal feaures of the crrespondng norrArchimedean
topdogy. Such terminalogy is common in so-cdled nontArchimedean analysis, see
e.g. [18]. However, in other domains of mathematics, a nontArchimedean field is a
totally (or partially) ordered field containing norzero infinitesimals, e.g., the field of
norstandard numbers R*. We emphasize that this paper has nothing to do with the
latter casel

Let E be alinea spaceover a nonrArchimedean field K. A non-Archimedean
normonE isamapping|| - || : E — [0, +) satisfying the foll owing condtions:

@ [x|=0&x=0;

(®) [lox| = |alk X, a €K;
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(© lIx+yll < max([|x], Iyl])-

As usual, we define nonArchimedean Banadh spaceE as a complete normed space
over K. The metric p(x,y) = ||[x—Y]| is ultrametric. Hence every non-Archimedean
Banad spaceis zero-dimensional andtotally disconreded. All ballsW (a) = {x€ E :
[x—al| <r} are dopen.

The dua spaceFE’ is defined as the spaceof continuows K-linea functionals
| :E — K. Let usintroducethe usua normonE’: [|I]| = sup 4 [l (X) |k /[|X]|. The space
E’ endowed with thisnorm is a Banach space

The simplest example of a non-Archimedean Banach spaceis the spaceK" =
K x .-+ x K (ntimes) with the non-Archimedean nam ||x|| = maxi<j<n|Xj|k. Morein-
teresting examples are infinite-dimensional non-Archimedean Banac spaces redized
as aces of sequences; set ¢g = Cp(K) = {xe K*: AL”;XH = 0} and ||x|| = maxn [X|k.

2.3. Hilbert spaces

We take asequenceof p-adic numbersA = (An) € Qp, An # 0. We set
12(p,\) = {f = (fn) € Qp : theseries z f2\n convergesin @p}.

It turns out that 12(p,A) = {f = (fa) € Qf : liMn e | fa|py/[An[p = 0}. In the space
12(p,A) weintroducethe norm || f || = maxn | fn|p\/|An|p- The spacel?(p,A) endowed
with this norm is non-Archimedean Banach space On the spacel?(p,\) we dso intro-
ducethe p-adic valued inner product ( -, - ), by setting (f,9)x = 5 fnGnAn.

Weremark thet || f||, € R, but (f, f), € Qp. Thenormisnot determined by the
inner product. Nevertheless the p-adic inner product ( -, - )y : 12(p,A) x 12(p,A) —
Qp is continuows and the Cauchy—Bunyakovsky—Schwarz inequdity holds, namely
[(F. @ lp < 15 (19l

DEFNITION 1. Atriplet (I2(p,A), (-, -)a, || - |[») iscalled a p-adic coordinate
Hilbert space

More generally, we shall define ap-adic inner product on Qp-linea spaceE as
an arbitrary non-degenerate symmetric bili nea form (-, -) : E x E — Q,.

REMARK 1. We caina introduce ap-adic analogue of paositive definitenessof
abilinea form. For instance any element y € Qp can be represented as y = (X, X)),
withx € 12(p,\) (thisisasimple cnsequenceof propertiesof bili nea forms over Qp).

The triplets (Ej, (-, -)j, |l - Ilj), ] = 1,2, where E; are non-Archimedean Ba-
nach spaces, || - ||; are norms and (-, -); are inner products stisfying the Cauchy-
Buniakovski—Schwarz inequality, are isomorphic if the spaces E; and E, are dge-
braicdly isomorphic and the dgebraic isomorphism | : E; — E, isaunitary isometry,
e, (1|2 = [IX[1 and (1x,1y)2 = (x.Y)1.
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DEFINITION 2. Thetriplet (E, (-,-), || - ||) is a p-adic Hilbert spaceifitis
isomorphic to the coordinate Hilbert space (12(p,A), (-, - ) || - ||x) for some sequence
of weightsA.

Theisomorphism relation split s the family of p-adic Hil bert spacesinto equiva-
lence dasses. An equivalence dassis charaderized by some mordinate representative
1%(p,\). The dassficaion of p-adic Hil bert spacesis an open mathematica problem.

Hilbert spaces over quadratic extensions Qp(+/T) of Qp can be introduced in
the same way. For a given sequenceA = (An) € Qp, An # 0, we set

(A, vT) = {f = (fn) € Qp(VT)" : the seriesy fn fnAn CONVerges},

with [| ][y = maxn [ fn[p\/|An[p and (f,@)x = 5 fnGnAn.

Thetriplet (1I2(p,A,v/T), (-, ), || - |[») isthe coordinate Hil bert spaceover the
quadratic extension Qp(+/T). In general, a Hilbert space(E, (-,-), || - ||) over the
quadratic extension Qp(+/T), is by definition isomorphic to some mordinate Hil bert
space We denate ap-adic Hilbert spaceover Qp(1/T) by

Hp = Hp(V/T).

3. Groupsof unitary isometric operatorsin p-adic Hilbert space

Asusual, weintroduceunitary operatorsU : #, p — Hp asoperatorswhich preservethe
inner product, so (Ux,Uy) = (x,y) forall x,y € Hp, with image Im U= U(y{p) = .
|sometric operators are operators which preserve the norm, so ||Ux|| = ||x||, and have
Im U = s1,. Denote the spaceof all bounced linea operators A : sy, — #p by £ (#p).
It is a Banach spacewith resped to the operator norm ||Al| = supx7é0|\,&x||/||x|\. A
unitary operator need nat be isometric.® Indeed, it could even be unbouned. Dencte
the group d linea isometries of the p-adic Hil bert spaces( by | S(#(p), and the group
of all bounded uritary operatorsin %, by UN(#4p). Set Ul (#£p) = UN(2£p) NUI (#£p).

An operator A € L(91p) is sid to be symmetric if (AX,y) = (x,Ay) for all x,y.
Thefollowing simple fad will be useful | ater.

THEOREM 1. The dgenvalue a of a symmetric operator A: Hp — Hp COrre-
spondngto aneigenvedor u with noreero square, (u,u) # 0, belongs to Q. Eigen-
vedors correspondngto different eigenval ues of such type are orthogona.

The prodf is dmilar to the standard ore for complex Hil bert spaces .

As usual, we introduce the resolvent set Res(A) of an operator A € L(Hp); it
consistsof A € Qp(+1/T) such that the operator (Al —A)~ exists. The spedrum SpeqA)
of Aisthe complement of the resolvent set.

3Recdl that the norm on the p-adic Hilbert spaceis not determined by the inner prodwct. The only
condtion o consistency between them is the Cauchy-Bunyakovsky—Schwarz inequality.
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Note that every ball U; in Qp is an additive subgoup d Qp. A map F:U —
£ (#p) with the properties F (t +s) = F(t)F (s), t,s€ Uy, andF (0) = I, where | isthe
unit operator in %, is sid to be aone-parameter group d operators. If we consider
IS(#£p),UN(5p),Ul (5p) instead of £ ((p), we obtain definitions of the parametric
groups of isometric, unitary, and isometric unitary operators, respedively. If the map
F : 4y — £ (#(p) isanalytic the one-parameter groupis cdled analytic.

We recdl that any p-adic ball is, in fad, a ball with radius r = pX, with k =
0,+1,... (sincethe p-adic valuation takes only such values). On the other hand, in a
normed spaceover Q, or itsquadratic extension, the norm can take any value belongng
to [0, +0). To match these two ranges of values, we invent the foll owing quantity. Let
a be apaositive red number. We define

) [al, =sup{A = p*, ke Z : A < a}.

This number approximates (from below) the red number a by numbersfrom the range
of values of the p-adic vauation.

For abounded operator A, we define

-~ 1
©) Y(A) oo D]A]

It is ared number, the redproca of the norm ||A|| multiplied by the factor p/(P~2).
The latter appeas in conredion with convergence of the exporential seriesin the p-
adic case. The series €', where in general y belongs to C,, converges on the ball of
radius rep = p~ /(P

THEOREM 2. Let A be a boundd symnretric operator in Hp = Hp(\/T). The
map -
t— e\/ftAv te UI’; r= [y(\/fﬂ)]gv

isan andytic one-parameter group d isometric unitary operators.

Thus every symmetric operator A € £ (#p(+/T)) generates the one-parameter

operator group d isometric unitary operatorst +— U(t) — eVTA Thistheorem isanat-
ural generalizaion d the standard theorem for C-Hilbert space The foll owing result
has no analoguein functional analysisover C.

THEOREM 3. Suppaethat an operator Abelongsto £ (#£p). Themapa — e“ﬂ,

-~

a €U, r = [y(A)];, isan andytic one-parameter group d isometric operators.

4. Gaussan integral and spaces of square integrable functions
As dready remarked, the mathematicd formalism of p-adic quantization dces not

depend onthe choice of a quadratic extension Qp(+/T) of Qp. To make cnsidera-
tions symbalicaly closer to ordinary complex quantization, we shall procee for the
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quedratic extension Qp(i). Of course, this choicerestrictsin an esential way the dass
of prime numbersunder consideration.

To provide the pointwise redizaion of elements of the p-adic analogue of the
Lo-space we shall consider analytic functionsover thefield of complex p-adic numbers
Cp. InCp we denote the ball of radiuss € R, with center at z= 0 by the symbadl .
We denote the spaceof analytic functions f : us— Cp by 2 (us).

In[2], the general definition of a p-adic valued Gaussan integral was proposed
onthebasisof distributiontheory. Inthis context, the Gausdan distributionwas defined
asthe distribution having L aplacetransform of the form exp{bx?/2}, whereb € R. We
recdl that in thered caseif b > 0 then Gausdan distributionis mply a countably ad-
ditive measure — Gaussan measure with dispersionb. If b is negative or even complex
then the Gausdan distribution canna be redi zed as a meesure.

For our present applicaions to quantizaion, we can use asimpler approach
based onthe definition of Gaussan distribution throughthe definition of its moments.
RougHy spe&king, we know moments of Gausdan distribution over thereds. Suppcse
now that dispersionis arational number, b € Q. Then moments can equally well be
interpreted as elements of any Q. We now cen extend by continuity our definition o
moments to any “dispersion” b € Qp.

Let b be ap-adic number, b # 0. The p-adic Gaussan distributionvy, is defined
by its moments (n=10,1,...) :

1 Khn
Mzn :/ x*p(dx) = (zr:#, Man1 :/ XMt (dx) = 0.
Qp n! 2 Qp

We define the Gausgan integral for polynomial functions by lineaity. Then
we can define it for some dasses of analytic functions. The analytic function f(x) =
S n_oCnX", with ¢, € Cy, is said to be integrable with resped to the Gaussan distribu-
tionvy if the series

(4) [@p f(X)vp(dx) = nichn = ni)Canzn

converges. It was shown in [11] that &l entire enalytic functionson C,, are integrable.
Infad, we do nd need analyticity onthe whaole of C,, to be &ble to define the Gaussan
integral. The following (red) constant

6= p70 7 ,/|b/2]p
will play afundamental role. If p # 2, then 6, = p2<1l*p> VIblp. If p=2,then By =
V/[0lp:

ProPOSITION 1. Let f(x) belongto the dass4 (us). If s> 6, then theinte-
gral (4) corverges.

REMARK 2. There exist functions which are analytic on the ball g, but are
not integrable, see[11].
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In fad, we have proved that the Gausdan distribution is a continuots linea
functional on the spaceof analytic functions 4 (us), i.e., it is an analytic generali zed
function (distribution); for the details ®e[2]. We shall use the symbad | to represent
the duality between the spaceof test functions a2 (us) and the spaceof generalized
functions 4’ (us) by setting (w, f) = [f(x)u(dx) for f € a(us) andpe a’'(us). As
usual, we define the derivative of a generalized function p by means of the equality
S (u(dx) = — [ F/(x)(clx).

It shoud be remarked that the distribution vy, is not a bounded measure on any
ball of Qp. (This was proved for the cae p # 2; in the cae p = 2 the question is
till open), see Endo and Khrennikov [19]. Thus we muld nd integrate continuows
functionswith resped to the p-adic Gaussan distribution.

We introduce Hermite polynomiasover Q, by substituting a p-adic variable, in
placeof ared one, into the ordinary Hermite polynomials over the reds:

nl (n/2] (71)kxn—2kbk

Hno(X) = i k; K(n—2K)12K”

We shall use dso the foll owing representation for the Hermite polynomials: Hp p(x) =

(-1)" Z/Zbdd—;]e* ?/2b This representation hdds on a ball of sufficiently small radius
with center at zero. As a mnsequence, we obtain the following equality in the spaceof
generalized functions a2’ (us), with s> 6y :

n
® b (00ub(d) = (1" 2 v (@Y.
i.e., multiplication o the Gaussan distribution by a Hermite polynomial is equivalent
to evaluating the aorrespondng derivative (in the sense of distributiontheory).

Inthe space? (Qp) of polynomialsonQ, with coefficients belongngto Qp(i),
we introduce the inner product (f,g) = [ f(X)g(X)vp(dx). With resped to this inner
product, the polynomialsHy p, verify the orthogoral condtions | Hmp (X)Hn p(X)Vb(dX)
= Opm N!/b".

REMARK 3. In fad, the gopeaance of such constants A = n!/b" was one of
the reasons for introducing p-adic Hil bert spacesthat areisomorphicto 12(p,A).

Any f € 2(Qp) can be written in the followingway: f(x) = SN ¢ faHnb(X),
N = N(f), fn € Qp(i). We introdwcethe norm || |2 = maxq| fn[3(|n!|p/|b[}), and we
define Liz(Qp,vb) as the completion of 2 (Qp) with resped to || - ||. It is evident that
the spaceL’,(Qp, V) isthe set

00 o0 —nl!
{f(x) = Z)ann’b(x), fn € Qp(i) : theseries Z}fn fn% converg%}.
n= n=

Let Lo(Qp,Vp) stand for the subset of L, (Qp,vp) consisting o functions that
have the Hermite coefficients f, € Qp. ThisisaHilbert spaceover the field Qp.
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For f(x) € L,(Qp,Vp) we set

(6) oh(f) = onp(f) = fal3

n!
bnlp’
where
bn
f— W/f(x)Hn,b(X)Vb,p(dX)

are the Hermite ooefficients of f(x).

Now we wish to study the relations between L (Qp, vp)-functions and analytic
functions. Set aq,(ur) = {f € a(ur): f:Ur — Qp}, i.e, these ae functions that
have Taylor coefficients belongngto the field Qp.

THEOREM 4. Assume p # 2. Then La(Qp,Vb) C Ag,(Us,)-

Now we consider the case p = 2. In general, Lo-functions are not analytic on
the ball g, .

THEOREM 5. Lets> 6. Then 4q,(Us) C L2(Qp,Vb)-

Further we construct the Lo-representation of the translation group. If |b|p =
p?tt we set s(b) = pX, if |b|p = p?, weset s(b) = p* L. Set Tp(f)(x) = f(x+B).B €
Qp. We shall provethat these operators are bounced for 3 € Ugy,). Moreover, these op-
erators are isometries of Lo(Qp, vp). Usingthisfad we shall construct arepresentation
of thetrandation groupin the p-adic Hilbert spaceL>(Qp, Vo).

LEMMA 1. Theformula

o R

haldsfor the trandates of Hermite paynomials.
THEOREM 6. The operator 'ﬁ; belongs to 1S(L2(Qp,Vp)) for evey B € Ugy),
andthemap T : Ugp) — | S(L2(Qp, Vb)), B — Tp, isandytic.

5. Gaussan representations of position and momentum operators

Just as in ordinary Schrodinger quantum medhanics, let us define the cordinate and
momentum operatorsin L (Qp, vy) by

819 =x1 (. D19 = () (g~ 35 ) 19

where f belongsto the Qp(i)-linea spaced of linea combinationsof Hermite polyno-
mials. The mordinate and momentum operators © defined satisfy on o the canoricd
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commutationrelations
(8) [@,p] =il,

where | is the unit operator in L5(Qp,Vp). We shall seethat these relations can be
extended to the whole of L, (Qp, vp).

THEOREM 7 (Albeverio-Khrennikov). The operators of the coordinate g and
momentum p are bounded in the Hilbert space L} (Qp, Vp), with

©) @l = /Ible.  [Bll = ¢|1b—|p

Moreover G andp are symnetric andsatisfy (8) on L, (Qp, vp).

Proof. Let f(X) = 35 o faHnp(X) € LL(Qp,Vp). By the recurrenceformula

(10) Hns1,6(X) = b~ [xHnp(X) — NHy_15(X)],
we have
(11 gHnp(X) = bHn11b(X) +NHn_16(X),

andqf(x) = Sp_gbfaHni1p(X) + S a1 nfaHn—16(X). Thus, by the strongtriangle in-
equality, we obtain

. [(n+1)! |[(n—1)!]
e < max [mnax|b|%|fn|%—nﬂ >, max 3 130l
b |blp
n| [n!|
— Jolp max | max|n 1o/ 2R x| o o2 TEI2
[blp [ 2 N+ 1| n|p|b|ga 2% || p| n|p|b|%
< blpl 1,

(as|n|p < 1 for dl ne N). Therefore, ||q|| < +/|b]p. Now we prove that ||g||? = |b|p.
Let n= p¥, then

b[2|(pk+ 1)! K121k — 1)1
Dk,b|aHpk,b|zmaxll B0+ 1)ty [PHEIP D]

bt gt
But |(p*+1)![p = |p!|p and |p?(p* — 1)!|p = p~¥[pX[p. Thus
K

[P ! p
[l4

2
Dicp = [blp = [blpl[Hpepl*

which provesthefirst equality in (9).
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R Further, we have %Hn’b(x)A: (X/b)Hnp(X) — Hny1p(X) = (n/b)Hn_1p(X). Set
Tx = (d/dx— (x/2b)). We have TyHnp(X) = (n/2b)Hn_16(X) — (1/2)Hnt16(X). To
compare this expressonwith (11), we rewrite it as

(12 Tibnb() = o [~ bHa. 160 + iy 16

The expressonin square bracetsis gmilar to that in (11); thesign deesplay arolein
estimates of max type. Thuswe obtain || Ty|| = (1/|b|p)]|dl||, which proves the second
equality in (9).

Symmetry of the boundkd operators g, p is easily verified. O

Thus, unlike in the Archimedean case (complex Hilbert space, in the p-adic
case the canoricd commutation relations (8) are valid na only on a dense subspace
but everywhere on the Hil bert space

6. One parameter groupsgenerated by position and momentum operator s

We shall compute numbers [y(G)], and [y(p)],, see(2), (3) insedion 3
If |blp = p™** theny(@) = 1/(p“p"/2p"/(P~Y). If p# 3then [y(@)], = 1/p*™".
If p=3then [y(@)], =1/p**2 If |bp = p™ theny(q) = 1/(p*p"*P)) and [y(@)], =
1/ pk+1_ Set
R(b) = [y(@)],-
If |blp = p?** then y(p) = (p'/?/p"/(P~Y)p. If p# 3 then [y(p)], = p*. If
p=3then[y(p)], = P If [blp = p? then [y(p)], = p* *. Set

r(b) = [y(P)]p-
THEOREM 8. (Albeveio-Khrennikov) Themapsa — U (a) = €%, a € Urp,),

andp—V(B)=€PP Be Ur (1), areanaytic one-parameter groups of unitary isometric
operators acting onLiz(Qp,vb). They satisfy the Weyl commnutationrelations

(13) U(a)V(B) =e PV (B)U(a).
We set
(14) Mg f(x) = e PI/2f (x) = Zo ﬁl_(ggin f (),

for f € L2(Qp,Vb). By Theorem 7, we eaily obtain

PROPOSITION 2. ThemapM : Uy p) — I S(L2(Qp, Vb)), B — Mg, isan andytic
one-parameter group (indexed by the ball U, y,)).

REMARK 4. The function x — e P/? isnot defined onthe whole of Q, and
we canna consider (14) as a pointwise multiplication operator.
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7. Operator calculus

Itis well known that in the ordinary L2(R,dx) space the unitary groupV (B) = PP,
with B € R, can be redized as the trandation goup, with V(B)W(x) = W(x+ B) for
sufficiently well-behaved functions Y(x). If we mnsider the eguivalent representation
in Lo-spacewith resped to the Gaussan measure v, (dx) = (/20 /\/2rb)dx on R,
we obtain

(15) V(B)W(x) = e P/ P/Dy(x 1 B),
or
(16) V(B) = cgMg T,

wherecg = e B?/4_We shall now provethat (16) is aso valid in the p-adic case.
Set §(B) = CBMBT-Bv B € Uy (), where the operator MB is defined by (14).

THEOREM 9. Themapf3 — §B, B € Uy (), isa one-parameter andytic group d
isometric unitary operators actingin L, (Qp, vp).

LEMMA 2. The groups §([3) andV (B) havep astheir common generator.

Asa mnsequenceof thislemma, andthe analyticity of the one parameter groups
S(B) andV (B), we edaily obtain:

THEOREM 10. Therepresentation(15), (16) holdsfor the operator groupV (B).

By using ore-parameter groups U (at),V(B), one can formally define pseudo-
differential operators. However, arigorous mathematicd theory is ill awaiting devel-
opment.
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Sewnd Conf. Pseudo-Differential Operators

A. Ascandlli and M. Cicognani

GEVREY SOLUTIONSFOR
A VIBRATING BEAM EQUATION
Dedicated to Profesor Luigi Rodino onthe occasion d his 60th birthday

Abstract. We monsider the Cauchy problem for the Euler-Bernouli equation o the vibrating
beam and solve it in Gevrey classes under appropriate Levi condtions on the lower order
terms.

1. Introduction and main result

Let us consider the Cauchy problemin [0, T] x Ry

(1) {Lu:o

u(0,x) =up, 6tu(0,x) =uyg

for the operator
3
2 L= th_a4(t)D§+ zak(taX)D)ia
k=0
where D = —id for the sake of the Fourier transform and as(t) is a red non-negative

function. A motivation to investigate such a problem comes from the Euler-Bernouli
model of thevibrating beam. We admit zeroes of finite order k for a4(t), and so assume
there xistsk € N, k > 2 such that

k .
3 () #£0, te[o,T].
J; ¢

We ssaume for the aoefficients of L the foll owing regularity condtions:

(4) a € C([0,T|;Ry), as € CY[0,TL;V¥(R)), az,ai,a € C([0,Ty(R)),

where R, = [0,+), and y*(R) is the Gevrey classof index s> 1 onR, that is the
spaceof all smooth functions f such that

@ (x)| <CA%alS, C,A>0, aeN.

One can consider L as an anisotropic hyperbalic operator where eab derivative with
resped to the time variablet has the same weight of two derivatives with resped the
spacevariable x. After that, the two fadors T4 \/as(t)€? of the principal symbol

151
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correspondto Schrodinger operators. From the theory of hyperbadlic equations, one
expeds Levi condtions are nealed onthe lower order terms at the points where the
leading coefficient a4(t) vanishes. On the other hand, from the Schrédinger side, also
some decay asaimptionsas x — co shoud be taken into acourt for the imaginary part
of these terms, see[4].

Here we asaume that the imaginary part of ag satisfies the Levi condtion

(5) |Oag(t,x)| < Coau(t)(x) %, o> 1,

(x) = (14x2)1/2. Besidesthe decay ratefor x — oo, (5) saysthat the order of vanishing
of Oag is at least the same of a4. For the full coefficient ag, includingitsred part, for
the derivative d;a3, and for the coefficients a, and a1, we require lower orders of zero
and na any decy, predsely

(6) |08as(t,X)| < CAPBISay ()™,
(7) |080aa(t,x)| < CAPBISau(t)2,
8) |0faz(t,x)| < CAPB!%aq(t)"™,
©) |08y (t,X)| < CAPBISay(t)™,

with C,A > 0 andn; to be spedfied here below.
We proved in [1] that the problem (1), (2) iswell posed in H* = NyerHM under
the assumptions (3), (5) witho > 1 and

Raa(t.x)] < Cpas(®)™, na>3/4—1/(2K),
0%0ias(t, X)) < Cpaa(t)™2, nz>3/4—3/(2K),

(10
Raz(t.x)] < Cpa()®, ng>1/2-1/k,

Ras(tx)] < Cpaa()™, na>1/4-3/(2K).

(H" denoctes the spaceof functions f such that & — (E)“f({) isin L2 where ~ isthe
Fourier transform.) Otherwise, H* well posednesscanna hold; here we ae going to
prove aresult of well posednessin Gevrey clasesfor (1) in this mndcase. Themain
result of this paper is the following:

THEOREM 1. Let usconsider the Cauchy problem (1) for the operator L in (2)
under assumptions (3), (4). If the Levi condtions (5)—9) are fulfilled (but (10) is not
necessarily satisfied), then problem (1) iswell posed in y® for 1 < s< s, where
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1/2 < ni<3/4—1/(2K)

n2 > 3n11-3/2 _ 1-m
*Yns > -1 0T R nd

Na = 3Mm—-2

N < 3/4-3/(2K)

N > Nn2/3+1/2 B 3/2-n2
*Yne > M3 T T 2Ea-3/@) 0

Nna > n2—1/2

ns < 1/2—-1/k

ni > ns/2+1/2 _ 1-ns
*Yne > 32 T XTI - 1N

na > 3ns/2-1/2

Ne < 1/4—3/(2K)

ni > n4/3+2/3 _ 1-n4
Y2 > nat12 T TR/ -nd

ns > 2n4/3+1/3

In proving Theorem 1 we need to assume o > 1; for a predse explanation of
thisfad seethe final Remark 1.

2. Preliminary resultsand Schrédinger equations

In what foll ows, we ae goingto use pseudo-diff erential operators p(x,Dx) of order m
on R with symbals p(x,&) in the standard class S™ which is the spaceof al symbals
a(x, &) satisfying, forany o, € Z,

0%08a(x. )] < Capn®n @, (E)ni=\/R+Eh>1;
thisisthe limit space &/ — « of the Banach spaces S™/ of al symbals uch that

|a|me :=sup sup |a§a§a(x,a)|<a>r;m+\ﬂ\ < too,

X& a+p<l

Operators with symbal in S™ are boundkd operators from HH ™M into HH for any P We
shall write (§) instead of (&);.

We ae dso gaingto use, givens> 1, Gevrey-type symbolsof classS™S, where
S™S denatesthe spaceof all symbalsa(x,§) satisfying

(11) 0gaka(x,&)| < Cq nAPBIsE)N 1,
which isthe limit space

LS. i ,S LS. | .S
s"ei= lim §*,  §":= lim §'%
] A—+oo
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of the Banach spaces S, of all symbals such that

Amsaci=sup  supldgafalx &)|A PRI (E), ™% < foo.
a<lBEZs X

Givenpe R, € > 0, s> 1, we ded with the Sobdev—Gevrey spaces
HES(R) = =00 HI(R),
where the norm is defined by
Julle:s = 11627 Ul

Operators with symbol in S™ are bounded from HEs™ to HEs for [e| < €, see[3].

In the present sedion, following[4], we state some preliminary results concern-
ing Schrddinger equations of the form Su(t,x) =0,

(12) S= Dy + by(t)D2 + by (t, X, Dx) + bo(t,x, D),
where the function by(t) isred valued and dces not change sign, say
(13 b, € C([0, T;R..),

the lower order terms are complex valued and such that

(14) b; €C([0,T];S}), j=0.1.

L et us consider the Cauchy problem

19 {SUO

u(0,Xx) = uo.

We say that problem (15) is well posed in H" if for any up € HH there is a unique
solutionu € ﬁjl:OCJ ([0, T]; HH2)). We have the foll owing:

THEOREM 2. Consider the Cauchy problem (15), (12) under the assumptions
(13) and(14), and asume moreover that

(16) |Oba (t,%,€)] < Mob2(t)(x) °[€], €] =R 0>1.
Then (15) iswell posed in HH.
Proof. We define

X
0

a7 AE) = MaaE/h) [ () oay,
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where M; isalarge constant, w(y) a smooth functionwith w(y) = 0for |y| < 1, w(y) =
ly|/y for |y| > 2. For every o, € Z we have

(18) |080BA(X, )| < 8o p(E),

with constants 8, g independent on the parameter h > 1.
L et usnow consider the pseudod fferential operatorse™ with symbolse™\(%%),
and perform the compositione e . We have:
e N =1—r(x,Dy),
where the principal symbal of r is given by
(29 r-1(%,&) = Dx/A(X,&)0: A (X, §).
By (18),
Irie) (68| < Capl®)n ™ < Caph™ (&),

with Cy g independent of h. From this, we can fix alarge hiin order to have abounced
operator r(x,Dx) on H* with nam ||r (x,Dy)|| < 1. The operator | —r(x, Dx) isinvert-
ible by Neumann series and its inverse operator is given by

0

I+p(xDy), p=Yrl.
=1

This provesthat the operator e (1 + p) istheright inverse of €\. By simil ar arguments
one provesthe existenceof aleft inverse. Thus, the operator €\ isinvertible, theinverse
operator is given by

20 (¢) "=eMi+p) pxEes?

and p(x,§) hasthe principa part (19).
To oltain the well posednessin H* of problem (15), we perform the change of
variable v = (€")~1u and we show that the Cauchy problem

S\v=0
2D {V(O, x) = (M) ~tup

for the operator S" := (¢')1Se" iswell posed in HX. We have
iS=d; +iK(t,x, Dy),

where
K(t,x, Dx) = bp(t)D2 + by (t, X, Dy) + bo(t, X, Dy),

and

it =a +iK", KM= (") ke



156 A. Ascandli and M. Cicograni

Differentiating with resped to time and taking = 0, we have
IV I3 = 200/ 0) vit))o = 200K o,
We writeiK asthe sum
iK=Hk+Ac, Hx=(K+(iK)*)/2 Ax=(K-(iK)")/2
of its hermitian and anti-hermitian parts. The principal symbal of Hk is given by
HR (t,%,&) = —Oby(t,X,&).
The hermitian part Hya of iK” is then
Hyna (t,%,&) = 2M1ba(1)|€](X) 7% — Obx(t, X, &) + Qo(t, %, &),

with Qo(t, x,&) € C([0,T];S°). From (16), taking M1 = Mo/ 2, we have apasitive prin-
cipal part for Hea(t,x,€); hence an applicaion o the sharp Gardinginequality gives

22) 20 (iK"u,u) > ~CJul%, ue H2.
From this, the energy method gves well posednessin L2 of the Cauchy problem for

S\. Well pasednessin HH immediately foll ows, since, for any p, the principal wmbol
of the hermitian part of (Dy)*iK”\(Dy) " isthe same of Hyn.

3. Proof of themain result

We goproximatethe charaderistic roots -+/a4(t)&2 of L by defining

(23 Ao(t,€) = \/au(t) + (€) ME? = ba(t,€)82,

with0< M < 1/(1—n1) to be chosen later on. We immediately noticethat
(24) by — by € C([0,T]; S M), by = \/au(t).

Then, we define

(25) b (t,x,§) = —aa(t, x)&/(2ba(t,£)),

and by (6) withny > 1/2 we have

(26) by € C([0, T];S"9).

Again, we define the operators

(27) §* = Dy +boD2 + by,
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and compute

S St = L—aD?—a;Dy—ag— (Dy) " MD?

dg (8) M0 ”
—OIO(i s —Xag53+iaxa3£2+"') _i%bilDi

403
Oragy_ ajag~_
—|Tb21DX+|"'Tb23DX

~ 2 Oy a3 ~ Oyazd M
R Y L)

where we denote by op(p(x,§)) the pseudodfferential operator of symbad p(x,§). We
have:

LEMMA 1. Let us consider the operator L given by (2) under the assumptions
of Theorem 1 andtake S* asin (27). Then:

(28  L=55"— (dow+ eowo~+ fowr + o + hows + lows + Mo) b2 (Dy)?,

where &, do, fo, o, ho, lo, Mo € C([0,T];S”%), 00 = op(w(t,&)) and w = op (wi(t,)),
i=0,...,4,with:

29 o8 = — &
’ (aa(t) + (&)~M)1/2’
_ &
9 S G
1
(32) wy(t,8) = (a0 1 (&) Mjazan;
_ &1
42 @0 = G+ @ e
1
(33 (.8 = o
_ &1
(34) wy(t,&) = (Ba(l) 1 (&) M)ns
. ay

Proof. e |5651D)2((52<DX)2)*1 clealy beames dowy.
o (Dy)"MD4(b2(Dy)?) ! clealy becomes eyw.

~ 2 ~
. op((%bzlz) ) (b2(Dx)?)~* becomes fowy by the Levi condition (6).



158

A. Ascandli and M. Cicograni

.Oraz

. |Tb51DX(BZ<DX>2)*1 bewmes gowx, by the Levi condtion (7).

(35

(36)

(37)

(39)

(39

(40)

a;D2(b2(Dy)?2) ! becomes hows by the Levi condition (8).

a1Dx(b2(Dx)2) 1 beaomeslows by the Levi condition (9).

M

0p<id£<€>4$23) (b2(Dy)?) ™! and op(idxast?)(b2(Dy)2) 1 have symboals
2

inC([0,T];S"S) by the Levi condtion (6) withny > 1/2.

ag(boD2)~1 e C([0, T]; "9).

4 8
Po(t, X, &) (€)~wy, with po(t, x,&) € C([0,T};S>9), by (6).
from (6), the principal symbol of —ajagh,Dx(b2(Dx)?)~* is dominated by

wo (&) "Y(ay+ (&)™), and (€) (as + (§) ™M)~ ("M e C([0, T]; %) be-
cause we aegoingto chooseM < 1/(1-n3).

" Oxagdg (€)™ . -
0p<aeaxasb22§ +Mb24gz> (B2(Dy)2)~! has principal symbal

O

LEMMA 2. The symbals defined by (29)—(34) satisfy:

.
o [ lon(t§)le| < 8o (6) (1-+109E).

T
ag/o |m(t,E)|dt‘ < 8y <E>2*M(1/2+1/k)7a,

T 8up(E) " (1+log(®)) if N1 > 3/4—1/(2K)
0g [ on(t. )| <
d

O p(€) " ifn2>1-1/k

p(EIME/2-/k=2n1)—a if n, < 3/4-1/(2K),

=

]
020 [ lwaltx B)lct| <

S B<E>—1+M(1—l/k—r|2)—ox if N2 < 1—1/k,

=

]
080§ [ lanltx B)lct] <

B (€)M N if ng < 1/2-1/k,

Q

B0 p(8) % if na>1/2—1/k

)
aga&/o laa(t, x,&)|dt| <

{ Oup(€) " (1+l0g(€)) ifn3>1/2—1/k

50(’3<E‘>71+M(1/271/k7r]4)70( if Na < 1/2_ 1/|(.
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Proof. The proof isasimple gpplicaion o Lemmal andLemma?2 of [2]. O

The next step of the proof isto reducel to afirst order system of asuitableform
by using fadorization (28).

LEMMA 3. Let usconsider the operator L in (2) under the assumptions of The-
orem 1. Let us denote

(47 Kl = E)zDi + E)l = sz)z( +b1, by = 61 + (E)z — bz)Di

where by € C([0,T];Sb$) and, in view of (24) and (26), by = [by. Then, the scalar
equaionLu = 0isequivalenttothe 2 x 2 system w U =0,

(42 W = D¢+ K+ Dow-+ Egwy + Fows + Gowy + Hotds + Lot + Mo,

where
& = %)
Do,...,Mo € C([0,T];SS), w,w (i =0,...,4) asin (29)~34).

Proof. For ascdar unknovn u we define the vedor Ug = t(up,u;) by

Up = §2<Dx>zu
up =Stu

so that, from (28), the scdar equation Lu = 0 is equivalent to the system woUp = 0
with

K1 —bz(Dy)?
Woth-i-( 10—y x>>

0 —K3

—iwp/2 0
(44) +
dow + €ptp + fowr + gow + hotz + lowys O

1

N [b2(Dx)2,K1] (02(Dx)?) "~ 0
Mo 0)

where we use (9¢02)(Dx)?u = (0x/2)up. The term [b(Dy)?, Ky] - (|52<Dx>2)7l is of
order 0 becaise b, does not depend onx and dgb, = p-qb with p_q of order —a.
We begin to diagonali zethe matrix

(5 %)
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by means of
2 /9z2
@9 wo)= (5 %) Ezr=o0

whichisin S°. At the operator level, for the system w/q in (44) we have
Q)al‘Woﬂ)o =W

with w4 equal to w in (42) moduo aterm of the form
0 %
0 0/

21(t,x,8) = ()% bu(t,x.€), [§|>R>0.
We perform a secondstep of diagoreli zaion by means of the operator with symbal

where

(46) Dy = ( é dll ) di = —2/2by(1)E2, || > R
By (6), we have
di € C([0,T]; S HMA-N8) € c([0,T]; 9).
Moreover, from (6) and (7),
drdy = powo + Gowr + o2, Po, G, To € C([0, T]; S>S).
Thus, D w11 = W, with w in (42). O
Proaof of Theorem 1. To prove the well posednessin Gevrey classes of the Cauchy

problem (1) for the scdar operator L, we ae going to prove the well posednessin
Sobdev-Gevrey spaces of the equivalent problem

{wu@mo

47 U (0,x) = G(x),

for thesystem ' in (42). We naticethat under the sssumptionsof Theorem 1, recdling
aso (41), (25) and the Levi condition (5), the diagorel part Dy + K of w satisfies the
hypaheses of Theorem 2. Thus we can apply Theorem 2 to D; + K. We take the
operator A in (17) and consider the transformed system

(48) W= ( e(;\ e9’\ )lw ( e(;\ e?,\ )

We know that, taking sufficiently large Cop in (5) and hin (17), we have

iW" = 0 + iKn + D1w+ E16 + Fron + Giayp + Hioz + L1y + My,
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where
20 (iKaU,U) > —C|lU |2, U € H?

moreover, since both the transformations €, (") ~* are of order zero, and

agw(tvz) = q*d(taz)w(tvz)a qfd EC([O,T],§G)7
0f wj(t,€) = 0-a,j(t,§)wj(t,&), G-a,j€C(O,T}S ™), j=0,....4,

we have

i(Dow -+ Egwo + Fowy + G + Hows 4 Lowy 4 Mo)™
= D1w+ Ejp + F1og + G1uy + Hiws + L1y + Mg

with
D1,E1,F1,G1,Hy, L1, My € C([0,T]; S%9).

The next step in the proof consists in the transformation also of D1w+ Ejwo +
Fron + Giwp + Hiws + Liwy + My into a positive operator, moduo a remainder of
order zero. There alossof derivativeswill appea. We perform the change of variable
given by e®t:0x) where

ot5)=C [ (lonfr8) +w(r,a>+_im(r,a>> dr.

C alarge enoughconstant to be chosen. The change of variable caries a loss see
Lemma2; the losshemmes greaer as the order ord(@) of the symbal @(t,&) increases.
Thus we chocse the parameter M that minimizes ord(¢g), which is the maximum be-
tween the orders of fé w(1)dr, fé |oo(T,8&)|dT, fémi(T,E)dr, i=1,...,4 Ina ommpari-
son between (35)—(40), we naticethat the foll owing cases can occur:

1/2<ny < 3/4-1/(2k)

M=1/(1-n),
N2>3n1—3/2 3 -
*\ ns>2m-1 " ord(g) = 2[3/4 11/(2k) ﬂ1]7
N4 >3N1—2 —Mm

N2 < 3/4—3/(2k)

n1>nz/3+1/2 M =3/(3/2—n2),

¢ 2[3/4—3/(2k) —n2]
N3 >2n2/3 = ord(q) = 7
anﬂzz—l/Z 3/2—n2
Na<1/2—1/k V2
n1>ns/2+1/2 = na),

* ﬂ; > 3;3/2 — ord(g) = 2[1/2—n3— 1/"]7

N4 >3n3/2—-1/2 1-ns
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Na < 1/4—3/(2K)

M =3/(1-na),
N1>n4/3+2/3 S 3oy
*\ n2>nav1/2 " ord(g) = [1/ 1/( ) N4
N3 >2n4/3+1/3 —nN4

In eath case, we have that ord(¢) = 1/, So asin the statement of Theorem 1;
in what foll ows we use the notation

@e C([0,T]; SY%)

which coversall thefour casesthat can occur. The change of variable can be considered
only if @(t,&)(£)~Sis snall enough(see[3)]), anditis
iw N = e ¥ Ne®

= 0y + 0, @(t, Dy) 1 +iK" +R(t,x,Dy)

49 + Dow+ Extg + Fow + Gowy + Howz + Lots + M2

= 0t +iK" + (D204 Coor ) + (Etp + Clodo| 1) + (Fowy 4 Coog 1)
+ (Gaup + Cuxpl ) + (Hawsz + Cwar ) + (Lows +Cuwgal )
+ M2+ R(t,X, DX) 5
where I isthe 2 x 2 identity matrix,

D2,Ez,F2,Gp,Ha, L2, M2 € C([0,T]; 9,

andR e C([0, T];SY/s9).

Taking nav C sufficiently large, from the sharp Gérding inequality for ma-
trix operators, see[5, Theorem 4.4, page 134], we immediately get that Dow+ Cwr,
Ezwo + Clop| 1, Fotn + Cun 1, Goop + Cup 1, Howz +Cuxl and Lows + Coa ! in (49)
are positive moduo terms with symbol in C([0, T]; S%3).

It only remains to make R a pasitive operator. To this aim, we take p= 0 and,
for afunctionr(t) € C1[0, T to be dhosen, we perform the last change of variable given

by & ©Px)Y*-D0* ¢ - 0 and consider the final operator
(50)  iw = e (ALDNHODY-e(D05) gy AL (1) (D)7 o-e(D0) M
By [3] we know that there exists an gp > 0 such that if
@(x,Dy) 41 (1) (D)5 < (Dy) S, 0< e < ¢y,

then

iw =0 +iKN+ (D2w+ Cwr ) + (Exwo + Clox| 1) + (Foty +Coog 1)
(51) + (Gotdp + Cop! ) + (Hawz + CuxaT ) + (Lo + Cun1)

+ M+ R(t,x,Dy) + (1) (Dy) 51,
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where R € C([0,T]; S¥%) has sminorms such that |R(t)|, < r,(t) for some functions
re € C[0, T] not depending onr (t). An applicaion o Caldéron-Vaill ancourt’sTheorem
to the operator R gives the existence of a positive cnstant /o only depending onthe
spacedimension n such that

(R V) 2] < g (£) (D) /W) 2.

Thus, taking r(t) such that r'(t) = ry,(t), we have that also R(t,x, Dx) +r'(t)(Dx)Y/°1
beoomes a positive operator modu o terms of order zero. So, from (51), we obtain by
Gronwall’s method

IV (1)1 < Collu (0)]13-

This procedure can be generalized to the case L # 0, sincefor eat L we have
(DM ) (D) =i + Ry,

with R, of order zero. From this, the energy method gves well posednessin H of

the Cauchy problem for ifﬂ/, which corresponds to well posedness of (47) in Hg‘fs,
O0<e<eg. O

REMARK 1. If, with the ssaimptions of Theorem 2, wetakeo =1 or 0 €
(0,1), then the Cauchy problem (15) is not well posed in HH, but it is well posed
respedively in H* or in y® for s< 1/(1— o), see[4]. This is because the symbal
A in (17) has positive order under a decey at infinity condtion o type Oby ~ (x)~°
with o € (0,1]. Regarding second ader equations, in the statement of Theorem 1 we
only admit o > 1, see(5). Thisis becaise in the proof of Theorem 1 we need A of
order zero; otherwise, the transformation (48) carries alossof derivatives, and as now
we caina simultaneously control the two losses coming from the decay condtion at
infinity (transformation (48)) and from the Levi conditions (transformation (50)). The
problem of givingan analogue of Theorem 1 inthe case o € (0, 1] is ill open.
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EVOLUTION FOR OVERDETERMINED SYSTEMS
IN (SMALL ) GEVREY CLASES

Dedicated to Profesor Luigi Rodino onthe occasion o his 60th birthday

Abstract. Given a system of linea partial differential operators with constant coefficients
whose dfine dgebraic varieties V() have dimension 1, we establish in which classes of
(small) Gevrey functions the asociated Cauchy problem admits at least one solution, looking
at the Puiseux series expansions on the branches at infinity of the dgebraic curvesV (). We
focus, in particular, onthe case of two variables, giving some examples.

1. Introduction and main theorems

Let Ag(D) be an a1 x ag matrix of linea partial differential operators with constant
coefficientsin the N indeterminates zy, . . ., zy.

To alow different scdes of regularity in the time-variablest and in the space
variablesx, we split RY ~ R¥ x R} and consider then the spaces of (ultra-)diff erentiable
functions of Beurlingtype

Eu(RY) = {fc£@®RY): vK cc RN ve>03c>0:
sup|DEDY (1 )] < ceIPI(BL) s (1)1 Wy € NG, B € NG},

whereNg =NU{0} and 0< o < 1. If oy = 0 = 1/swith s> 1 this ace oincides
with the spaceof (small) Gevrey functions of order s. If a3 = ap = 0 it isidentified
with the space (RN) of smooth functions. We assume in the foll owing that o3 = 0
if a2 =0, so that we dlow ultradifferentiability in all variables or only in the space
variables, but nat only in the time-variables.

We want to consider the Cauchy problem for Ag(D) in these dasses of (ultra-)
diff erentiable functions with initial data on {(t,x) € RK xR": t = 0}. In order to
avoid the problem of formal coherence of the initial data, which can be particularly
intricete if the system is overdetermined, we dlow Whitney functions as initial data,
which means that we give functions with all their normal derivatives on {t = 0}. By
Whitney’s extensiontheoremit is not restrictive to give zeo initial-data, so that we ae
concerned with the foll owing (overdetermined) Cauchy problem:

given f € £ o(RV)2

find¢ € £ ,(RV)% such that
Ao(D)¢ = f

Df(0,x) =0 Va € NE,¥x e R".

1)

165
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Let 8 = (1,) € CX x C" be the dual coordinates of z = (t,x) and dencte by
? =C[64,...,6N] thering o complex palynomiasin the N indeterminates 84, ..., Oy.
By the formal substitution 8; <+ Dj = Tl% we can asciate to the operator Ag(D)
the 2-homomorphism Ag(8) and insert it into a Hilbert resolution o the 2-modue
M = coker'Ag(B):

tAg_1(0 'A1(8) 4 "Ao(®
LR EIC LR BN P TR Ll P N VN )

When the map A1(8) isnot trivial the system (1) is overdetermined andin order
to be solvable f must satisfy the compatibilit y condtions

{Al(D)f =0

2
@) DYf(0,x) =0 Va e N, vxc R".

We say that the pair (RR, RE x RP) is of ewolution for Ag(D) (or for o) in the
class £, if the Cauchy problem (1) admits at least one solution ¢ for ead datum f
satisfying the compatibility condtions (2).
Let usdenatebyV =V (O), for 0 € Asg a1 ), the dgebraic variety
V()={eecCN: p(—8)=0vpeO}.
It was proved in [3], [4] that evolution is equivalent to the validity of the following
Phragmén-Lindelf principlefor every V =V (O0) with 0 € Asga/ ):
3A > O such that W € PH(V) satisfying, for some ay > 0,
() v(t,Q) <|Imt|+|Im{|+w(t,{) V(1,0 €V
PL(w) B) v(t,0) <ay(|im{+w(r,{)+1) Y(,{)eV
then v must also satisfy
(v) V(1,0 <A(Im{+w(T,)+1) VY(1,{) €V,

where PH(V) is the set of plurisubharmonic functionsonV (cf. [2]), and w(1,{) =
Oq, (|T]) + 0a,(|¢]) isthe weight function defined, for 0 < ay,02 < 1 andt > 0, by

td if0<a<1
log(1+t) ifa=0.

When the dgebraic variety V has dimension org, i.e. isan algebraic curve, we
can describeits branchesat infinity by means of Puiseux series expansions. It turnsout
that the orders a1,y for which V satisfies PL(w) are strictly related to the coefficients
and the exporents of the Puiseux series expansions on its branches at infinity. This
seams particularly useful since Puiseux series expansions can be computed by several
programs, such as MAPLE, for instance

Given an algebraic curveV ¢ CN ~ CK x (CE‘ with cone of limiting dredions

l L
Vh=JVvj=JCv
j=1 j=1
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for vj = (19,¢9) € (Ckx €M)\ {(0,0)}, there are two kinds of Puiseux series expan-
sions on the branches of V nea infinity, depending onwhether their cone of limiting
diredionsV; is contained in CX x {0} or nat. More predsely (cf. Lemma 3.6 of [2]):

1) 1f Vj ¢ CK x {0} and, for instance, the first comporent of ¢ isnat zero, then on
the branchesW of V with cone of limiting dredionsV; we have aPuiseux series
expansion o the form

@ () =01aha+ T (Dn0.EN™  [Gl>1

V=—00

wherel = ({o,...,{n), meN, kK € ZU{—w},k <m, D, € CX a,E, € C"for
al v <k.

2) If Vj  (CK\ {0}) x {0} and, for instance, the first comporent of 1 isnat zero,
then on the branches W of V with cone of limiting dredions V; we have a
Puiseux series expansion o the form

/

p
(4) (Tllevz) = (17070)T1+ Z (07 FV;GV)T\i/qa |T1| > 1

V=—00

where U = (12,..., ), €N, p € ZU{—w}, p' < q, R, € C¥ 1, G, € C" for
dlv<p.

Note that all the indices and the coefficientsin (3) and (4) depend onthe branches W
(cf. [2]), so that we shoud write k = K(W), p’ = p'(W), etc.

Moreover, we can multiply the coefficients Dy, E, in (3) by wy}, and the coeffi-
cients iy, Gy in (4) by wy (where wm and wyq are, respedively, any mrth root and any
g-th root of unity), obtaining an equivalent representation o W.

On ead of these branches we have several necessary and/or sufficient cond-
tionsfor PL(w) to bevalid (cf. [2]). In the case of one time-variable (and ore or more
spacevariables) these necessary and sufficient condtions perfedly fit, so that we have
a complete charaderization o systems which are of evolutionin £, In this case the
Puiseux series expansion (3) is of the form

S
Q) =1+ Y Dgy/"
(5) Vo |1 >1
@) =ati+ 5 BGM
V=—o0o
wheres=max{v <k : Dy # 0},t = max{v <k : E, # 0} (andthe maximum of the
empty set is defined, here and in the following, as —c).

The Puiseux expansion (4) is of theform

p
(6) (=3 &%, fi>1

V=—o00
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with p=max{v < p': G, # 0}. If G, € CR" then we can assume, upto ared linea
change of variables, that G, = (Gp1,0,...,0) and henceobtain from (6) (cf. [1], [2]):

M Q)

V=—00 V=—00 p,l

q
J v/p J av/r 1
Z A\)Zl = Z A\)Zl ) |Zl| > 1, Aq = Gl/p

and, forn> 2,

P P
(@)=Y BG%= 3 BT >

V=—o00

forPeZ,QeN,P<Q,r=ap=bQ theleast commonmultipleof pandQ (r :=p
if n=1).

Let us define, for {, € {—1,1}, for any branch fy, of the m-th roct and for any
branch f; of ther-th roaot:
U(Co, fm) = max{v <t: Im(E, fm(Zo)") # 0}
W(lo, fm) = max{v <'s: Im(Dy fn(Zo)") # 0}
wo = max{w(lo, fm) : Lo € {—1,1}, fm abranch of the m-th roat,
W(Co, fm) > max{0,u(Lo, fm)}}
U(Zo, fr) = max{v < q: Im(A, f;(L0)®) # 0}

W= max{u((o, fr): (o € {-1,1}, f; abranch of ther-th roat,

H(Zo, fr) > q—p,and
Im(By fr(Go)™) =0 W > Q(l— Lé”) }

where we mean, in the definition of p*, that we do nd place ay requirement onthe B,

if n= 1. Here ggain everything depends on the branch W of V that hasV; as cone of

limiting dredions (cf. [2]), so that we shoud write wp = wp(W), ¥ = pu* (W), etc.
We can then state the foll owing theorem (cf. Theorem 5.16 of [2]):

THEOREM 1. Let V be an dgebraic curvein C; x (CE‘ with cone of limiting
diredions

14 l
V= JVvi=JCy
j=1 j=1

for vj = (17,2§) € (Cx C")\ {(0,0)}, andlet w(T,{) = Oq, (|T]) + 0q, (||) be a given
weight function. Then the following condtionsare equivalent:

(1) V satisfies PL(w).

(2) Foreachj € {1,...,¢} andfor each branch W of VV with cone of limiting drec
tions Vj, one of the following condti ons hads (where we write p, g, etc. instead
of p(W),q(W), etc.):
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(i) 29 ¢ CR™
(i) vi = (19,29 € (R\ {0}) x (R™ {0}) and

max{a1,02} > wo/m;
(ii}) v = (0,29 € {0} x (R"\ {0}) and

(iv) vj = (19,0) € (R\ {0}) x {0}, p< Oor Gy ¢ CR™;
(v) vj=(17,0) € (R\ {0}) x {0}, p> 0, Gp € AR" for someA € C, q/p ¢ N,
o1 > p/a;
(Vi) vj=(19,0) € (R\{0}) x {0}, p>0,Gp € AR", q/pe N, A/|A| & {&kP/a:
keZ} a1 >p/q;
(vii) vj = (19,0) € (R\{0}) x {0}, p>0,Gp € AR", q/pe N, A/|A| € {ekrm/a:
keZ},

q—u
p

We now want to find a more explicit formulation o this theorem in the case of
two variables, i.e. k=n=1. Inthiscase there existsapaynomial P € C[t, (] of degree
m' > 0 such that

max{gpal,cxz} >1-—

V =V(P)={(1,0) € C?: P(1,0) =0},
V=V (Py) = {(1,0) € C?: Py(1,0) =0},
where Py isthe principa part of P andis of the form

)

P (1,0) = btZ* [ (1 — &)™, (1,0) € C2
T ,D i

for some,v,0 € Ng,be C\ {0},andm; € Ng,aj e C\ {0} for1 < j < o.
Therefore the Puiseux series expansions (5) reduceto

(8) Q) =A+ 5 D™ [T,

V=—00

withA=0or A=a; forsome j € {1,...,0}.
The series expansions (6) and (7) are of the form:

p
) =3 G/,  il>1,

V=—00

q
(10 Q=3 AP 1>

V=—o00
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for G, € C and Aq = (1/Gy P)0.
Now we chedk what this edalizaion means for the condtions (i) — (vii) in
(2) of Theorem 1. Obviously, the condtion (i) is empty whenn = 1.

Let uslookat the condtions (2)(ii) and (2)(iii ) for n = 1. We first prove that if
s> 0thenwp = s. To thisaim we choose the branch 9(p€?) = p/™exp(ip,/m) of the
mth root. Then, for Ds = ré¥, we have that

Dg(1)*=rd¥cR iff Y=hmhez;
inthiscase
Dsg(*l)s — rdWtms/m) _ d(hretms/m) j:rein%" ¢ R

sinces/m¢ Z for 0 < s< m. Thismeansthat we can find {, € {—1,1} and abranch
fm = g of the m-th root such that w({o, fm) = s> 0. Sincen = 1 we have u({o, fm) =
—oo and hencewp = s. Therefore the condtions (2)(ii) and (2)(iii ) of Theorem 1 be-
come, respedively:

(i)' vj = (17,¢§) € (R\{0}) x (R\ {0}) and

max{az,02} > s/m;

(i) vj = (0,2§) € {0} x (R\ {0}) and a2 > s/m.

If, onthe contrary, s < 0, then wp = —o0 and the condtions (2)(ii) and (2)(ii)’, (2)(iii)
and (2)(iii )’ are empty, and hence mincide again.

In case of (2)(iv) we have only the condtion p < 0, since Gy € CR is dways
satisfied.

Let us now take p = 1 and look at the conditions (2)(v)—vii). We haveg/p =
g € N (hencethe mondtion (2)(v) is empty) and

G 10 ¢ {eik’ﬁ)": keZ}= {ei%T tkez}

|Gy
if and orly if ¢q = krtfor somek € Z, i.e. if and orly if Gf € R. Inthis case p* = —oo,
sincethe condtion

q-1=qg-p<uo fp) <q

canna be satisfied for any integer p({o, fp). Thereforethe condtion (2)(vii) is empty.
If, onthe contrary, G{ ¢ R then we have the condtionay > p/d from (2)(vi).
Let us now take p= 2. If gisoddthen q/p ¢ N and we have the condtion
a1 > p/qfrom (2)(v).
If giseventhenq/pe N and
Gy

o —d®c (G kez) = {7 ke )
2
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if and only if @g= 2krtfor somek € Z, i.e. if and only if Gg > 0. Let usnow investigate
K" inthiscese. If Aq—1 # 0, then there exist {, € {—1,1} andabranch f, of the square
roct such that

Im(Aq-1f2(Z0)% 1) #0

sinceq—1isodd Inthiscase p* =q— 1> qg—2=q— p, and the condition (2)(vii)
becomes

max{gorl,az} > 17# = %

If, onthe contrary, Aq—1 = O then for any {, € {—1, 1} andany branch f, of the square
root we have that p({o, f2) < g— 1 and hencep* = —oo, because the cndtion

g-2=q-p<Hlo f2) <gq-1

canna be satisfied for any integer ({o, f2). In this case the condtion (2)(vii) is there-
fore empty.
2k

If we ssaumethat GJ € C\ R or GJ < 0then G,/|G;| ¢ {€ @ : k€ Z}. Inthis
case we have the condtionas > p/q from (2)(vi).

Let us finally remark that if V(P) satisfies PL(w), then also V(Pyy) satisfies
PL(w) becaise of Theorem 5.3 of [2]. Viceversa, if V(Py) =ViU... UV, satisfies
PL(w), thenevery Vj, for j € {1,..., ¢}, admitsared generator vj = (19,(f) € R?\ {0}
by Theorem 3.3 of [2].

All the aove mnsiderations allow us to reformulate Theorem 1 in the case of
two variables as foll ows:

THEOREM 2. For P € C[1,(]\ C with principal part Py and aweight function

W(T,{) = 0q, (|T]) + 0a,(]C]) the algebraic curve V (P) satisfies PL(w) if and ony if
the foll owing two condtions are satisfied:

(1) V(Py) satisfies PL(w).

(2) Foreachje{1,...,¢} andfor each branch W of V with cone of limiting drec
tionsVj, one of the foll owing condtions holds:

(i) vj = (1,89 € R x (R\ {0}) and

max{ay, 0z} > 5 f19#0
a> S if 19 = 0;

(ii) vj = (19,0) € (R\{0}) x {0}, p< 0, 0or p=1andG] € R, or p=2,
Gy > 0, qisever andAq_1 = 0;
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(iii) vj=(19,0) € (R\ {0}) x {0}, p>0Oand

a >

Qoo

if pe {1,2} andGy € C\R
orif p=2andGj <0

orif p=2,Gj >0, q odd
orif p>3andj ¢ N
0rifp23,%€N,and

¢ {dmikez)

max { Jog, 00} >3 if p=2,Gj >0,
geven, andAq_1 #0

max{ﬂul,az} >1-9H jfp>3, % €N, and
S e {e”("g : keZ}
IGpl ’ )

REMARK 1. Theorem 2 correds [1], Theorem 4.16, which is not corred, due
to amistakein the proof of part (1) of Lemma4.10in [1]. However, the agumentsfor
this part of Lemma4.10 are right whenever (p,q) = 1. Therefore Theorem 2 concides
with Theorem 4.16 o [1] if (p,q) = 1 onevery branch W of V(P). Note that [1],
Theorem 4.16, isalso corred if V (P) hasno branchesW for which p> 3, q/p € N and

Gp/|Gpl € (€474 : ke 7).

2. Examples

EXAMPLE 1. Let usconsider the dgebraic curve
V={(1,0) € C2: P(1,0) = {8+ 3¢%1?+ 1?— 31— 601%— 21— = 0}.
Sincethe principal part Ps of P isPs(T,{) = 5, it follows that
V(Ps) ={(1,0) € C?: T=0}.

It isthereforetrivial that V (Ps) satisfies PL(w) for ead weight function w, by Propo-
sition 43 of [1]. It iseasy to chedk that

V={(A5A3+A?): reC}.

From thisit followsthat VV has only one irreducible branch nea infinity that admitsthe
Puiseux series expansion

(1) =18 4+1%8, 1| >1,
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which convertsinto the expansion
4
Q) =0-2053+ > A3, 17> 1.
V=—00

Sincep=3,q=6andGz = 1= €*V2for k=0, we aein thelast case of Theorem 2
hence we must compute p*. Since As; = —2 and there exists athird root f3 of 1 such
that Im(Asf3(1)®) # 0, we have (1, f3) = 5. Since5 > 3 =g — p we dso have pi* =
5. Consequently, Theorem 2 implies that V satisfies PL(w), for w(T,{) = 0q, (|T]) +
Oa,(|¢]) if and orly if

6-5 2
>1— — = —.
max{2a1,02} > 1 3 3

Let usnow prove alemmathat is useful in the study of examples.
LEMMA 1. For p,qe N, g> p,and ac C\ {0} let P € C[t,{] be defined as
p q = i = j
P(1,0) :=1tP—ag +J;bj'[ —J;)ajz.
Asaumethat for h,s;t € Nwehavep=hs, q=ht,and(s,t) = 1and cenoteby By, ..., Bn

the h different h-th roats of a. ThenV (P) := {(1,{) € C?: P(1,{) = 0} hash branches
near infinity andfor each such branchW there exsts j € {1,...,h} such that W admits

a Puiseux series exparsion which has B;l/trs/t asleadingterm.

Proof. Since p=hsandq= ht we have
h
F(,0) =1 —al9=1"-al"= rI](TSfBth).
=

Because of (s,t) = 1, this howsthat V(F) isthe union o hirreducible arves, which
have the Puiseux series expansions

18\ 1t .
j(n) = (B_J) ™ 1]>0,1<j<h

For1<j<h,1<k<t, andt e Cwith|t| > 0 denote by {; (1) the q = ht different
rootsof F(T,-). Thenitiseasy to chedk that there exists 6 > 0 such that

min{|Gi k(1) —{jm(T)| 1 1<i, j<h, 1<k m<t,(i,k) # (j,m} > 5|T|S/t.

Furthermore, there existsn > 0 such that

min{|1—% : 1§j,v§h,j7év}22r].
i
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Then we have for A € C with |A| = g[t]¥:

h
1Y) [FOGKE N == B + M) [ 1T Bu(@jx(®) +N)'].

J?j
Now note that ; «(T)' = 1°/Bj and the chaice of nj imply the existenceof 0 < &1 < &
such that for ead € with 0< € < €1 we have

1- @(H B}/‘%)t\ > .

(12) |TS—BV(Zj,k(T)+)‘)t| = |.[|s Bj

Simil ary, we get

S t ] : t t—Iy |
C-BQuN =B 5 (|2 N

=1

This showsthat we can choase €1 > 0 so small that for ead € with 0 < € < €1 we have
€

(13 15— Bj k(1) +A)| > Ilel/‘tEITIS-

From (11), (12), and (13) we now get

_ €
(14) IF (Tt +A)[ =n" lIlel/ttEITISh, A=t

To apply the Theorem of Rouché to F and P onthe drcles 0B(Z; «(1),€[t%'!), we note
that there existsC > 1 such that

P(t.O) ~F(L <C(TP 474, 1 > 1.

q-1

andsince p < q there exists D > 1 such that, for |A| = g[t|%/t,

Sincefor A € C with |A| = g[t|¥/! we have

1

L/t
Bj

(T k(1) +N)97L] < [gjs(a- D (

(15) IP(T,¢ k(1) +A) — F(1,{j k(1) + )| < CD[t[a-D/t = CDIr[s"—9/.

From (14) and (15) we now get that for eat 0 < € < €; there exists 1o > 1 such that
for ead 1 € C with [1] > 10 we have

IF(1,25.k(1) +2) = P(LG K0 + )| < [F(T.Lx(T) + )], [A] = ltf*".

By the Theorem of Rouché, it follows that for each T € C, [1] > To, the function{ —
P(1,2) has a zeo &; k(1) which satisfies [€; k(1) — {;(T)| < €[1[¥ for eadh € with
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0 < £ < €. By the dhoiceof &1, the disks B(Zj k(1),€[1]¥!), 1< j <h, 1<k <t, are
pairwise digoint. Since eab branch W of V(P) nea infinity admits a Puiseux series
expansion o the form

1) = % AT

V=—00

it now foll ows that the leading term of such an expansion has the given form. O

In the following example we use Lemma 1 and Theorem 2 to give a ®rred
proof of [1], Example 5.3. The proof that was given in [1] is based onthat part of [ 1],
Theorem 4.16, in which we have aflaw. Nevertheless the assertions of [ 1], Example
5.3, areright, as the new proof shows.

ExXAMPLE 2. For p,qe N, p,g,> 2,andac C\ {0} let P € C[t,{] be defined
SR S Sy
P(1,0) :=1°P-ag +Zobjt —JZOaJZ.
Then for w(t1,{) := 0q, (|T]) + 04, (|¢]) the following assertionshold for
V=V(P)={(1,) e CxC: P(1,0) =0}.
(1) If p>qg>2thenV satisfies PL(w) if and orly if a2 > q/p.
(2) If > p>3thenV satisfies PL(w) if and orly if a; > p/q.

(3) Ifg>p=2withac C\Rora<0ora>0andqodd thenV satisfies PL(w)
if and oy if a1 > p/q.

(4) Ifq>p=2,acR,gevenanda> OthenV satisfiesPL(w) foral 0< aj,0, < 1.

(5) If p=g>3op=g=2andac C\ [0,c[ thenV doesnat satisfy PL(w) for
any (ay,a2) € [0,1] x [0,1].

(6) If p=g=2,ac Randa> 0thenV satisfies PL(w) foral 0 < aj,02 < 1.

To prove these sssertions we ague asfollows.

(1) Inthis casethe principal part P, of P isgiven by Py(1,{) = tP. HenceV (Pp)
satisfies PL(K) for eadh weight functionk by [1], Propasition 4.3. Now fix any branch
W of V nea infinity. By [1], Lemma 4.4, W admits a Puiseux series expansion d the
form (8). The present hypahesisq < pimplies A= 0 so that (8) gives

S
Q=5 D™
V=—o00
SinceP(1(¢),{) = 0, we have DEZSP/™ — aZ% = 0 and consequently s/m= g/ p. Hence
we get from Theorem 2, part (2)(i) that PL(w) haldsonW if and orly if oz > s/m=
g/ p. SinceW was an arbitrary branch of V the proof of (1) is complete.
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(2) In this cese the principal part Py of P is given by Py(1,{) = —af". Hence
V (Py) satisfies PL(k) for ead weight functionk by [1], Propasition 43. Next assume
that there ae h,s,t € Nwith p=hs, g=ht, and (s,t) = 1. If we denate by B1,...,Bn
the h different roats of a, then we get from Lemma 1 that for ead branch W of V nea
infinity, there exists 1 < j < h such that W admits a Puiseux series expansion o the
form 1

1) = T/t(ts)l/t + lot.
i

This showsthat G% = 1/B;. Now we distinguish the foll owing cases:
(i)s=1
Thismeansthat p=handg/p € N. Sinceh = p > 3 bythe present hypaheses, at least
one of the numbers By,...,Bp isnat red. If B; € C\ R then G} € C\ R. Therefore,
it follows from Theorem 2 (2)(iii ) (and Theorem 2 (2)(ii) for B; € R) that V satisfies
PL(w) if and oy if a1 > p/q.
(i)s>2,h=1.
Thens= p>3and(p,q) = 1. Hencep/q ¢ N andit foll ows from Theorem 2 (2)(iii )
that V satisfies PL(w) if and oy if a1 > p/q.
(iii)s=2,h>2.
Then (s,t) = 1 impliesthat t must be odd Henceit foll ows from Theorem 2 (2)(iii )
that, no matter whether 8_1, € C\Ror B_lJ € R\ {0}, V satisfies PL(w) if and orly if
o1 > s/t=p/q.
(iv)s>3,h>2.
Then s/t ¢ N together with Theorem 2 (2)(iii ) implies also in this case that V satisfies
PL(w) if and orly if a1 > s/t = p/q.

(3) Asin part (2) we get that V (Py) satisfies PL(k) for ead weight functionk.
If p=2,a>0, andqisoddthen 12— al%isirreducible and henceV has a Puiseux
series expansion o theform (1) = (%) 1/q+ I.o.t. This showsthat Gy = (%) v and
henceGJ = 1 > 0. Therefore, it foll owsfrom Theorem 2 (2)(iii ) that V satisfies PL ()
if and orly if a1 > p/q.
If p=2 andqis oddthe same agument as above shows that GJ = % is negative if
a<Oorisnatredif aisnotred. Hencewe get the same conclusion as before.
If p=2andqiseven,then g=2mandtP — a9 fadorsas (1 — /al™)(1++/al™M). By
Lemma 1, the two branches of V nea infinity are then given by

{(v) = (j—;)l/"ﬁ lot.

Hence Gl = % Thisnumber isnot red if ae C\ [0,o[. Therefore, it foll ows from
Theorem 2 (2)(iii ) that (3) holds.

(4) The same aguments as in (3) show that now G' = \i/—%l isred sincea> 0.
Hence (4) follows from Theorem 2 (2)(ii).

(5) In bath cases the principal part of P is given by Py(t,{) = t° —afP andwe
canfinda € C\ R such that aP = a. Hence P, admitsafador t —a witha € C\ R,
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which implies that V (Pp) does not satisfy PL(w) for any weight function w because
of [1], Propasition 4.3. By [1], Corollary 4.9, aso V(P) canna satisfy PL(w) for any
weight function w. Hence (5) holds.

(6) In this case the principal part P, of P isgiven by Py(1,) = 1?2 —al? = (1 —
val)(1++/af). Sincea is pasitive by the present hypahesis, V (P,) satisfies PL(k)
for ead weight function k, by [1], Propasition 43. SinceV(P,) has two irreducible
comporents, it follows dmilarly as in the proof of Lemma 1 that V has two branches
nea infinity and that these can be described as

. bl a1l 36 1\1/2
Tffzi\/ﬁ1<l+az a ) )

Thisimpliesthe existence of C > 0 such that
[Imt| < C|Im{| +C, (1,0) e V.

Hence @ndtion (y) of PL(w) follows from condtion (o) of PL(w) for ead weight
function w.
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THE KERNEL THEOREM IN ULT RADISTRIBUTIONS:
MICROLOCAL REGULARITY OF THE KERNEL

Dedicated to Profesor Luigi Rodino onthe occasion d his 60th birthday

Abstract. In this paper we study kernels asociated with continuows operators between
spaces of Gevrey ultradistributions. The existence of such kernels has been established, in
analogy with the kernel theorem of L. Schwartz for clasdcd distributions, by H. Komatsu,
and ou aim here is to study these kernels from a microlocd point of view. The main re-
sults, which are the theorems 2, 3 below, show that there is a significant diff erence between
the results which hdd true in the case of Beurling utradistributions and the results valid for
Roumieu ultradistributions.

1. Introduction

The Schwartz kernel theorem states that the linea continuows operators T mapping
»(U) to D’ (V) arepredsely the operatorsfor which thereis x € ©'(V x U) such that

oy Tu(®)=x(¢xu), ue2U), peD(V).

(Cf. L. Schwartz, [17].) « iscdled the “kernel” of T andin this stuation we write
Tu(x) = Jy X (X, y)u(y)dy. HereU andV are open sets in R™ and R" respedively,
D (U) isthespaceof ¢’ (U ) functionsendoved with the Schwartz topdogyand o’ (W)
the spaceof distributionsonW, withW =V or W =V x U. The Schwartz theorem has
been extended to the cae of ultradistributions by H. Komatsu and bah L. Schwartz
and H. Komatsu have dso studied linea continuows operators defined on compadly
suppated distributions, respedively ultradistributions, to distributions or ultradistri-
butions. We shall consider for the moment only the distribution case. The problem
is then to consider a linea continuows operator T : £/(U) — 2'(V), where £'(U)
is the spaceof compadly suppated distributionsonU. T induces a linea contin-
uous operator on o (U) and therefore it has a distributional kernel x € »/(V x U).
The relation (1) associates a separately continuots bili nea form (¢,u) — % (¢ ® u)
on (V) x ©(U) with T whereas the initial operator defined onz’(U) is asociated
with the bilinea form (¢,u) — T(u)(¢) defined on (V) x £'(U). If we want to
understandthe dassof kernels & € »’(V x U) which correspondto linea continuous
operators£’(U) — p’(V), we may then just studythe bili nea form (¢, u) — % (¢ @ u)
asaformon o (V) x £/(U). Thishasled to a sophisticated theory of tensor products
of topdogicd vedor spaces in which the notion o “nuclea” spaces (introduced by

*The seandauthor was suppated in part by JISPSGrant-in-Aid No. 19540165
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A. Grothendied) plays a central role. It turns out that most common spaces of dis-
tributions or ultradistributions are nuclea and the central result concerning the kernel
theorem in distributionsis that the operator T : © (U) — 2'(V) asociated with some
% € D'(V xU) can be extended to alinea continuows operator £’(U) — o'(V) if and
only if & can beidentified in anatural way with an elementin [» (V)®z'(U)]’, where
D (V)&E'(U) is, say, the € topdogica tensor product of o (V) with £/(U). Sincethe
spaces under considerationare nuclea, we may aswell work with the Tttensor produrct.
For definitions and detail s we refer to [2] and [19]. Thereis also an interpretation of
thisin terms of ¢® functionswith distributional values.

Thetheory of tensor products of topdogicd vedor spacesis very powerful and
it explains, among aher things, why kernel theorems in Banacdh spaces of (possbly
generalized) functions must typicaly be more complicated than those in distributions
(see eg., [1] for some examples of kernel theorems in Lebesgue spaces): infinite di-
mensional Banach spaces are never nuclea. On the other hand, when one wants to
consider kernel theoremsin hyperfunctions, thiskind of approachis not usablein prac
tice since hyperfunctions have no reasonable topdogy. One may then try another ap-
proadh, which has been worked out in microlocd analysis. The central nationis this
time the “wave front set” of a distribution, ultradistribution, or hyperfunction (intro-
duced in 1969 byM. Sato for hyperfunction, [15] and in 1970 byL. Hérmander for
distributions, [3]). The main condtionisthen

2 {(x,y,0,n);xeV,yeU,n#0NWFx)=0.

When « is adistribution, WF(% ) stands for the ¢ wave front set and if (2) halds
then microlocd analysisgivesanatural meaningto [, & (x,y)u(y)dywhenue £'(U).
(See[3], [20].) The same is true dso in hyperfunctions if WF denates the analytic
wavefront set: thereisanatural meaningfor f; X (X,y)u(y)dy whenuisared-analytic
functional onU. Integrationis then defined in terms of “integration alongfibers’ and
Ju X (x,y)u(y)dy hasameaningin hyperfunctions: see eg., [16], [5] for details.

There is now however a fundamental diff erence between the two main cases
contemplated by microlocd analysis, the distributional and the hyperfunctional one.

Itisinfad not difficult to seethat the condtion (2) is nat equivalent to the fad
that ¥ € [p(V)®E'(U)]". This meansthat (2) is not a necessary condtion when we
want % to define a ontinuous operator from ’(U) to ©’(V). On the other hand,
it is part of the results described in [10Q], [11], that for hyperfunctions a reasonable
operator ading from some spaceof analytic functionalsto the spaceof hyperfunctions
can only be defined in presence of condtion (2). It seemed then natural to the present
authors to look into the case of Gevrey ultradistributions and to study if microlocd
condtions of type (2) are necessary for reasonable operators in ultradistributions to
exist. It came, at least at first, as a surprise, that the answer depends on which type
of ultradistributions one is considering: for ultradistributions of Beurling type, one
may work with weaker condtions than the ones correspondng to (2), whereas for
ultradistributions of Roumieu type such condtions are dso necessry: seesedion 2
for the terminology and the theorems 2, 3 for the predse statements.
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2. Definitions and main results

For the convenienceof the realer, we shall now recdl some of the definiti ons related
to Gevrey-ultradistributions. (For most of the notions considered here, cf. e.g., Lions-
Magenes, vol.3, sedion 13, or [14].)

Consider s> 1,L > 0,U openinR" andlet K be a ®mpad set in U. We shall
denoteby f — |f|s k the quasinorm

[(9/0x)%f(X)|
3 f = supsup—-—~—~
(©) [ flsLk pnx p CICOE

defined onc*(U). We further denote by

e p5L(K) the spaceof ¢ functions f on R" which vanish ousideK such that for
them |f|5,|_’K < 00,

o DO(K) =023 (K), 2 (K) = U0 DSH(K),
o {8H(U) =Ukcy 219 (K), respedively 2 (U) = Ukcy 29 (K),

e £G(U)={f ec®U);VK€U,VL >0, |f|sLk < o}, respedively
£18H(U) = {f € c®(U); VK €U, 3L > 0, [f|s k < }.

Thefunctionsin £ {8} (U), are cdled “ ultradiff erentiable” of Roumieu type, and
thasein £ (9(U), ultradifferentiable of Beurling type, with Gevrey index s. Sincewe
shall often encounter statements for the two types of classes which are quite similar,
we now introducethe conventionthat we shall write *(U) when we give astatement
which refersto bath the case x = (s) and the case x = {s}. The same conventionalso
appliesfor other spaces asociated with the two cases.

All the spaces mentioned above cary natural topdogies:
e »SL(K) isaBanad spacewhen endoved with | -|s k asanorm,

e »)(K) isthe projedive limit (for “L — 0+") of the spaces »5-(K), whereas
»18H(K) is the inductive limit (for “L — ") of the same spaces. The spaces
D (K) are FS (i.e., Frédhet-Schwartz), wheress the spaces 1 (K) are DFS
(duals of Fréchet—Schwartz). (The topdogicd properties of these spaces are
studiedin [6].)

e 08 (U) is the indutive limit (for K ¢ U) of the spaces o {8}(K), whereas
() (U) istheinductive limit (again for K ¢ U) of the spaces 0 (¥ (K).

o Weshall definetopdogiesonz (9(U) and z {} (U) asfoll ows. At first we define
for K € U andL > 0 the spaceYk | of restrictionsto K of functionsin ¢®(U),
which satisfy |f|si k < o, endaved with the topdogy gven by the semi-norm
| . |&L,K- Then,
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We have montinuowsinclusions »*(U) C £*(U) with dense image and 2 *(K)
is the subspaceof £*(U) (K C U) consisting o the functions with compad suppat
lyinginK.

For a systematic study o the topdogicd properties of these spaces we refer to
[13], [6]. We shall however strive to use only a minimum of results on the topdogicd
structure of the spaces we shall consider. On the other hand, we shall consider later
a new classof spaces in which we can state results which can serve s a common
badkgroundfor both the Roumieu and the Beurling case.

Finally, we shall denate by o {s(U), 2 (U), {/'(U), £(/(U), the strong
dual spaces (cdled Gevrey-ultradistributions of Roumieu, respedively Beurling type)
of the spaces 0 {8} (U), p(U), zish(U), £ (U).

We then also have by dulity continuowsinclusions
(4) £¥(U) c 2¥(U).

Asfor integral operators, the followingremark is easy to ched (cf. [6]):

e asume X € *(V xU). Then the prescription T (¢) (V) = K (VR ¢) definesa
linear continuows operator T from ©*(U) to 2* (V).

We shall writethisas
T = | K0y, o€ 2" ().
It is part of theresults proved in [6], [7], [8], that also the conwerseistrue:

THEOREM 1 (Komatsu). a) Any linear continuows operator T : »*(U) —
p*(V)isofformT(¢)(Y) = K (P ¢) for some x € ¥ (V xU).

b) (See[8], page 655) Any linear continuowsoperator T : £*(U) — ¥ (V) is
of formT(¢) (W) = K (Y ® ) for some x € D* (V) Qe E*(U). (“ ®¢" isthe e-tensor
product.)

Before we can state our own results, we must still i ntroduce the naotions of
Gevrey wave front sets. In order to justify them, we start from the foll owing straight-
forward (and standard) result, which isin fad also central in the cdculations:

REMARK 1 (See eg.,[6]). Let Bbe a dosed ball inR" (or R™; inthe cae R™,
notation shoud be changed dlightly).

There ae monstantsc > 0,¢’ > 0, such that for f € ¢’ (B) we have

(5 sup|f(&)lexp[c/(&]/L)" < clflsLe, |flscie < csup|f(€)|exp[(E]/L)"].
EeRN EeRN
“Hats’ will denate the Fourier transform, which we define by

f&) =7 1) = [ T9epl-itegldx
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The relation (5) is based on the following elementary inequality, which is valid for
dig| > 1

®  [&"exp[-d[g[*T < [g]@ igfIBI‘B‘/(dléll/s)‘B‘ < (4s)3%d =0 jor|3;

the last inequality is obtained by evaluating the function F (B) = |B|/Bl x (d|&|*/s)~IFI
for |B| = [sla|] + 1, where [s|a]] is the integer part of sja|. (The fador “4%9” appears
because of the “integer part”.)

We have the following relations:

e Afunctionf € ¢$(R") liesin o {SH(R") predsely if there ae constantsc,d > 0,
such that | ()] < cexp[—d|E[*/9).

e A function f € ¢(R") liesin »(9(R") predsdly if there is ¢ and a function
¢:R" — R, such that

) vd>0,3¢ st dEYS</(E)+C,VEERM,
and such that
8 |f(2)] < cexp[—£(8)], V& € R".

e A red analytic functional uliesin z(9'(R") if there ae constants ¢,d > 0 such
that [0(Z)| < cexp|[d|g|*/9.

e Ared anayticfunctional uliesin £ {(R") if for every d > Othereis a constant
c suchthat |G(8)| < cexp[d|&|Y/9].

A useful remark is the sub-additivity of the function€ — |&|Y/Sfor s> 1, that i,
(9) €+ 65 <[5+ (6], vEBER"

We now introduce the wave front sets correspondng to the ultradistribution
spaces considered abowe. (Cf., e.g., [4],[9], [14].)

DEFINITION 1. a) Let ue »9'(U) andconsider (x2,€%) € U x R". We shall
say that (x°,&°) ¢ WF (), if we can finde > 0, v € £(9'(R"), an open corvex one
I which contains £°, ¢ > 0 and afunction/ asin (7) with the following properties:

(10) u=von |x—x0|<g V&) <cexp[-L(&) for EcT.

b) Letue »{8/(U). We shall say that (x°,€°) ¢ WF g (u), if we can finde > 0,
v e £ {s/(RM), an open corvex one ™ which contains £° andc,d > 0 such that

(11) u=von [x—x° <g [9E)| <cexp[—d[E*/F for EcT.
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The WF (g (u), WFs (u) are the Gevrey wave front sets of u of Roumieu, re-
spedively Beurling, type with Gevrey index s.
We now state the main results.

THEOREM 2. LetV x U bean oen setin R" x R™ andconsider a linear con
tinuolsmap T : 218 (U) — 218(V) given by some kenel x € »{s(V x U). Then
the foll owing statements are ejuivalent:

i) T can ke exended to acontinuowsandlinear map T : £18/(U) — o {sV(v).

ii) x satisfiesthe Geweywavefront set condtion of Roumieu type:

WFg (%) N{(x,y,0,n);n # 0} = 0.
THEOREM 3. With V andU as before, consider a linear continuolsmap T :
DO (U) — »(V) given by some kenel x € 29 (V x U). Then the foll owing state-
ments are ejuivalent:
a) T can be exended to acontinuows andlinear map T : £/ (U) — 09/ (V).

b) For evey (x°,y°) € V x U andfor all d >0, 3¢ > 0, 3¢, 3¢y, and I’ €
£ (V xU) suchthat ' = % on|(x,y) — (x°,y°)| < € and

(12) (7 x")(&,n)| < crexp[—d|n| Y] for £ < c/n|.

REMARK 2. A comparison of condtion b) in Theorem 3 with part a) of Defi-
nition 1showsthat WF) (%) N{(X,y,0,n);n # 0} = 0 implies b) in the theorem. We
shall seelater onthat the mnverseisnot true: there are kernelswhich satisfy condtion
b), but do nd satisfy the wave front set condtionWF (%) N {(x,y,0,n);n # 0} = 0.

REMARK 3. Note that, taking into acoount Theorem 1, the condtionsii) and
b) in the precaling theorems may be regarded as charaderizaions of the respedive
spaces D1 (V) @ £18H(U) and 29 (V) ®¢ £ (U), as subspaces of 218 (V x U)
and D& (V x U).

Thefollowing remark isimmediate.

REMARK 4. Let x denate (s) or {s} with s> 1, and consider X1 € D*(V),
X2 € 2*(U). We dencte by B; the suppat of x1 and by B, the suppat of xo. If
T:2*U)— »*(V)isalinea continuowsoperator, then sois Ty : £*(By) — £*(B1)
defined by Tiu=X1T (X2u). Conversely, if all operatorsobtainedinthisway are contin-
uousfor somelinea operator T : £*(U) — D*(V), then T is continuows. Note that if
T correspondsto akernel % (x,Y), then Ty correspondsto thekernel X1(X)X2(Y) X (X, ).
In view of this remark we may asaume henceforth withou loss of generality that
U =R™, respedively that V = R", and that

(13 suppx C B’ x B,
for some dosed ballsB c R™, B’ ¢ R".

REMARK 5. If & € »*(R™™) satisfies (13), then suppTg C B’ for every g €
D*(R™M). Conversely, if suppTg C B for every g € *(R™), then suppx € B’ x R™
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3. Intermediate spaces and weight functions

In this dionwe define spaceswhich are intermediate between Roumieu and Beurling
ultradistributions. We fix a dosed ball B and consider for f € ¢ (R"), ue 2'(R"), a
new set of quasinorms

I fllsa = sup |f(&)|exp[d|€[*/"],
EeRN
(14) lul[>® = sup[a(€)|/ exp[d|E[*/9).
EeRN

(Here a'(R") denotes the red-anaytic functionals on R".) Thus formally, ||uf|3% =
|lul|s—d, but the two quasinormsrefer to diff erent situations, so we wanted to make the
differencevisible dso naationally.

DEFINITION 2. We denate by G S9(B) the space of ¢ functions u with suppat
in B such that ||u||sg < o, endowed with the norm |jul|sq. In asimilar way, we con-
sider the space g 3'(B) of ultradistributions u with suppa't in B for which ||u||3% < oo,
endowed with the norm ||u||3¢.

Also nate that, using the estimates (5), we have for suitable mnstants ¢/, ¢/ the
following continuowsinclusions:

(15 G (B) c 3L (B)  ¢5¢/M(B), if L > 0.

Thus (for fixed s) the spaces g 39(B) form ascae (indexed byd > 0) of functionspaces
which is esentially equivalent with the scae »S4(B). For example, we have

(16) % (B) =limg>‘(B)
d>0

aslocdly convex spaces. (Also see[6].)

REMARK 6. When f € ©*(R") has compad suppatandg € 2*(R"), we can
cdculate f(g) by f(g) = (2)™" fzn f(§)§(—&)dE, where the integral is the standard
Lebesgueintegral. (See[7].)

We now mentionthat 6§’ (B) is not defined as adual space ad, in some sense,
the norms ||u||39 are not optimal for duality arguments. We now state alemma that
will help usto bypassthis shortcoming. Thisistypicdly used for the aut-off multiplier
X € 2 (B") for ballsB' € B, satisfyingx = 1 onB'.

LEMMA 1. Consider x € (9(R"), d > 0. Then the cnstantsc; := |X||sq and
C2 = ||X(€) exp[d|&|/9][| .1gn) arefinite.
a) Moreover, we have

(17) IXfllsa < (2r)~"ea|f (&) exp[dIE] %] .1 am).
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b) In asimilar vein, we also have
IXfllsa < (20 "c2|| fsa-
c) Finally, if hismeasurable,
|(%*h)(8)] < cal|h(E) exp[—dI&[*/|| .o (an) - expdE[*T.

Proaof. Thefinitenessof the constants comes from (8). For a), we have
(@17 (x)(8)]-epldlel? = | [ %&-0)f(0)de|-eplal&l
<| [ %(&~©)explale 8- f(B) explale|*/]

x exp[d[&[*/°— d[6|/*— d[§ — 6" Tde|
< IIxllsa- [1F(8) expld|e*/F |z

Here we used the inequality |&|Y/S < |€ — 6]Y/S+ |B|%/S. See(9).
Parts b) and c) are proved with a similar argument. O

A measurable and nonnegative valued function onRR" is cdled aweight func-
tion. A weight function ¢(§) is said to be sub-linea if it satisfies

sup(§(&) —€l&|) < oo, foranye >D0.
EcRN

In this article, we only consider radial weight functions, and we say, by abuse of nota-
tion, that aweight functionisincreasingwhen it isan incressing function o |§|.

Now consider two sub-linea weight functions¢, : R" — R, and assume that
W(B) —|E—B|Y/S< (&) +c, V&, 8, inR". If x € » (& (R"), then there existsa constant
¢’ such that
(18 (% * )€Y agm) < € [[M€®(| 1)

halds for any measurable function h. Indeed, the left hand side of (18) is estimated
from abowve by

[ CRNGIEE O
:/ / gVO-1E-0°-0(®) |12 £)|e-01"" . |n(E)|e?@dEd
RN JRN
~ 1/s
< &% (6)€" [l 21ggn) - Hhe¢||L1(R”)'

REMARK 7. Our next lemmais smilar to Lemma 1, ¢), but is more astrad
and therefore lesspredse. We dso mention that in the proof of the lemma we con-
sider Lebesgue-spaces asciated with weights. We briefly recdl the terminology. We
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asaume that we ae given a continuows weight function : R" — R, and say that two
measurablefunctionsonR" are eguivalent if they are equal except onaset of Lebesgue
measure z&o. Then we denate by £1(R",¢) the spaceof equivalence dasses of mea
surable functions on R" for which the integral [pn|f(§)|exp[$(§)]dE is finite. The
norm onthis aceis of course

(19 folfllsg = [ IT@)eplo@)]ce.

If L: 2YR",¢) — C isalinea continuows map, then there is a measurable
function h defined on R" such that L(f) = fn f(§)N(E)dE, Vf € L1(R",¢) and we
have |h(€)| < |IL||1exp[®(E)], for dmost all & € R", where ||L||1 isthenormof L asa
functional on £1(R", ¢).

LEMMA 2. Let B' € B” betwo bdlsinR", x afunctionin 0 (9 (B") satisfying
Xx=1onB, and d> 0. Consider two sub-linear weight functions ¢, : R" — R,..
Assume that

@) [ 17 xEIePwEIdE < [ [fE)epbEdE v e LXRY,

for some constant c;, provided the right handside in (20) is finite. Also dencte by
A (B, ) the set

A (B',4) = {g€ 29(B); [ 6(6)] expl(®)]c < 1}.

Then there is a constant ¢, such that for any ve 2 (9'(R") with suppv C B’ we have
that

[V(&)| < coexp[d(—€)] sup |v(g)].
gen (B”, W)

Proof. We definethe spacesZ andY,Y C Z, by

z= {1 e c2®; [ f@)]eplo@)]dE <=},
Y ={f eZ|f|sa <o forall d'}.

Itiseasy to seethat Y is densein Z if the latter is endaoved with the norm defined by
f||f]|,14: if fisgiveninZ, thenk — fyx = 7 ~Hexp[—(1/K)|&|]T), k=1,2,... is
a sequence of functionsin Y which approximates f. Now, Y ¢ (9 (R") and we dso
observethat if pe cg(R"), then 7 ~tue Z.

It sufficesto construct ¢, such that

IV(&)] < coexp[dp(—8)]
holdsfor any v e » (8 (R") satisfying suppv C B' and

(21) sup  |v(g)| <1
gea (B”,0)
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Now we fix such av and consider the functional f — v(xf), whichisinitialy
defined onz (9 (R"). For f €Y, we have

VDI < [ 17 (XF) )| elb(@)1dE < el 2.

where the first inequality foll ows from (21), and the secondfrom (20). Therefore, this
functional can be extended, by continuity, to a linea continuouws functional L on Z.
Next we introduwcethe spaceZ = { f € £2(R"); fgn|f (&) exp[0(&)]dE < o}, which is
the image of Z under the Fourier transform. We endow Z with the norm f || f|| .1 Iy
thisis of coursethe norm induced by the norm of Z if we use the Fourier transform to
identify Z and Z. The map L givesrise in this way to alinea continuots map L onZ
defined by L(f) = L(# ~1f).

Finally, we can apply the Hahn-Banach theorem to extend L to a linea con-
tinuous map defined on the space £1(R", ¢) introduced in Remark 7, with the norm
not greaer than c;. (Instead of applying the Hahn-Banach theorem, we can also use
the density of Z in £ LR, ¢).) It follows therefore from Remark 7, that L isof form

L(f) = fen f(E)(E)dE, for some suitable measurable functionh on R™ which satisfies
[h(€)| < crexp[$p(§)] for amost al &. The proof of the lemmawill come to an end if
we can show that V(&) = (2m)"h(—&). Thisisthe case, since

[ HENEIE =L = L ) = vixs 0 = v(r )
— ™" [ A-2uE)aE

for pe ¢z’ (R"), which means that h(§) and (2rm)~"J(—&) coincide &s distributions.
Here we have used the fad that suppv C B’ andthat x = 1 onB". O

COROLLARY 1. Thereis a constant ¢’ for which we have the following impli-
cationfor v e » (9 (R") satisfying suppv C B':

(22 |v(f)| <1forall f € 2 (B")with | f|sq <1, implies|v|[5* < ¢.
In other words, the quasinormv — ||v||$29 can e estimated from aboveby the inequa -

ity
Iv]|®?¢ < ¢ suplv(f)|
feu

usingthebounad set 7 = {f € 2(&(B"); || f||sa < 1} in 09 (B"), and aconstant ¢
depending oy onB’, B”, and d Since in the oppdaite diredion, we have

sup [v(f)| < ¢[[v[[>9/?
fem

for some constant ¢ independent of v, it isclear that thetopdogyinduced one *’(B) as
a subspaceof »*(R") is given as the inductive/projedivelimit of the spaces 6 3'(B).

The aorollary follows from Lemma 2, if we dso takeinto acoun Lemmal.
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REMARK 8. Thestatement inthe corollary ismeaningful also forve o {S/(R").
In this case, we know from the very beginning that there is a constant ¢/, which may
depend onv, with ||v||$2 < ¢/, and the lemma just gives an estimate by duality of the
norm ||v|[$2.

We now consider a sequence of numbers C; which setisfies the condition
(23) ?<c,

(other condtions onthe mnstants C; will be introduced in a moment) and denote by ¢
the (increasing) function

(24) 1163 =sj4p<1|z|l/5—cj>-

REMARK 9. @) Thefunction/ is well-defined since j|&|%/S — C; is negative for
|&| < j. (Thisimpliesthat the “sup” isfinite for every £.) Somewhat more spedficdly,
jIE[YS—Cj < —j(j — |&|*/S) tendsto —oo for j — o when € isfixed, and therefore we
also seethat agually, /(&) = max;(j|&|¥/S—C;), i.e., the “sup’ isadualy a “max”.

b) The function ¢ clealy satisfies (7).

c) Assume now that C; also satisfies

(25 Cj > 4Cij2)+1,1i/2] the integer part of j/2.
Sincek|€|Y/S— Gy < 4(([k/2] + 1)|&/2//5— C/z41) , we then also have
(26) (&) <4L(E/2).

We recdl here the fad that when one defines function spaces by inequaliti es of type
1f(8)| < exp[0(£)], then conditions of type ¢(&) < cd(&/2) are used (for increasing
weight functions) in relation to the requirement that the function spacebe stable under
multiplication. (When the weight functions are not increasing, the formulation o the
correspondng condtionis omewhat more involved. We shall not use ¢) in this paper.
Also cf. the “ring condtion” in[12].)

The oondtion (23) is nealed to show that the function £ is finite. We now
put further condtions on the mnstants C; to show that we can make ¢ sub-linea and
Lipschitz-continuows. We shoud mention that while the fad that ¢ is ub-linea is
essential, the fad that it is Lipschitz continuows is not strictly needed in this paper.
Lipschitzianity is however nealed as oon as one wants to develop a theory of pseu-
dodfferential and Fourier integral operatorsin spaces related to weight functions and
therefore we show also in this paper that we can choose the functions ¢ with this prop-
erty. (See[12].)

LEMMA 3. a) Consider a sequenceof constantsC;j > j2, and define a function
6 . RJr — R+ by
sup; (jT/°-Cj), (1>1)

@0 hn) = {supju ) (<),
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Then p isfinite. If C; tends to infinity quick enough ands suitably chosen, then p is
sub-linear andLipschitz. Moreover, we may assumethat if s > sis fixed, then

(28) lim p(1) /1Y% =0.

T—0

b) Let p be as in the conclusion o part a) and cenate by p : R" — R, the
functionp(§) = p(|§]). Then p is sub-linear andLipschitz

Proof. We choose asequenceof positive numbers Mj ~\, 0, with M1 = 1. Further, we
iteratively define numberst;, j > 0,Cj > iZi>1, andfunctionsp; with thefoll owing
properties:

e 10=0,C; =0, p1(1) =15,
° pj('[) = jTl/s—Cj,

the sequence j — (Cj11—C;) is drictly increasing,

TJ-l/S = Cj;1—C;j, andtherefore dso the sequence j — 1 is drictly increasing,

j(1/s)T Mo = pi (1) < Mj ontj_1,m),
e pj(T) > pj_1(1) fort > 1j_1, Pj(1) < pj_1(1) fort < 1j_1.

As a preparation for this, we natice that, independently of the way we dhoose the
constants Cj, we shall have pj(t) > pj 4(T), V1. Therefore, if 1 is chosen with
Pj(Tj) = Pj+1(T)), then we have pj(T) > pj11(T) for T < 1}, respedively pj(1) <
Pj+1(t) for T > 1. We now return to the construction o the Cj, t;. Note that, by
our requirements, we have to set 1o = 0, C; = 0. We next note that the functions pj (1)
are ooncave and pz(1) = 2tY/s_ Gy is negative for T > 0 small, whatever the value
of C; > 0 may be, whereas p; is positive. Moreover, when C, increases © does 1;
given by T+/° = C, — C; = C; and we fix some G, > 22 so that 2(1/s)1, -5 < M,
This alrealy defines p, by pa(T) = 2t/ — Cp, and it is automatic that p5H(T) < Ma
for every T > 11. We may now assume that we have foundC;j, t;_1 and have set
pj = jT¥/S—C;. In particular, pj(t) > pj_1(1) for 1> 1j_1 and P} (1) < Mj fort >1;.
Next we fix Cj11 > (j + 1)2, large enoughsuch that for le/s = Cj;+1 —Cj we have
J(1/9T, Y < My andset pj1(1) = (j + DTS- Gy,

This concludes the construction o the numbers tj, Cj, p;j by iteration. If we
also want to have (28), then it sufficesto chocse Tj_1 so that j(1/s)T/s~1 < MjTV/s 1
on([tj_1,).

It followsfor these choices that

(29 suppk(t) = pj(T) ontj,Tj41] fort > 1,
k

and we set p(1) = sup, pk(T) for such .
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This showsthat p/(1) — O there where the derivativeis defined (which is except
the points T = 1j) when T — . The sub-lineaity and the Lipschitz-cortinuity of p is
then clea, so part a) of the lemmais proved. Part b) isan immediate consequence. [

LEMMA 4. Let /:R" — R beafunctionwhich satisfies (7) and cenote 0 =
{f € DO (Byp); fan|T(E)|exp[f(§)]dE < 1}. Then o isa boundd setin oS (R").

We goply thisfor “/ = ¢//2", where ¢’ will be constructed later on.

Prodf. Inview of the suppat condtioninthedefinition o 2/ , we only need to estimate
the derivativesof the dementsin o/ , andinfad show that for every j thereisa constant
& such that |(9/0x)% f (x)| < & j~S%|asi9l, for f € ar . We write for this purpose for
fixed j, a,

o A
islal islal a _<ilz|l/sy. i1z11/s
ol S 00| < 1% sup &% exp —sile - [ 1 (@)]expisilel*“Ic

EeRN
<laPel [ 1f(2)lexp[t(2) + Inci]d
RN

< &lafl,

since|&%|exp[—sj|&|Y9] < ¢ j~Sl|a[sl, Va € N". (See e.g., the agument for study-
ing (6). The paint is that by analogy, exp[sj|&|Y/s] > (sj|€|Y/5)5% /(s|a])l®l. In the
secondinequality we have used sj|&|Y/S < ¢(£) + Inc;j for some congtantsc;.) O

PROPOSITION 1. Fix X € »(¥(B), andconsider sequences of constantsCj, C.
Assume that [gn | f(E)|exp[2]|E|Y/9dE < Cpj implies ||xf|lsj < Cj. (SeeLemna 1)
Asaume further that both sequences satisfy the condtionInC; > j2,InCj > j2.

We now denate by £,¢' : R" — R, the functions ¢(§) = supj(j|E|l/Sf InC;j),
¢'(€) = sup;(j|€[*/*—InC}). Then we havethat
(30 |7 (XF)(&)] < exp[€'(8)] - | (&) expe(&)]] .1(em)

and
17 )@ exple'(€)/2108 < | (&) expe(&) | xsn- [, expl—¢/E)/20E.
Proof. It suffices to argue for the cae ||f(E)exp£(E)||L1(Rn) = 1. Thus, f satisfies
|| (&) explj|E|*/s — INGj]|| ;1) < 1, so it follows from the sssumption onC;j, that
|7 (XF)(&)llsj <Cj for every j. This shows that
|7 (X&) < i?fexp[*JIEIl/SHnC}] = exp[—L'(&)].

Since exp[—¢'(§) /2] isintegrable, we dso oktain the last inequality. O
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4. Kernelsand the spaces G

It seems natural to study the integral operator Tu(X) = [zm X (X,y)u(y)dy in the frame
of the spaces g 3. The condtionswhich we use for % in this sdion are motivated by
the following considerations:

o let x € »9(R™™M) have cmpad suppat. Then thereisd > 0 and ¢ > 0 such
that

(3D | (&,1)| < cexp[d(|E[YS+[n[*/9)], ¥(E,n) e R™™.
e From (31), condtion b) in Theorem 3 is equivalent to the foll owing:
3  vd”, 3d > 0,3 st |k (§,n)| < cexp[d|E]°—d"|n["/3].

Most of our arguments are based onthe foll owing simple relation:

(33 x) = (2“)7n7m/Rn+m X (8,n)P(—E&,—n)dEdn, g € 0 & (R™M),

the integral being the Lebesgue integral as above. (SeeRemark 6.) It foll ows that
(39 F(T® =@ " [ KEn§-nydn

PROPOSITION 2. @) Let k € »®/(R™™M) satisfy (13) and assume that (31)
holdsfor somed > 0. Also consider d > d. Then

(¢,u) = (Tu)(9) == % (€,n)$(—&)a(—n)dedn,

RMHM

for ¢ € » (9 (R") definesa continuows operator T : GSI(R™) — 5'(B).
b) Let k bea ultradistributionwith suppatin B’ x B which satisfiesthe estimate

(35  |X(&,n)| < exp[di|E|Y/S—dy|n|*S], for some constants dy > 0,d, > 0.

Also fix d3 < dp, B1 3 B. Then the correspondence
g Tg(x) = /U X (X,y)9(y)dy,

for g€ ©(9(By), can ke exended to acontinuous operator G4 (B) — G4 (B').

Proof. We only proveb). (Part @) is proved by similar arguments but is even simpler.)
We have drealy observed in Remark 5 that suppTg c B'. When g € 2 (9 (By), then
F(Tg)(§) isgiven (34). We daim that we have for some ¢ > 0 the estimate

(36) ITgl>* < c||glI>%, Vg € »(By).
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To provethis, we just argue &s foll ows:

[, & E&ma-nydn
Sexp[dllill/s]/Rmexp[—dllﬁll/%dzlnll/s]lfc(E,n)lap[—dzlnll/s]lé(—n)ldn
and ndicethat
[ expl-cein|Sg(-n)ldn < g% | expl(~dz+do)in|*Idn.

We have now proved (36) and can conclude the agument by observing that we can
approximate dementsin g (B) with functionsin (9 (By) by convdution: wefix k €
2 ®) (y; |y| < 1) withK(0) = 1 and approximate (i by K(n/j ). We have then for j large
that 7 ~(R(-/]))*u € D9 (B1) and that supy, exp[—ds|n|*/]|(1—R(n/}))d(n)| — O
asj — oo. O

REMARK 10. The propgasition gves in particular the implications ii)=-) in
Theorem 2 and b)=-a) in Theorem 3. SeeRemark 4 and Corollary 1.

To establish the remaining implications in the theorems 2, 3, we first prove a
lemma (part of which will be used only in sedion 6):

LEMMA 5. Letx € »®(B), k € »(¥(B) and fix L, d. Then thereisc > 0 such

that

(37 lexp[—i(X,&)]|sLB = S&IDLJE((J!)S < exp[c|E[Y/S/LY9,
(38) IX(X) exp[—i(x,E)][lsa < [|IX[lsaexp[d[E]*],

and

(39) K (y) exp[—i{y,m)][[5¢ < [|k]|saexp[—d|n[*/S].

Note that (39) is an estimate referring to the spaces g 5, athoughthe function
y = K(y)exp[—i(y,n)] liesin 29 (R™).

Proof. (37)isadired cdculation.
For (38) we have to caculate supy |7 (X exp[—i(x,£)])(8)| exp[d|B|*/5]. Since
F(xexp[—i(x,&)])(0) = X(0+&), it sufficesto okservethat
Sup[R(8-+&)| expld}6l*/] < sup|X saexpld|e[**— o+ &[*/]

< [IXllsa exp[d|E[*/3],
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wherewe used |8|%/S < |84 &|Y/S+|E|V/s. Asfor (39), we can argue similarly as
Ik (y) exp[—i{y,n)]|3¢ = Sl;pl R(8-+n)|exp[—d|B[*/]
5Jl;pIIKIIsﬁdeXlO[ d[e+n[*/°—dle|""]
< ||k||saexp[—d|n[*/3].

Here we again used (9). O
We can naw provethe following conwverseto part b) in Propasition 2
PrROPOSITION 3. Let K be a ultradistribution with suppatin B x B. Denate

by T theoperator Tu(x) = [zm K (X,y)u(y)dy. Assumethat there are amnstantsc, d;, d

and bdlsBy, By, B@B1,B’ € By, suchthat T can ke extended to acontinuows operator
Gg. (B1) = G, (Bz). Then the Fourier transform of % satisfies the estimate

(40) |% (8,n)] < crexp[da|€|™/°— du|n|*/9).
In particular, we have|§((£,r])| < clexp[fdl|r]|1/5/2] if |&] <di|n|/(2dy).

Proof. We shall obtain (40) starting from the estimate

I T (k(y) exp[—iy,n)])|[3% < ca||K(y) exp[—ify,n)] |5,

wherek € (9 (B;) isidenticdly 1 onB. On the other hand, by fixingx € 0 (By)
identicdly oneonB’, we have that

T (k(y) exp[—i{y,n)])||5%
= s;pexp[—dml/ﬂ|fﬁz<T<K<y> exp[—i(y,n)])) (€)|

= &;pexp[—dzlﬁll/ﬂlvc(x(X)K(y) exp[—i(x,&) —i{y,n))|

:a;pexp[—d2|ﬁ|l/ﬂ|§((57n)|-

The last equality foll ows from the fad that X (x)k(y) isidenticdly one on the suppat
of K. By applying (39), we now obtain that

St;pexp[fdzléll/s]lk(é,nﬂ < caexp[—di|n|*/7,
which isthe estimate we wanted to prove. O

Thereisaresult dual to Propasition 3which we now consider.
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PROPOSITION 4. Let x be asin the previous propasition and &sume that the
map S: G3%(By) — G (B1) such that

7 (D)) = [ K(-EndE)dE

maps G 3% (B,) to ¢ $%(B;) andis continuowsasa map G % (B,) — ¢ 59%(B;). Then
thereisc such that

(41) |%(—&,n)| < cexp[dafg|*/° — dsln| .

REMARK 11. Propasition 4 can be reduced to Propasition 3 bytricks, but the
proof is rather simple and daes not sean worth the df ort thiswould require.

Proof of Propasition 4. Continuity of Smeansthat thereis a constant ¢’ such that

(42) 1S9llsds < €Iy Y € 65U (Bo).
We shall apply thisfor the family offunctionsq)g defined by

0:(x) 1= X (e D

wherex € 29 (V) isafixed functionwith the property that x = 1 onB'’. Note that then
$z(§) = X(&+&), sowe dso have 7 (Spz)(n) = [ & (—& n)z (§)dE = [ & (—& n)X
(E+i)d£. Now, sincex =1 onB/, # (Sq)g)(r]) isjust f((z,n). It follows from the
continuity of Sthat

(43) &#plﬂi(i,n)lap[dslnll/s] <0z lsa,-

We can also write thisas

(44) |% (€,n)] < cexplc €[S — da|n| S,

if we dso use (38) for ||z ||, O

5. Proof of Theorem 3

Inthis ssdionwe gply Propasition 3to prove g=-b) in Theorem 3. For theimplication
b)=-a), seeRemark 10.

As a preparation, we chocse balls B, 3 B; 3 B’ in R" and consider the spaces
X, Y4, where X isthe space{v € 0 ®(R");suppv C B'} and Yy = 63’ (B1) = {v;supp
Vv C By, ||V|[®¥ < «}. The spaces Yq are dealy Banach spaces with the natural norm
andtheinclusions Yy C Yy are continuowsfor d < d’. Moreover, X C Y := g Yg. We
endow X with the topdogy induced by » (9(R") and also Y with the inductive li mit
topdogy byY = Ii_n;de. It isthen, in theterminology o [2], aLF-space

We have the following result:
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PROPOSITION 5. a) TheinclusionY ¢ »('(R") is continuots.
b) Theinclusion X C Y iscontinuots.

Prodf. In all the agument we fix some x € »(¥(B;) which is identicdly one on B'.
Whenever we refer in the agument which foll owsto some result obtained in a previous
sedionin which a aut-off f unctionis used, it will be thisone.

a) Let us first show that the inclusions Yg ¢ »®'(R") are continuows. As-
sume then that v+ ||v||q is @ continuows smi-norm on » ((R"). Thereis nolossof
generality to assume that it has the form ||v||q = supsc,, [V(f)| for some bounded set
M C »O(RM). It follows that there exists aball B such that &  » (¥ (B) and such
that & isbounded in the spaceg S9(B) for every d > 0.

Then from Lemma 1 b), we can seethat the set AC = {xf;f € 4/ } isbouncdd
in gS9(By) for every d > 0, andfor v € Y4 we have

IVllg = sup [v(f)[ = sup [v(xf)| = sup|v(g)|

fem fem gex

< IVI=*- supllglsza- | expl-de[*/az.
gex R

Here we used Remark 6 for the last inequality. Since the second and the last fador
in the right hand side ae boundkd, the inclusion Yy — (&' (R") is corntinuots, as
claimed.

b) Now let u C 'Y be a onvex set such that its intersedion with the spaceYy is
aneighbahood d the origin for every d > 0. This meansin particular that for every
j we can find a constant ¢j > 0 such that {v € Yj;||v||®) < ¢} C u. (The constants
¢ will have to be, in general, small.) We now chocse constants ¢ such that [h(§)| <
cjexp[j[€[Y/5] implies that |(X  h)(§)| < 27Icj; exp[2][€|*/9]. (SeeLemmal) Note
that cj must be small compared with ;.

By using Corollary 1 we dso seethat there ae constants C; such that if v €
Gq (B1) andif f e L2(R"), [|f|lsj < Cj implies [v(f)| < 1, then [|v|[%% < cj; and
hencev € u. The constants C; will typicdly be large and orce we have foundsuch
constants, we may increase them gtill further. We then assume that they are larger than
max(1/cj, explj?]).

Next, we now consider an increasing sequence of positive mnstants C} for
which the numbersInC} satisfy (23) and for which we dso have that for the sequence
C; chosen abowe, it follows from fgn | f(&)|exp[2j|E|Y/S]dE < Cyj that |7 (xf)(E)| <
Ci exp[—j|&|*/]. Again this can be obtained using Lemma 1. (In all this argument we
denate “large constants’ by capital | etters and “small” ones, by small | etters.)

We now denote £(&) = sup;[j|€*/S - InCj], £'(§) = sup;[j|€|*/S — InC]] and
consider ar = {f € D(9(By); fun | (E)|exp[¢'(§)/2]dE < 1}. ar isthen abounded set
in o (R"): seeLemmaA.

For afixed pasitive constant €, it foll ows that the set

W = {veX;|v(f)| <&Vfear}
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isaneighbahood d the originin X. To conclude the agument it will t herefore suffice
to show that W C @ if €ischosen suitably.

Assume then that v € W, which means in particular that v € g3’ (B') for some
d, sinceX =g 65’ (B') asvedor spaces.

Since|v(f)| < &foral f € ar it follows combining Propasition 1with Lemma
2 that |V(€)| < c"€exp[£(&)] for some constant ¢’ which dependsonly on/ and ¢'. We
now put on € the condtion ¢’& < 1. Sincewe dso knaw that [9(£)| < Cexp[d|&|Y/s]
for some C and d, we conclude that

(45) [9(8)| < exp[min(£(g),d|&[/>+InC)], V€ € R".

Note that the constants C and d depend onv. Now we chocse anatural number k >
d+ 1. If |E|Y/sislarge enough say, larger than INC + InC, it foll ows that

d|€]Y/S+1InC < k|E|Y/S — |€|Y/S—InCy +INCy 4 INC < K|E|Y/S — InC.

This showsthat there is g, which also depends onv, such that

.....

Indedd, for |E|l/S > InC+ InC, thisistrue by what we saw before if we asume o > Kk,
and for |€|Y/S < InC+InCy, we have that j|&|*/S—InCj < j(INC+InCy) —InCj —
—oo, With j — oo (uniformly for the vedors & under consideration), such that ¢(¢) <
sup;< jo(j[&[**—InC;), for some |°.

We can now find measurable functions hj, j = 1,...,0, such that V= Z?:lhj
and such that |h;j(§)| < cjexp[j|&|*/s]. Multiplyingw; = 7 ~*h; with the aut-off f unc-
tionx, we obtain in thisway ultradistributionsv; = xwj, j =1,...,0, such that |V;(§)|
< 271c5; exp[2j[€|*/9] and such that v = 39_; vj. Sincethe ultradistributions 21v; lie
in « and @ is convex and containsthe origin, it followsthat v € . Thisconcludesthe
proof. O

We have now proved Propasition 5and turn to the proof of Theorem 3. Recdl
that we may assume that suppx C B’ x B, with B and B’ closed ballsin R™, respec
tively R". (SeeRemark 4.) Let usthen asuime that T : 2 ®(R™) — 2/ (R") isa
continuous operator such that the restriction to » (9 (R™) is given by the kernel % .
Sincethe inclusions g3’ (B) — »(9(R") are mntinuots we obtain for every d > 0 a
cortinuous map (dencted again T) T : g 3'(B) — 2 (9 (R") and consider X € 09 (By)
which is identicaly one on B'. On ¢J'(B) the operator T coincides with XT, so in
particular it is trivial that T defines a continuous operator T : §'(B) — X. By part
b) of Propasition 5 it also defines a continuous operator T : g3'(B) — Y. It follows
therefore from Grothendied’s theorem which we recdl i n a moment, that there is d’
with T(G§'(B)) C Yy and such that themap T : g3'(B) — Yy is continuos. At this
moment we can esentially apply Propasition 3to conclude the agument.
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THEOREM 4 (Grothendiedk, [2]). Let--- — X — Xi+1 — --- be a sequence of
Frédhet spaces and continuows maps. Denate by X the inductive limit of the spaces
Xi, by fi : Xi — X the natural maps andconsider a continuowslinear mapT : F — X
where F is a Frécet space Assume that X is Hausdorff. Then there is an indexi®
such that T(F) C fio(X0). Moreover if fjo isinjedive then thereis a continuous map

0 f
TO:F — X suchthat T isfactorized into F 1 X0 - X.

6. Proof of Theorem 2

In this ®dion we prove the implication i)=-i) in Theorem 2. For the implicaion
ii)=-), seeRemark 10.

PROPOSITION 6. Let S: 0 {8}(B) — o {8}(B') bea continuotsintegral operator
asciated with a kernel % with suppat in B x B, B,B/, balsin R™, respedivedy
R", and fx d > 0. Then there is d’ > 0 such that Sinduces a continuous operator
G34(B) — 659 (B).

Proof. Using (16), we have a ontinuous operator from a Banach spaceto a countable
inductive limit of Banach spaces:

6%9(B) 2 1limg®i(B),

jeN

Gs9(B) — li
d

élB

where the first map is the standard inclusion gven by the definition o an inductive
limit. Then the conclusion foll ows from Theorem 4. O

Proof of Theorem2. The assuumptionisthat Tu(x) = [ & (x,y)u(y)dy isalinea con
tinuows operator £ {8 (U) — o {(8(V). Sincewe can multi ply with cut-off f unctionsin
thex andin they variables, thereis again nolossof generality to assumethatU = R™,
V = R" andthat suppx C B’ x Bfor two ballsB’ c R", B R™. By duality, we obtain
then a continuows operator S: o {8H(R") — £ {sH(R™) defined by

80) - (SD)(Y) = [ % (xy)p ()

From the suppat condtion, the image of Sisincluded in o {$(B), and Sbhecmmes a
continuous operator

S:o{shB) - ols(B),

sincethe topdogy o  {8}(B) is equal to the one indwced by the inclusion o {}(B)
£{8H(R™). It foll ows therefore from Propasition 6that if we fix d’ > 0, then there is
d > 0 such that Sinduces a continuous operator 59 (B') — ¢59(B). The cnclusion
in the theorem is then a consequenceof Propasition 4. O
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7. An example and some comments

In this dionwe give an example of a distribution which satisfies condtion b) in the-
orem 3, but doesnot satisfy awave front set condtion o form WF) (%) N {(x,y,0,n);
n#0}=0.

Weshall work forn=m=1,0onV xU =T2=T x T, T the one-dimensional
torus. Since we ae deding with a nonquasianalytic setup, there is no red loss of
generality in dang so. (We say something abou this in Remark 12 below.) On the
other hand, working onthe torus makes the example alittl e bit simpler.

We denote exp[—k*+Y/S/j], for j € N, k € N, by ajx and define the distribution
% onT2 by

00

(46) % (x,y) = (2m) 2 ; ajkexpli(jx+ky)].
=

(The numbers aj are thus the Fourier coefficients of % and convergencein (46) is
in the spaceof clasdcd distributions.) It is immediate that x defines a continuows
operator L : 0(T) — »&(T) by

8

(47 Lu= (201 S bjexpliix, b= 3 apd(—k)
=1 k=1

where G(k) = u(exp[—iyk]) arethe Fourier coefficients of u and and convergencein the
first part of (47) isin the spaceof ultradistributions.

We daim that we have

PROPOSITION 7. Let % be the kenel defined by (46). Then there is (X°,y°)
€ T2 suchthat ((x°,y?),(0,1)) € WF5(% ). (Also seeRemark 13 below)

Thus % definesa continuows operator » (' (T) — o (9/(T), but we do nd have
WFg (%) N{(x,y.0,n);x€ T,y e T,n #0} =0.
To prove Propasition 7, wefirst state

PROPOSITION 8. Consider w € 0 (9(T?) and suppcse that for some (x°,y°),
((x,y°),(0,1)) ¢ WFg(w). Thenthereise > Osuchthatif x € »(9(R?) is suppated
in ane-neighbahood d (x0,y°), then |7 (xw)(&,n)| < exp[—£(&,n)] for some sub-
linear function ¢ as in (7) when (€,n) isin a suitably small conic neighbahood d
(0,1).

The proof of this propasitionis draightforward and is dmilar e.g., to the proof
of lemma1.7.3in [14]. We omit detail s.

We can now prove Propasition 7. In fad, arguing by contradiction and using
the precaling propasition, we can find a partition o unity formed of functions x;,
i=1,...,0,in 2 (T2) such that for some nic neighbahoodr of (0,1) in R? and
some function asin (7) we have |7 (Xix)(§,n)| < exp[—£(&,n)] for (§,n) € I and
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i=1,...,0. Sinceajx= 37, F (Xi%)(j,k) it would follow that |ajx| < oexp[—£(j,K)]
when (j,k) € ', which isfalse.

REMARK 12. We have agued onthe torus but we canh now also immediately
obtain from this an example of akernel %’ defined onR x R which satisfies condtion
b), but not the wave front set relation WF) (%) N {(x,y,0,n);x € R,y € R,n # 0} = 0.
To simplify notations, we first observe that after a translation onthe torus, it foll ows
from above that there ae kernels which define linea continuous maps 29/ (T) —
2 (T), but with ((0,0),(0,1)) € WFg(% ). Next, pick ¢ € 2 (R?) which has
suppat in asmall neighbahood d 0 € R? with ¢ = 1 in atill smaller neighbahood
of 0. If x € »'(T?) is the one just introduced abowe, then k' = YPx has a natural
interpretation as a distribution onR2. Since X gave rise to a linea continuous op-
erator »'(T) — »&'(T), x' defines in a natural way alinear continuous operator
»®(R) — »(R). It clealy does nat satisfy the wave front set conditionwe would
like to have.

REMARK 13. Withasmall extra ef ort, we can show that adualy ((0,0), (0,1))
€ WF) (%), X theonedefinedin (46). To provethisitis esential that the coefficients
ajk are positive. We leave the detail s to the reader.

REMARK 14. The agumentsin this paper canin principle be extended to more
general classes of nonquasianalytic ultradistributions but we have not tried to work out
such cases.
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LP(R) BOUNDEDNESSAND COMPACTNESSOF
LOCALIZATION OPERATORSASSOCIATED WITH
THE STOCKWELL T RANSFORM

Dedicated to Professor Luigi Rodino onthe occasion d his 60th birthday

Abstract. In this article, we prove the boundedness and compadness of locdizaion opera
tors asciated with Stockwell transforms, which depend ona symbad and two windows, on
LP(R),1< p< oo,

1. Introduction

1.1. The Stockwell transform

The Stockwell transform, which wasdefined in [13], isahybrid of the Gabor transform
and the wavelet transform. For asignal f € L2(R), the Stockwell transform S f with
resped to thewindow ¢ € L1(R) NL?(R) isgiven by

(1) S¢f(b,E):(2T[)*1/2|E|/j°e*ixzf(x)q)(i(x—b))dx, beR, £cR.

More predsely,
S f(b,&) = (f,0°%),
where
@) 0°¢ = (2m)Y2g[X(E(x b)),
or

0% = (2r) Y 2M T_pDs 0,

and ( , ) is the inner product in L2(R). Here, Mg, T_, and D; are the moduation
operator, the trandation operator and the dil ation operator, defined by

(Mgh)(x) = €*h(x),
(T-6h) (%) = h(x—b),
(Dgh)(x) = [&[h(&x),

for dl x € R and al measurable functionh onR.

*This reseach has been suppated by the Natural Sciences and Engineging Reseach Courcil of
Canada.
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A grea amourt of articles use the Stockwell transform to study applied prob-
lems, covering areas as geophysics, engineaing o biomedicine (seethe referenceslist
inthe papers[9] and[14]). Some mathematicd aspeds of such atransform are studied
or expanded in the papers[2, 8, 9, 10, 11, 14].

1.2. Reoonstruction formula

In an attempt to reconstruct asignal f from its Stockwell spedrum {S, f(b,€) : b, €
R}, we have the followingresult in [8].

THEOREM 1. Let ¢ € L%(R) besuchthat ||¢ ]| 2(x) = 1 and

0 _ 2
) / WW(ET”'& <o

Then for all signds f and gin L?(R),

db
@) (f,0)2z) //Spfb{Sq,g(bE ST
where
0 o 2
® o= [ eI

and "~ denotesthe Fourier transform defined by

FQ) = (21'[)*'\'/2/ e CF (x) dx

RN
for all F in LY(RN).

REMARK 1. Theorem 1 is known as the Plancherel formula or the resolution
of the identity formulafor the one-dimensional Stockwell transform. The integrability
condtion (3) is the admisshility condtion for afunction ¢ in L?(R) to be awindow.
An important corollary of Theorem 1 isthat every signal f can be reconstructed from
its Stockwell spedrum by means of the inversionformula

© = [ e S

That the admisshility condtion (3) is a necessary condition for the inversion formula
for the Stockwell transform can be seen by letting f = g = ¢ in (4). Details can be
foundin [7].
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1.3. Localization operators

Let ¢, be measurable functions on R, o be measurable function onR?, then for all
functions f € LP(R), we define the locdi zation operator Lg ¢ y f, by

bg dbAE
A%/ch;(b,z)(%f)(b,z)w 7

[, 0.8t E.
R g

REMARK 2. The symbad can be understood as a filter of the Stockwell spec
trum. Formula (6) reconstructs the signal using the Stockwell spedrum {Syf(b,§) :
b,& € R} with resped to the windaw comporent $*%. The locdlizaion operator using
the filtered Stockwell spedrum {a(b,&)Sy f(b,&) : b,§ € R} may be defined by

Toof = f=— // O(0,8)(F,406) 2 5 90E L2E

(7) Loowf

&l

However, in order to allow some lineaity properties with resped to the windows, we
consider the locdizaion operator designed in the original way (7).

In acordancewith the diff erent choices ot the symbasa(b, &) andthe diff erent
continuiti es required, we neal to impaose diff erent condtionson ¢ and . Andthen we
obtain an operator onLP(R).

In the paper [15] by Wong, the LP-boundednessof locdi zaion operators as-
ciated to left regular representations is gudied for 1 < p < ». LP-boundednessand
LP-compadnessof two-wavelet locdizaion operators on the Weyl-Heisenberg group
can be foundin the papers [4] by Boggatto and Wong, and [3] by Boggatto, Oliaro
andWong The a@m of this paper isto give another set of resultsonthe LP-boundedness
and also LP-compadnessof the locdization operators defined by (7).

In Sedion 2 we prove that the locdizaion operator asociated with the Stock-
well transform, with symbalsin L1(R) and windows ¢ € LP (R) and € LP(R) are
bounded linea operatorson LP(R), 1 < p < o. Herein, p’ isthe conjugate of p, such
that

1 1
(8) o o
If thesymbdsareinL"(R?), 1 <r < 2, andthe admissblewindonsd, g arein L1(R) N
L*(R), then the locdization operators are proved in Sedion 3to be bounckd linea
operatorson LP(R), r < p <r’. Sedion 4 deds with the compadnessfor symbalsin
L1(R?). Thelast sedion treds the locdi zation operators associated to the generali zed
Stockwell transform defined in [10] and [11]. Due to the dose relation between the
Stockwell transform and generali zed Stockwell transform, al our conclusions obtained
in Sedion 2, Sedion 3and Sedion 4can be gplied to these locdizaion operators.
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2. Symbolsin L*(R")

Forl<p<wm,letoc LY(R?), ¢ € LP(R)andy € LP(R). We aegoingto show that
Lo, isabounded linea operator on LP(RR).
Let us dart with the foll owing estimates:

PROPOSITION 1. For 1< p< o, lety e LP(R) andf € LP (R), where p/ isthe
conjugae of p. Then

©) 1WPE][p = (2m) Y2 [YP |1y,
and
(10) ISy (b,)] < (2~ Y2E[YP||w][p f ] -

Proof. For p= oo, thefirst equality istrivial. For p # oo, by Fubini’s theorem, we have

. 1/p
03l = { [ Itz ¥2Ei@%utex- by P o

1/p
e { [ wieix- by o)
= (20 el

Applying Holder’sinequality and (9), we have

ISyt (0.&)] = [(F.4%) < [Ifl|[[WPE 1o = (2r) 2| £ Wl

In the following we denote with | - ||gLpr)) the operator norm in the Banach
spaceB(LP) of bounded linea operatorsonLP,1 < p < oo,

We start with the result about the boundednessof Lg ¢,y onL(R).

PROPOSITION 2. Let 0 € LY(R?) and¢ € L®(R),y € LY(R). Then Lg gy :
LY(R) — L(R) isa boundd linear operator and

1
ILoswliwrmy) < o l0lllle]Wl.
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Prodf. For any f € LY(R), by (7), (2), and (10), we have

ILoowtli= [ | /[ ob.)% (b8P (x dETE’dx
[ 1e.0) <<2n> 1/2|E|||f|1||¢||m> <<zn> Y2[g] W& (x b>>|>d|bz‘fd

IN

< o200l [/ 10(b.8)]1w(E0xb) €] dbck o
— grltllole /[ 1s0.01( [ ElucEoc- bl ax) dock
= (sal0leliolalwl) 1l
which completes our proof. O

For p # 1, we have the foll owing conclusion abou the boundednessof Lg ¢ y.

PROPOSITION 3. Let 0 € LY(R?), ¢ € LP(R) andy € LP(R). Then Lggy :
LP(R) — LP(R) isa boundkd linear operator for 1 < p < e« and

ILoo.wllawrm) HGHlHdJHpIIllJHp

- 2T[
Proof. Forany f € LP(R), consider the linea functional
T LP(R) = C, g~ (9Logpyf)
By (7), we have
9 Loswf)l = I(Lopwf,0)l
JECHEYNEr R

[ Ieiisy f0.2) 800008 T

Applying Propasition 1, we have
(@ Log.of)]
[ 1o.2)1(@m 2Pl a0l ) (2r)~2E " gl W)

1
(o001 11011 gl

dock
€]

IN

which implies that T; is a continuots linea functional on L? (R), and the operator
norm

1
Tl ey < 502101l
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SinceTrg = (9,Lo .4 T), by the Riesz representation theorem, we have

1
ILoowflp=ITillgwr @ < sllolliolylWlpl e,
which establi shes the propasition. O
To sum up the two propasiti ons above, we have the foll owing theorem.

THEOREM 2. Let 0 € LY(R?), ¢ € LP(R), W € LP(R). ThenLg ¢y : LP(R) —
LP(R) isbounded linear operator for 1 < p < « and

1
ILoowllee) < S-llolll®lylIwllp-

3. SymbalsinL"(R),1<r <2

In this sadion, we study the locdization operators Lg gy for symbos o € L'(R),
1<r<2.

PROPOSITION 4. Let Y and ¢ be admissble windows, Y € L?(R) and ¢ €
L2(R), 0 € L2(R?). ThenLg ¢,y : L2(R) — L2(R) isa boundd linear operator and

1/2
1ot wlaize) (V%%WMHWM) 0]z

To provethe propasition, let us gart with the followinglemma.

LEMMA 1. Let ¢ and ¢ be admissble windows, Y € L2(R) and ¢ € L3(R),
0 € L®(R?). ThenLg ¢y : L>(R) — L2(R) isa bounckd linear operator and

[Loswllerzr)) < vCoCy [[O]le.
Proof. For any f, g€ L2(R), by (7) and Holder’s inequality, we have

[LobasiboSaB

HM|/|%szH%mbzPEf

ol ([ 15108225 (| mammee®)™

By Theorem 1, we have

|(L0¢’q»’fvg)|

(Logwf,0)l

IN

IN

IN

lo]le(cp) % (cy) ™2 1 2ll g2
= VGCy [loll[Ifll2llgll2
which completes the proof. O



Locdizaion operators associated with the Stockwell transform 209

Proof of Propasition 4. For any fixed f € L?(R), admissble windaws ¢, ¢ € L2(R),
we define alinea map from LY(R?) NL*(R?) to L?(R) by

T(G) - LO'7¢7ljJ f .

From the ebovelemmawe have

(19 IT(0)]l2 < /CoCyll fll2]|O]co5

andlet p= 2 in Theorem 2, we have

12 IT@ < (55 fld@lalvlz) ol

Applyinginterpolationtheory, see[1] for instance, we have

IT(9)ll2

IN

1 1/2
uﬁmmfmfﬂ(EJWﬂmmwu) o]z
1/2

(V%QWmeu> 11202

By the definition of T (o), we have
1/2
(Vo 101zl

ILogwfll2 < [fll2]lo]l2:

Thusthe proof is complete. O

THEOREM 3. Let Y and ¢ be admissble windows, ¢ € LY(R) N L*(R) and
¢ € LY(R)NL®(R). Let o € L"(R?),1 < r < 2. Then there exsts a urique bounced
linear operator Lg ¢ ¢ : LP(R) — LP(R) for all p € [r,r’] such that

(13) ILoswllaLr) <M1~ M3|o|lp,

where 1 2. VCoCy &
My = (5l 0llellwlis) " (M5 01l wl2) "

M= (= l0lalulle) (“__Mmmwm)

Proof. Let T be the bili nea mapping from {L(R?) NL?(R?)} x {LY(R)NL%(R)} to
LY(R)NL?(R), defined by

(14 T(o,f) =Loguwf.

U

By Propasition 2and Propaostion 31, we have

1
IT(0, Dl < oIl 5.
C
IT(0, Dllo < Y2

[ll2llwll2l[o]l2]| f]l2-
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By the multi-linea interpolationtheory, seeSedion 101 in [5] for reference, we get a
unique bounced linea operator T (o, f) : L"(R?) x L"(R) — L"(R) such that

(15 IT(0, H)lIr < Mdlia|e[IF]r,

where

M= (10l 1l) (2 o )

1—0(+0(71 or a=2 2
1 2 r - r

By the definition o T in (14), we have

with

V&Cy

(19 Losulowmy < (510l ||w|\1) (X ||¢||2||¢H2)/H0Hr-

Sincethe ajoint of Lg ¢,y iS L5133, S0 Lo.g.y iSabounded linea map onL" (R), with
its operator norm

HL07¢7UJHB(U’(R = ||LC—7TF¢||B L"(R))
an < (Z00wls) ™ (S g ulz) o

Using an interpalation o (16) and (17), we havethat, for any p € [r,r'],

1-9
ILo.o.wllBLem)) <My M3lollp.

Lo.8 1 o e (1))
r o p rp ror

with

4. Compact operators

Inthis sdion, we studythe compadnessof thelocdizaion ogeratorsLg ¢y : LP(R) —
LP(R). We start with asimple case:

LEMMA 2. For 1< p< o, let ¢ € LP(R), o andy be compactly supparted
andcontinuows. Then Lg ¢ ¢ : LP(R) — LP(R) is compact.

Proof. To prove that Lg ¢,y is compag, it is enoughto show that the image of any
bouncdkd sequence has a convergent subsequence. Let {fj}‘f:l be asequence of func-
tionsin LP(R) such that

[ fillp <1, i=12,....

Becaise o is compadly suppated, we may assume that

o(b,&)=0,  forall (b,&) suchthat (|b]>+ [€|?)Y/% > M.
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From Propasition 1and the fad that  is continuows, we have

WA (| < (2m) Y2(E] W]l

(Sp f7) (0, 8)] < (210~ Y2| £ ol |EY Pl < (20~ Y2E VP[] -
Therefore

Lo fj(X)]
[sbosmorats

db
< //DGR lo(b,&)|((2m) 1/2|E|1/p”¢” )21~ Y2IE[|]]o) |E(|£
E|<M
< §T|\‘1>|hof|\llJ||m//be]R (b, &)||E|/Pdb dE

[El<M

< Ly
< S=MTPIly Wl

foral j=1,2,.... Thusthe sequence{L ¢y fj}{_4 isuniformly bounced.

Let € be any pasitive number. Since ) is compadly suppated and continuots,
it i s therefore uniformly continuows. So there exists 8; > 0, such that

W) —w(y)l<e,  forany|x—y| <.
Letd= mm{ } Thenforany [x—y| <6, |§| <M,
B

"4(y)l
(2m)~H2[E ][ W(E(x— b)) — € W(E(Y - b))

W4 (x) —

< (2n>1/2|z|(léxil\w(w—b))—w<z<y—b>>!+!éxi—éyﬂlw(ay—b)ﬂ)
< (2m) M2E(WEX— b)) — W(E(Y — b))|+ [x— YI[E][W]])
< (2 Y2E| (e + [|w]|€),

andthusfor any x,y € R such that [x—y| < 9,
(Lo, wf')( ) = (Logw i)yl

dbdg
;) bE(x —
< //Eb%wbzn% (016200~ 4°3)| T
dbdg
< /ﬁ,iﬂﬁﬂ (b)) (2 1/2|z|1/p||¢||w) (2 e+ s ) T
< s loTu0l MR+ [yl

Zﬂ%,w
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So {Lo,¢wfj}{_4 is equicontinuows on R. Therefore for every compad subset K of
R, the Ascoli-Arzeatheorem ensures that {Lo ¢,y fj}{_; has a subsequencethat cor
verges uniformly on K. Thus by the Cantor diagoral procedure, we can find a subse-
quence{Lq ¢,y fj, }c; cOnverging pantwise to afunctiong onR. By (7) and (2), and
the inequality (10), we have

p
(Lana )P < (21 H101)° [ 10052 PuE(x— b))l bk )

Denate the function onthe left hand side of the ebowe inequality by h. By Hdlder's
inequality, we have

[ 1hoolax

= ¢ (/] loto.2)l1& Plu(E(x—b)| dock) "ox

= cf( [] ot leEx—b)) dod)" ox

[bl2-+[€[2<M2

C/(//(|0(b,E)IIEI1/p|llJ(E(xfb))| dde // 1pdbdz L

[b|2+[E[2<M2

IN

= C(2mv?)P/? ([|a(b, &) pllwllp)P < o,

where C is the constant ((2m)~2|¢||y)P. So by Lebesgue's dominated convergence
theorem, the sequence {|Lq ¢4 fj.|P}r, convergesto |g|P in L1Y(R) ask — «. And
thus,

L0 fii (%) = 90IP < 2°(ILo g Fi (1P +[9(x)P) < 2°*h(x),
and |Lg¢,y fj, — 9|P convergesto 0 pdntwise, so by the Lebesgue's dominated con-
vergencetheorem, [ |Lg ¢,y fj, (X) — 9(x)|Pdx convergesto 0. Thus {Lg ¢,y fj, } i1 COM
vergesto gin LP(R). ThereforeLg ¢ y iS compad. O

PROPOSITION 5. For 1< p < , let 0 € LY(R?) andy € LP(R), € LP(R).
Thenlg gy : LP(R) — LP(R) is compact.

Proof. Forany 0,7 € L1(R2), ¢ € LP(R) andy, @< LP(R), by (7) and Theorem 2, we
have

ILoo.w — Lrowllrm) = ILotoullLem)
< @m Ho—t)alo)lyllwlp.

A

and

ILo.o.w — Logollaerm) = ILosu—olarr(m)
2 oll1| 0]l plIw — @] p-

IN
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By the above lemma, and the fadt that Co(R?) is densein L1(R?), and Co(R) is dense
in LP(R) for 1 < p < o, and the fad that the set of compad operators is closed in
B(LP(R)), the propasition hdds. O

THEOREM 4. Under the same hypothesesona, ¢, ) as Theorem 2, the boundd
linear operator Lg ¢y : LP(R) — LP(R) iscompact for 1 < p < oo,

Proaof. From the previous propasition, we only need to show that the conclusion hdds
for p=co. Infad, the operator Lg ¢y : L”(R) — L”(R) is the ajoint of the opera-
tor L5 5. : LY(R) — LY(R), which is compad by Propasition 5 Thus by the duality
property, Lo ¢,y : L*(R) — L*(RR) is compad. O

5. Localization operatorsasociated with the modified Stockwell transform
In the papers[10, 11], the modified Stockwell transform is defined by

(§N0.8 = @0 [ 100 e e HExb))x

(189 (f,05%),

where _
0¥ (x) = & [€|/59 (& (x— b)) = EY/5 104 (b, €) (x).
The connedion between the modified Stockwell transform and Stockwell transform is

S =€ s 1(bE).

Andso thelocdization operatorsasociated with the modified Stockwell transform can
be expresed by

Lso‘ b,& dde
@ f // (0,€)( Sif )(0,€) s |E|2/s
o(b - — dbdg
//RZ (b, &) (&S f(b.E) (8] 1¢b’2>|g|<w -1

[[ o251 0. %
= L0,¢,L|J f.

So our results in this paper can be extended to the locdizaion operators associated
with the modified Stockwell transform.
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SQUARE-INTEGRABLE GROUP REPRESENTATIONS AND
LOCALIZATION OPERATORSFOR
MODIFIED STOCKWELL T RANSFORMS

Dedicated to Profesor Luigi Rodino onthe occasion d his 60th birthday

Abstract. Recently discovered square-integrable group representations are used to study
locdization operators for the modified Stockwell transforms. The Schatten—von Neumann
properties of these locdizaion operators are established in this paper, and for trace tass
locdization operators, the traces and the trace ¢assnorm inequaliti es are presented.

1. Introduction

Let ¢ € LY(R)NL?(R). Then asahybrid of the Gabor transform and the wavelet trans-
form, the Stockwell transform Sy f of asignal f in L2(R) with resped to the window
¢ is defined by

(SF)(b.8) = (2 28| [ & " F(x9EX—B) ok

foral bin R and & in R\ {0}. Alternatively, we can write for al f in L?(R), bin R
and¢inR\ {0},

(Sf)(b,E) = (qu)b’E)LZ(R),
where

¢°% = (2m)~Y2MgT_oDg,

the moduation ogerator Mg, the transation operator T_y, and the dil ation operator D%

are defined by .
(Mgh)(x) = €¢h(x),
(T-ph)(x) =h(x—b),
(D£h)(x) = E]h(&x),
for al xin R and all measurable functionsh onR.
The Stockwell transformis a versatiletod first introduced in [11]. More recent
results on the Stockwell transform in the contexts of applicaions can be foundin [6,

10]. The mathematicd underpinnings of Stockwell transforms are developedin [4, 5,
7,8,9 13.

*This reseach has been suppated by the Natural Sciences and Engineging Reseach Courcil of
Canada.
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Prompted by applicaions in time-frequency analysis, the Stockwell transform
S has been extended in [6, 7] to a family {S : 0 < s < «} of modified Stockwell
transforms, which include the dasdcd Stockwell transform when s= 1 and a variant
of the wavelet transform when s= 2. To wit, for al functionsin L?(R), the modified
Stockwell transform %f of f for 0 < s< w isdefined by

(S$)(0,8) = (f,02%) 25), beR,EcR\{0},

where
2% = (2r) " Y/*M¢ T D30,

andfor al t in (0, ] the dilation operator D‘E is defined by

(Dsh)(x) = &[*/*h(&x)
for al xin R andall measurablefunctionsh onR. More explicitly,
(S51)(6.8) = (2 Y2g1° [ e (9 B(Ex— D)) ox

foral binRand& inR\ {0}. For a comparisonwith the dasscd Stockwell transform,
we note that

(1) (1) (0,8) =&Y (51)(b,E), beREcR\{0},

where s isthe mnjugateindex of sgiven by 1/s+1/s = 1. An important property of
the modified Stockwell transform is the foll owing resolution o the identity formulain

[6, 71.
THEOREM 1. Let ¢ € LY(R)NL?(R) be such that

/j:oq)(x)dx: 1

and

“ pE-DE
B e

where § isthe Fourier transform of ¢ defined by

b(&)= (2 2 [ e Mok FeR

Then for all f and gin L?(R), we get for 0 < s < oo,

here BE-1)P
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Based onthe resolution o the identity formulain Theorem 1, locdizdion op
erators can be introduced and their Schatten—von Neumann properties investigated.
Resultsin this diredionare annourced in [8].

The dm of this paper is to use sguare-integrable group representations found
by Boggatto, Ferndndez and Galbis [4] to construct locdization operators. These lo-
cdizaion operatorsturn ou to be the same &s the locdizaion operators based onthe
resolution o the identity formulas for the modified Stockwell transforms. From this
faa foll ow the Schatten—vonNeumann properties, atraceformula andtrace ¢assnorm
inequaliti es for the locdization operators defined using the resolution d the identity
formulas for the Stockwell transforms.

In Sedion 2 we give abrief recgitulation of Schatten—vonNeumann classes
andlocdli zaion operatorscorrespondngto square-integrablerepresentationsof locdly
compad and Hausdorff groups. Square-integrable grouprepresentations suggested by
the onein [4] are summarized in Sedion 3 In Sedion 4, locdization operators arising
from these square-integrable representations are introduced. They are shown to coin-
cidewith locdization operators defined usingthe resolution o theidentity formulasfor
the modified Stockwell transforms. The Schatten—vonNeumann properties of these lo-
cdization operators are establi shed, and the traces of trace ¢asslocdizaion operators
are omputed. We givein Sedion 5the trace ¢assnorm inequaliti esfor the trace ¢ass
locdizaion operators dudied in Sedion 4 and gve an explicit formula for the func-
tionthat occursin the lower boundfor the tracenorm of such atrace ¢asslocdization
operator.

2. Schatten—von Neumann classes and locali zation operator s

Let X be an infinite-dimensional, complex and separable Hilbert spacein which the
inner product and nam are denoted, respedively, by (+,-) and||-||. LetA: X — X be a
compad operator. Then the operator |A| : X — X defined by

|Al = VA*A
is positive and compad. So, using the spedral theorem, there existsfor X an orthona-
mal basis {¢x: k=1,2,...} consisting o eigenvedorsof |[A|. Fork=1,2,..., let 5

be the d@genvalue of |A| : X — X correspondngto the eégenvedor ¢y. We say that the
compad operator A: X — X isin the Schatten—vonNeumannclassS,, 1 < p < o, if

If a compad operator A: X — X isin S, 1 < p < oo, then we definethe norm ||A||s, of

A by
1/p
IAllsp{ 515} :
K=1

M s
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By convention, the Schatten—von Neumann class S. is taken to be simply the C*-
algebraB(X) of al bounded linea operatorson X andthenorm || - ||s, in S is mply
the normin B(X).

Of particular interest is the Schatten—von Neumann class S;, which is also
known as the trace ¢ass If a compad operator A: X — X isin the trace tass S,
then we can definethe tracetr(A) of A by

[

tr(A) = 5 (Adk, dx),

=1

=~

where {¢x: k=1,2,...} isany orthonamal basisfor X.

Let G be alocdly compad and Hausdorff group onwhich the left Haa measure
is denoted by dp. Let U (X) be the group d al unitary operators on X and let 11:
G — U(X) be an irreducible and uritary representation of G on X. Suppacse that the
representation 1tis gjuare-integrablein the sense that there existsanorzero vedor ¢ in
X such that

@ L 16.m(0)0) Pau(@) < .

The mndtion (2) is known as the almisshility condtion for the square-integrable
representation o G onX. We cdl any vedor ¢ for which ||¢|| = 1 andthe admissbility
condtion (2) isfulfilled an admissble wavelet for the square-integrable representation
of G on X. For any admissble wavelet ¢, we define the constant ¢y by

o= [[1(6.10)0) A

We ned the following result, which is Theorem 14.5in [12).

THEOREM 2. Let ¢ bean adnissble wavdet for a square-integrable represen-
tationTt: G — U(X) of GonX. Let F € LP(G), 1 < p < oo. For evey xin X, we define
LreXxin X by

(Lroxy) = o [ F(0)0xmg)0)(m(@)0.)dug

for all yin X. Then Ly : X — X isin the Schatten—vonNeumannclassS, and
-1
Itrlls, < o " PIF o)

REMARK 1. Thelinea operator Lr ¢ : X — X iscaled the locdi zaion operator
for the transform X > x+— (X, 1(-)¢) € L?(G).

Thefollowingtraceformulais given in Theorem 13.6 in [12].

THEOREM 3. Let ¢ bean adnissble wavdet for a square-integrable represen-
tation: G — U(X) of Gon X. Let F € LY(G). Then the tracetr(Lr¢) of the trace



Locdizaion operators for modified Stockwell transforms 219

classlocali zation operator Lr ¢ : X — X isgiven by
tlley) = — [ F(o)du)
Fo)= co Jo g)apg).

A lower boundfor the norm ||Lr¢||s, Of the trace d¢asslocdization operator
Lrg : X — X can be given in terms of the function Fy on G defined by

Fo(9) = (LroT(9)9, T(9)9), g€G.
Indeed, we have the foll owing result, which is Theorem 14.1in [12].
THEOREM 4. Let ¢ bean adnissble wavdet for a square-integrable represen-
tationt: G — U (X) of GonX. Let F € L1(G). Then

1 1
a”F(IJ”Ll(G) <|Lrolls, < aHFHLl(G)-

The function Fy is the expedation value of the observable Lg g : X — X in the
coherent states T(g) ¢, g € G. Information abou coherent states and related topics can
befoundin[1, 2, 3].

3. Square-integrable representations

Let G betheset R x (R\ {0}) x St, where S? is the unit circle centered at the origin.
If we identify S* with the interval [—1t, 71, then G bemes a groupwith resped to the
multi plication - given by

(b1,81,61) - (bo, £2,0) — (b1+ %,zlzz,el+ez+blzl<1— zz>)

forall (b1,&1,01) and (b2,&2,62) inG. Infad, G isaLiegroup onwhich the left Haa
measure is just the Lebesgue measure. For future reference, let us note that (0,1,0) is
the identity element in G and

(b,€,8) " = (~bE,1/&, ~B+b(1-¥))
forall (b,§,0)inG. Fora € (—,1), welet Hy be the set defined by

o= {tes'®): [ Ifwedu< .

Then Hy beames a Hilbert spacein which the inner product (-, -)n, and the norm
I Iy aregiven by

(9 = [ fguludu
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and -
11 = [ If@Pueau

foral f andginHy. We assume throughot this paper that a € (—c, 1).
Let U(Hq) be the group d al unitary operators on Hy. Then we define the
mapping po : G — U (Ha) by

3) Pa(D.&,0)f = 00 g| (/2  f
forall (b,&,0)inG andall f inHgy, where

(e F)(x) = €| f(E(x—Db)), xeR.

THEOREM 5. py : G — U(Hy) isanirreducible and uritary representation o
G onHg.

In fad, the foll owing theorem tell s us much more aou the representation py :
G — U (Hq).

THEOREM 6. The representation py : G — U (Hq) of the group G on Hq is
square-integrable.

THEOREM 7. Let ¢ € H_q1NH_g_11, where

HB,l{fes':/ |f(u)|2|u+1|Bdu<oo}, Be(—w,1).
Let Y be the function onR defined by

Wit = (22 [ et pw-Ddw e

Then for all f inHg, the modified Sockwell trarsform%f of f for 0 < s< oo, isgiven
by

(f,pa(b,&,0)W)H, = (Zn)l/zeiielzl(aJrl)/Zi(l/s)(S; f)(0,€), (0,€08) G

REMARK 2. Infad,

W=7 (e %G(e 1)),

where 7 ~1 denotes the inverse Fourier transform.

THEOREM 8. Let f and g ®inHy. Thenfor 0<s<eandforall ¢ e H_q_11,

db
[ S OOETSOBE s = 19110

Theorem 8 can be seen as another set of resolution o the identity formulas for
the modified Stockwell transforms %, 0 < s< o, andisthe basis for the locdizaion
operators gudied in the following sedion.
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4. Localization operatorsfor modified Stockwell transforms

Let ¢ be anorzero functionin H_q 1 MH_q—11 andlet Y be the function onR defined
by
@ Wit = @ Y2 [ ew|opw— 1w, teR.

Without lossof generality, we can choose ¢ in such away that

(5) [Wl|He = 1.
LetF €LP(G),1< p<w. Thenforall f inHy, wedefinelryf by

(EF,LIJfag)Ha
1 T 00 00
= o)) ] FOEO1 0088, (pu(0,E 0O dbck o

for al ginHy, where

cw=[" [ [ 1w pa(b.E 0w, abek e

LEMMA 1. Let ¢ andy beasin (4) and(5). Then
CUJ = 4T[2H¢Ha,a,lvl'
Proof. We note that

LZ[Z/,Z|(w’pG(va,9)¢)Ha|2ddede
— /71/::/:)|(anei(eerE)|E|7(q+l)/2nb,zllJ)Hu|2dded9
= /;/jo /:l(w, €]~ (@4 D/ 21, £ ), [Pdb dE dE.

By Theorem 7,

(0, €% W), = (272 (SU)(b,E), beR, EecR\{0},
and hence

(T, = (22X U (SW)(b.E). beR, Fek\{0}
So,
[ ] patnz o Pancte

o o db
~ e[ [ w|(3b¢)(b7§)|2|5|+‘i — 4| 9lf3, Wl

Since||Y||n, = 1, thelemmais proved. O
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Now, by Theorem 2, we can conclude that I:F’qJ : Hq — Hq isin the Schatten—
von NeumannclassS,. Thisfad can be used to prove the foll owing result.

THEOREM 9. Let ¢ beasgivenin (4) and(5), F € LP(RxR),1< p< oo. If
for 0 < s< o, we define LE ¢f for all f inHg by

(LR T, 9)Hq
dbd
- ||¢||Hw/ [FOOSNOGI6 g rm

for all gin Hg, then L,-Z’q, : Ha — Hq isin the Schatten—von NeumannclassS,. More-
over,

L glls < oI, ,,) Y PIF[p@xm)-

Prodf. If we definethefunctionF onG by
F(b,&,8) =F(b,E), (b&,0)cG,
then F € LP(G). But for al f andgin Hy, we get by (3)
(=)
© = o)) FOEOTpa(b.E O, (pa(0.E 10 Gk

= o FOE b (kg b

By (1), (3) and Theorem 7, we have

(7) (f, T g W)y = (2112708 |g |0 -(1/9($ 1) (b, E)
and
®) (T e W, Q)Hy = (20)Y/ 268 1E |01~ (1/9) (S5 g) (b, )

foral binRand¢& inR\ {0}. Putting (7) and (8) in (6) and wising Lemma 1, we get
foral f andgin Hg,

(I:[flpf g)Ha
dbdg
) / / F(b,&)( Sif )(b,&)( %g bE |E|2/S (a+1)
= (LFd)fag)Ha'

So, L,:¢ Hq — Hg isthe same & LF : Hq — Hg andis hencein the Schatten—von
Neumann classS,. Finaly, using the mequallty in Theorem 2 and Lemma 1, we get

LR ol = e ylls, < _”FHLP = olE ) Y PIF @ r)-
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REMARK 3. It is important to bring ou the fad that by (9), the locdizaion
operators L , are dl equal to L,: for al sin (0,c]. Thisfad can aso be seen from
the formula (1). Notwnhstandmgthe variety of Hilbert spaces Hy offered by Theorem
9, itisto benoted, however, that in view of applicaiionsto signal analysisandimaging,
the Hil bert spaceHo, i.e., L?(R), is most commonly used.

A formulafor traces of locdization operators for the modified Stockwell trans-
formsisgiven in the foll owing theorem.

THEOREM 10. Let ¢ be as given in (4) and (5). Then for all functions F
in LY(R x R), the trace tr(Lg4) of the trace dasslocalization operator Lg 4 : Ha —
Hy, 0 <s< oo isgiven by

tr(L2g) = 5 H¢HH / / F(b,)dbE.

Proof. By Theorem 3, Lemma 1 and (9), we get
tr(Lgy) = tr(EF~ W)

/// (b,£,8)dbcE do

B 2n||¢||H //szdbdz

asrequired. O

5. Trace dassnorm inequalities

We givein this ssdionaresult onthe trace ¢assnorm inequaliti es for the locdi zaion
operatorsL,E’q, :Hg — Hg, 0<s< o,

THEOREM 11. Let ¢ be as given in (4) and (5). Then for all functions F in
LY(R xR),wegetfor 0<s<

1 1
—————IFollmem) < IR olls < = IF 1),
amiofz, " R RO = omey T

where
2
2
Fob®)= [ [FmE ‘ 0. Teoo)Meeje-2Dg ¢ ), | ddE’

for all binR andg inR\ {0}.

To prove Theorem 11, we note that by Theorem 9, we only need to establi sh the
lower boundfor [[L 4 ||s,. To that end, let usrecdl that by Remark 3,

L|s=¢ = I:If,lpv
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where ) isgivenin (4) and
F(b,&,0) =F(b,&), (bE0)cG
So, by Theorem 4,
1 -
aHFlIJHLl ) < L glls,-
By Lemmal, Theorem 11isproved if we show that

HIELIJHLl(G) = 21|Fy || L1 (rxm)»

where

Fy(b.8.6) = (Le yPa(0.E.O)W.pa(D.EOW) . (BEB)EC

o
This foll ows from the next formula.

THEOREM 12. Under the hypotheses of Theorem 11,
Fy(b, E 0)
2/(a+1)
Te( ’ D/
/ / ‘ 0. Teo-v)Mige-1D5 ¢ ), .

We give two proofs of Theorem 12. The first proof is based on the explicit
Fourier transform of py(b,§,0)W for al (b,&,0) in G and the second ore, in which the
same Fourier transform is gdill a key ingredient, explicaes the use of the underlying
groupstructure.

2
db'dg’.

First proof of Theorem 12. The starting pdnt is the formula
10 (palbEOW (W = e ({1) e, ueR,
foral (b,§,0)inG. So

|(pa(b.€,0)0.pu (b €, 0)),, |
- ‘/i“’a(b@9>¢>A<U><pa<b’,é',6’>w>ﬂ<u>|u|°'du

RIS

|EE/|(G71)/2
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g vz / R (E(H = E/)ei(bb”zvlw 1] %g[*%dv

EI

P (VEI—E/8Y -
bVE(b( T >|v+1| dv

(a—1)/2

I
E b o EM (8/8) lDE /Eq)) ( )|V+ 1|7adV

[

0 l -~
= /ﬁ)@( )(To-t)eMee ) 1D;//§+ ®)MV)[v+ 1 %dv

2/(a+1)
= (d)aT(b*b/)EM(E//E)leEI/E d)) H g1

forall (b,§,0) in G. Hence
Fu(b,&, e)
- / / / F(0,8)|(Pa(b,&,0)W, pa (0, &, 6 ))H, [Pdb dE’ dE’

2/(0+1
- B e \ o 0UEW),
foral (b,§,0) inG, asclaimed. O

2
db d&’

Seaond poof of Theorem12. Since py : G — U (Hy) is a unitary representation of G
onHg, it followsthat

(pﬂ (ba Ev B)QJ, pﬂ (blv Elv el)w) Hq

(W, Pa((b,€,0)71 (1,8, 6)) W),
= (wapd(z(b/_b)7E//Ev(e/_9+b(E/_E))qJ)Ha'

To simplify notation, we let b= &(I/ —b), € = & /& and® = (6/ — 6) + b(&’ — &). Then
by (10),

(Pa(b,&,0)W,pa (D', E, 9’)llJ)Ha
(w.pa(BEBW),
£.8

| 0 (paB.E8W) Wuldu
08 1y 1) (B+DE) iBu"’(afl)/ZT —ap |0
/,m|“| $(u—1)e B ¢(E 1)|u| lu%du
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_ efi(é+5§)|i|(0f*1)/2/m d(u—1)e™p (g - 1) Ju™"du

— e IR ez [ gee (Lt |1 eay

_ e‘f’e*‘(émz)lzl(“*”/z/m@(V)(M,BTl,ng/gcﬁ)(V)|V+1|*“dv

— e R o2 [ ()T M D) v+ -

_ dberi® ) (T e D2/
— e (6.7 Mz ;D ¢)H7M

andthen we can procee asin thefirst proof. O
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CHARACTERISTICINITIAL BOUNDARY VA LUE PROBLEMS
FOR SYMM ETRIZABLE SYSTEMS

Dedicated to Profesor Luigi Rodino onthe occasion o his 60th birthday

Abstract. We mnsider an initial-boundry value problem for alinea Friedrichs symmetriz-
able system, with charaderistic boundry of constant rank. Asuuming that the problem is
L2 well posed, we show the regularity of the L2 solution, for sufficiently smooth data, in the
framework of anisotropic Sobdev spaces.

1. Introduction

We consider an initial boundry value problem for a linea Friedrichs symmetrizable
system, with charaderistic boundry of constant rank. It is well-known that for solu-
tions of symmetric or symmetrizable hyperbadlic systems with charaderistic boundiry
full regularity (i.e. solvability in the usual Sobdev spacesH™) canna be expeded gen-
eraly becaise of the possblelossof derivativesin the normal diredionto the boundary,
see[23,12].

The natural spaceis the anisotropic Sobdev spaceH.", which comes from the
observation that the one-order gain of normal diff erentiation shoud be compensated
by two-order lossof tangential diff erentiation (cf. [4]). The theory has been developed
mostly for charaderistic boundiries of constant multi plicity (seethe definitionin as-
sumption (B)) and maximally nonregative boundary condtions, see[4, 5, 11, 16, 17,
18 19, 21].

However, there ae important charaderistic problems of physicd i nterest where
boundry condtions are not maximally nonregative. Under the more general Kreiss
Lopainski condtion (KL), the theory has been developed for problems satisfying the
uniform KL condtion with uniformly charaderistic boundaries (when the boundary
matrix has constant rank in aneighbahood d the boundxry), see[8, 1] and references
therein.

In this paper we ae interested in the problem of the regularity. We assume
the existence of the strong L2 solution, satisfying a suitable energy estimate, without
asauming any structural assumption sufficient for existence, such as the fad that the
boundary conditions are maximally disspative or satisfy the Kreiss-L opatinski con-
dition. We show that thisis enoughin order to get the regularity of solutions, in the
natural framework of weighted anisotropic Sobdev spaces H", provided the data ae
sufficiently smoaoth. Obviously, the present results contain in particular what has been
previously obtained for maximally nonregative boundrry condtions.

229
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Let Q be an open boundkd subset of R" (for afixed integer n > 2), lyinglocdly
on ore side of its gnoath, conreded boundry I := 0Q. For any red T > 0, we
set Qr 1= Qx]0,T[ and Z1 :=T'x]0, T[; in addition we define Qo := Q X [0,400],
20 1= 0Q x [0,400[, Q:= Q xR and X := 9Q x R. We aeinterested in the foll owing
initial boundiry value problem (written in the sequel IBVP)

(1) Lu= F, in Qr
2 Mu= G, onzxt
(3) U‘IZO = f7 in Qa

where L isthefirst order linea partial diff erential operator
n

4 L=20+ ZA(X,t)OﬁB(x,t),
i=

o :=2,0= a%, i=1,...,nandAi(x,t),B(xt) areN x N red matrix-valued functions
of (x,t), for agiveninteger sizeN > 1, defined over Q.. The unknavn u = u(x,t) and
the data F = F(x,t), f = f(x) are red vedor-valued functions with N comporents,
defined onQr and Q respedively. In the boundiry condtions(2), M isasmooth d x N
matrix-valued function o (x,t), defined on X, with maximal constant rank d. The
boundry datum G = G(x,t) is ad-vedor valued function, defined onZt.

Let usdencte by v(X) := (v1(X),...,Vn(X)) the unit outward normal to I" at the
point x € I'; then

© A = 3 AKDUN) . (D) €.

is the bounday matrix. Let P(x,t) be the orthogoral projedion orto the orthogoral
complement of ker A, (x,t), denoted ker A, (x,t)*; it is defined by

(6) P(x,t) = Zim/c(m(}\A\,(x,t))ld)\, (X1) € S,

where C(x,t) is a dosed redifiable Jordan curve with pasitive orientation in the com-
plex plane, enclosingall and orly al non-zero eingenvaluesof A, (x,t). Dencdtingagain
by P an arbitrary smocth extension onQ,, of the ebove projedion, Puand (I — P)u are
cdl ed respedively the noncharacteristic and the characteristic comporentsof thevec
tor field u = u(x,t).

We study the problem (1)—(3) under the foll owing assumptions:

(A) The operator L is Friedrichs symmetrizable, meaning that for all (x,t) € Q,
there exists a symmetric positive definite matrix Sy(x,t) such that the matrices
S(x,t)A(X,t), i =1,---,n, are dso red symmetric; thisimplies, in particular,

that the symbol A(x,t,&) = E Ai(x,1)&; is diagoralizable with red eigenvalues,
i<1

whenever (x,t,&) € Q,, x RN,
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(B) Theboundry ischaracteristic, with constant rank, namely the boundary matrix
A, is snguar on X, and has constant rank 0 < r := rankA(x,t) < N for all
(X,1) € Z; this asuumption, together with the symmetrizability of L and that I
isconneded, yields that the number of negative dgenvalues of A, (the so-cdled
incoming modes) remains constant on .

(C) kerAy(x,t) C kerM(x,t), for al (x,t) € Ze; moreover d = rankM(x,t) must
equal the number of negative @genvalues of A, (x,t).

(D) Theorthogoral projedionP(x,t) onto ker A, (x,t)*, (x,t) € Z, can be extended
as amatrix-valued C” function ower Q,,.

Concerning the solvahility of the IBV P (1)—(3), we state the foll owing well -posedness
assumption:

(E) Existenceof the L? weak solution. Assumethat S, A € Lip(Q,,) fori=1,....n.
Forall T >0andall matricesB € L™(Qy), there exist constantsyp > 1 andCo > 0
suchthat for all F € L?(Qr), G € L2(Z7), f € L?(Q) there exists aunique solu-

tionu € L?(Qr) of (1)~3), with data (F, G, f), satisfying the following proper-

ties:
i. ueC([o,T|;L%(Q));

i. Pus; €L?(Z7);

iii. foraly>ypandO0< 1 <T thesolution u enjoys the following a priori
estimate

T
&2 u(0)Z g +V | & )]z g o
T

@ + [ & Puaq (1) 7 g,

T (1
<G (IIfIEz<Q>+/O —_— (VHF(I)”Ez(Q)-l-HG(tNEz(m)) dt).

When the IBVP (1)—(3) admits an a priori estimate of type (7), with F = Lu,
G =My, forall T > 0andall sufficiently smooth functionsu, one saysthat the problem
isstrondy L? well posed, see eg. [1]. A necessary conditionfor (7) isthevalidity of the
uniform KreissLopatinski condtion (UKL) (an estimate of type (7) has been oktained
by Rauch [13]). On the other hand, UKL is not sufficient for the well posednessand
other structural assumptions have to be taken into acourt, see[1].

Finally, we require the foll owing technicd assumption that for C* approxima-
tions of problem (1)~(3) ore till hasthe existenceof L2 solutions. This gability prop-
erty halds true for maximally nonregative boundiry condtions and for uniform KL
condtions.

(F) Givenmatrices(S,A,B) € c1(HZ) x c1(HP) x c1(HZ2), whereo > [251]+4,
enjoying properties (A)<(E), let (S, A%, B() be C* matrix-valued functions



232 A. Morandg, P Secchi and P. Trebeschi

convergingto (So, Ai,B) in ¢1(HO) x ¢1(HY) x c1(H2~2) ask — o, and satis-
fying properties (A)—(D). Then, for k sufficiently large, property (E) holds also
for the gpproximating roblems with coefficients (S, A¥ | B®).

The solution o (1)—(3), considered in the statements (E), (F), must be intended in the
sense of Rauch [15]. Thismeansthat for all ve HY(Qr) suchthat vi5, € (A, (kerM))*
andv(T,-) =0in Q, there halds:

/OT<u(t),L*v(t)>dt/OT<F(t),v(t)>dt/ZT(A\,g,v>d0xdt+/Q<f,v(0)>dx,

where L* isthe ajoint operator of L andgisafunction defined onZt such that Mg =
G. Notice dso that for such a we& solution to (1)—(3), the boundiry condtion (2)
makes ense. Inded, in [15, Theorem 1] it is shown that for any u € L?(Qr), with
Lu € L%(Qr), the traceof Ayu on X1 exists in H=%2(Z1). Moreover, for a given
boundry matrix M(x,t) satisfyingassumption (C), there exists another matrix Mo(x,t)
such that M(x,t) = Mo(x,t)Ay(x,t) for al (x,t) € 2. Therefore, for L? solutions of
(2) one has

(8) Mu=G onZr <= MoAuUsz, =G onZr.

In order to studythe regularity of solutionsto the IBV P (1)—(3), thedataF, G, f needto
satisfy some compatibility condtions. The compatibility condtions are defined in the
usual way (see[14]). Given the IBVP (1)~(3), we reaursively define f(" by formally
taking h — 1 time derivatives of Lu = F, solving for df'u and evaluatingit at t = O; for
h=0weset f(O := f. The compatibility condtionof order k > 0 for the IBVP reals
as

P
(9) Z (E) (atpihM)‘t:Of(h) :a{]G‘t:07 Onr, p:O,7k
h=0

In the framework of the precading assumptions, we ae ale to prove the following
theorem.

THEOREM 1. Let me N and s = max{m,[%51] + 5}. Assuime that S, A €
cT(HS), fori=1,...,n, andthat B € ct(H$1) (or B € cr(HS) if m=s). Asume
also that problem (1)—«3) obeys the assumptions (A)—(F). Then for all F € H™(Qr),
GeH™(Zy), f e HMN(Q), with f ¢ H™MN(Q) for h=1, ..., m, satisfying the compat-
ibility condtion (9) of order m— 1, the unique solution uto (1)—(3), with daa (F, G, f),
belongsto c7(H,") andPu; s, € H™(Z7). Moreover u satisfiesthe a priori estimate

20 [lulleram) + Pz lumesr) < C (]l + IF lumgr) + I Gllmesy) )
with a constant Cy, > 0 depending orly on A;, B.
The function spaces involved in the statement abowve (cf. also the asumption

(F)), and the norms appeaing in the energy estimate (10) are introduced in the next
sedion.
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2. Function spaces

For every integer m > 1, H™(Q), H™(Qr) denote the usual Sobdev spaces of order m
over Q and Qr respedively.

In order to define the anisotropic Sobdev spaces, first we need to introduce
the differential operatorsin tangential diredion. Throughot the paper, for every | =
1,2,...,n, thedifferential operator Z; is defined by

Z1:=x101, Zj:=0j,forj=2,...,n.

Then, for every multi-index o = (ay,...,0n) € N", the tangential diff erential operator
Z% of order |a| = 01+ -+ ap is defined by setting

28 =z Z8n

(we dso write, with the standard multi-index notation, % = 83* ...a%n).

We denote by R"} the n-dimensional positive half-spaceR" := {x = (x1,X) €
R": xg >0X = (X,...,%) € R“fl}. For every positive integer m, the tangential
(or conarmal) Sobdev spaceH{,(R"} ) andthe anisotropic Sobdev spaceH"(R'} ) are
defined respedively by:

(11) HE(RY) == {we LA(RY) : Z°we L(RY), [af <m},
(12) HM™RT) := {we L(R?) : z%kwe L2(R"), |a|+ 2k < m},

and equipped respedively with narms

(13 HW|||2-|{Qn(]RQ) = HZGWHEZ(RQ)’
la[<m

(14 WlEmgn) =Y ||Zaa§W||EZ(R1)~
|a|+2k<m

To extend the definition of the ebove spaces to an open bounad subset Q of R"
(fulfilling the asumptions made & the beginning o the previous sdion), we pro-
ceal as follows. First, we take an open covering {U;}}_, of Q such that U;nQ,
j=1,...,1, are diffeomorphic to B, := {x; > 0, |x| < 1}, with " correspondng to
0B, = {x1 =0, |X| <1}, andUp CC Q. Next we chocse asmooth partition o unity
{W;},_o subardinate to the covering {U;}._,. We say that a distribution u belongs to
HE,(Q), if and orly if Youc H™(R") and, foral j=1,...,I, yjue HE (RY), inlocd
coordinatesinUj. The spaceH/3,(Q) is provided with the norm

|
(15 ||U||z|{gn(o) = H‘-IJOU”am(Rn) + leleUHﬁgnm)-
J:

The anisotropic Sobdev spaceH["(Q) is defined in a completely simil ar way as the set
of distributionsuin Q such that You € H™(R") andyju € HM(RY ), inlocd coordinates
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inUj, foral j=1,...,1; itisprovided with the norm
2 2 I 2
(16) [ullfim(q) == lWoullfymgn) + JZlIIlIJJUIIHmM)-

The definitions of H3,(Q) and H"(Q) do na depend onthe choice of the cordinate
patches {UJ} _pandthe oorrespond ng pertition of unity {y; }J o ahdthe normsaris-
ing from dlfferent choicesof Uj, ; are equivalent.

For an extensive study o the anisotropic Sobdev spaces, we refer the reader to
[24], [20Q]; here we just remark that the continuousimbeddings

Ht’é‘n(Q) = Hfén(QL HMQ) = HP(Q), Ym>p>1,
17 HM(Q) = H(Q) = HEy(Q), vm=>1,
HMQ) = HM™2(Q), HNQ) = Hn(Q)
hald true. For the sake of convenience, we dso set HO(Q) = H2,(Q) = L2(Q). The
spaces H3,(Q), HM(Q), endaved with their norms (15), (16), become Hil bert spaces.
Analogously, we define the spaces H,,(Qr) and H'(Qr).

Let C™([0, T]; X) denote the set of all m-times continuously diff erentiable func-
tions over [0, T], taking valuesin a Banach spaceX. We define the spaces

c1(Hian) = ﬂC‘ (0, THHE Q). cr(HM == (NCI(0,TEHM (@),
j=0 j=0

equipped respedively with the norms
Jul2 com [0 2 o -

cor 0O o

T Htan ’
(18
Jull2

m
=™
m
CTHm' Z

For theinitial datum f we set

m
2 . Mz
1= 5 1

3. Thescheme of the proof of Theorem 1

The proof of Theorem 1 is made of several steps.

In order to simplify the forthcoming analysis, heredter we only consider the
case when the operator L has anooth coefficients. For the general case of coefficients
with thefinite regularity prescribedin Theorem 1, werefer thereader to [9]; thiscaseis
treaed by areductionto the smoath coefficients case, based uponthe stabilit y assump-
tion (F). Thus, from now on, we sssume that S, Aj, B are given functionsin C*(Q,,).
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Just for simplicity, we even assume that the mefficients A; of L are symmetric matrices
(in this case the matrix S reduces to Iy, the identity matrix of size N); the case of a
symmetrizable operator can be eaily reduced to this one, just by the gpplicaion o the
symmetrizer § to system (1) (see[9] for detail s).

Below, we introduce the new unknawn uy(x,t) := e Mu(x,t) and the new data
Fy(x,t) := e MF(x,t), Gy(x,t) = e MG(x,t). Then problem (1)—(3) becomesequivalent
to

(y+Luw =K inQr,
Uy|t=0 =f inQ.

Let us now summarizethe main steps of the proof of Theorem 1.

1. Wefirstly consider the homogeneous IBVP

Uy |t=0 =0 inQ.

We study (20), by reducingit to a stationary boundxry value problem (see(26)),
for which we deducethe tangential regularity. From the tangential regularity of
this gationary problem, we deducethe tangential regularity of the homogeneous
problem (20) (seethe next Theorem 2).

2. We studythe general problem (19). The anisotropic regularity, stated in Theorem
1, isobtained in two steps.

2.i Firdtly, fromthetangentia regularity of problem (20) above, we deducethe
anisotropic regularity of (19) at order m= 1.

2.ii Eventually, we obtain the anisotropic regularity of (19), at any order m> 1,
by an induction argument.

3.1. The homogeneous IBVP. Tangential regularity

In this sdion, we mncentrate on the study o the tangential regularity of solutions
to the IBVP (19), where the initial datum f isidenticdly zero, and the compatibility
condtions are fulfilled in a more restrictive form than the one given in (9). More
predsely, we consider the homogeneous IBVP (20) where, for a given integer m> 1,
we ssume that the data Fy, Gy satisfy the foll owing condtions:

(21) OFyt—0=0, 0'Gy1—o=0, h=0,...,m—1.
One can prove that condtions (21) imply the compatibility condtions (9) of order
m—1,inthe cae f = 0.
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THEOREM 2. Assumethat A, B, fori=1,...,n, areinC”(Q,), andthat prob-
lem (20) satisfies assumptions (A)—(E); then for all T > 0 andm € N there exst con
stants Cy > 0 andym, with ym > ym-1, such that for all y > yn, for all F, € H3,(Qr)
and dl Gy € H™(>1) satisfying (21) the unique solution u, to (20) belongsto HR,(Qr),
the trace of Puy on X1 belongsto H™(Z1) andthe a priori estimate

1
22 YIwllEm or) +IPYis Emy) < Cm(\—/||Fv||ﬁtg'n(QT) + HGVHam(zT))
isfulfilled.

The first step to prove Theorem 2 is reducing the original mixed ewolution problem
(20) to a stationary boundxry value problem, where the time is allowed to span the
wholered line and it is treaed then as an additional tangential variable. To make this
reduction, we extend the data F,, Gy and the unknowvn uy of (20) to all paositive and
negative times, by following methods gmilar to those of [1, Ch.9]. In the sequel, for
the sake of simplicity, we remove the subscript y from the unknowvn uy and the data
Fy, Gy.

Becaise of (21), we extend F and G through] — 0, 0], by setting them equal
to zero for al negative times; then for timest > T, we extend them by “refledion”,
following Lions-Magenes [7, Theorem 2.2]. Let us denote by F and G the resulting
extensionsof F and G respedively; by construction, F € H7, (Q) and G € H™(S).

Aswe did for the data, the solution u to (20) is extended to all negative times,
by setting it equal to zero. To extend u also for timest > T, we exploit the assumption
(E). More predsely, for every T’ > T we consider the mixed problem

(Y+Lu =Fpr inQr,
(23) Mu = GHO,T’[’ onZys,
U‘ t=0 - 0, in Q

Assumption (E) yields that (23) admits a unique solution urs € C([0,T'];L?(Q)), such
that Puy/ € L2(Z7/) andthe energy estimate

HUT’ (T/)HEZ(Q) +VHUT’ HEZ(QT,) + HPUT/ | Zq HE?(ZT/)

24 L o "
< (S1Fi0ilEagp + IS10m s, )

is stisfied for all y>y and some constantsy > 1 and C' > 0 depending orly on T’

(andthe norms [|Ail[Lipqp)» IIBllL=(@p)-

From the uniquenessof the L? solution, we infer that for arbitrary T > T’ > T
we have upr = uys (Ut = u) over |0, T’[. Therefore, we may extend u beyond T, by
settingit equal to the unique solution o (23) over |0, T'[ for all T/ > T. Thuswe define

) TLVT >T
(25) d(t) - Ur (t)7 vt 6]07 [a v > 3
0, Vt<O.
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Sinced, F, G are dl i denticdly zero for negative times, we can take abitrary smooth
extensions of the wefficients of the differential operator L and the boundary operator
M (originaly defined on Q. and Z.,) on Q and X respedively, with the only care to
preserverank A, =r andrank M = d and kerA, C kerM for al t < 0. Thisextensions,
that we fix once and for all, are denoted again by A;, B,M. Moreover, we denote by L
the correspondngextension onQ of the diff erential operator (4).

By construction, we have that U solves the boundiry value problem (BVP)

(y+Lu = F inQ,
(26) Mu = G, onZ.
Using the estimate (24), for all T’ > T, and ndicing that the extended data F, G, as
well as the solution 4, vanish identicdly for larget > 0, we derive that U enjoys the
following estimate

o o (1 . o
@7 VI g + 1Py < C (S Ra g+ I61Ea )

for all y >, and suitable onstantsy > 1, C > 0.

For the sake of simplicity, in the sequel we remove the superscript from the
unknawn U and the data F, G of (26).

The next step isto move from BVP (26) to asimilar BVP posed in the (n+ 1)-
dimensional positive half-spaceRT™ := {(x1,X,t) : X1 > 0, (X,t) € R"}. To make
this reduction into a problem in Rfrl, we follow a standard locdization procedure of
the problem (26) nea the boundxry of the spatial domain Q; thisis dore by taking a
covering {U,-}'J-:0 of Q and a partition o unity {Lle}'j:O subardinate to this covering,
asin Sedion 2 Asumingthat ead patch Uj, j = 1,...,1, is aufficiently small, we can
write the resulting locdized problem in the form

(y+Lu = F inRY
(28) Mu = G onR".

3

As a mnsequence of the locdizaion, the data F and G of the problem (28) are func-
tionsin H (RT) and HM(RM) respedively; without lossof generdlity, we may also
assume that theforcingterm F andthe solutionu are suppatedinthe set B, x [0, 4o,
and the boundxry datum G is suppated in dB, x [0, +oo[. In (28)1, L isnow adiffer-
ential operator in R™1 of the form

(29) L=0d+ _im (x,1)di +B(x.t),

where the wefficients A;, B are matrix-valued functions of (x,t) belongngto the space
Clp) (R4 of therestrictionsonto R of (matrix-valued) functionsin Cg (R™1). Let
us remark that the boundary matrix of (28) isnow —Ay | (x,—oy- It isa aucia step that

the previoudly described locdizaion processcan be performed in such a way that Ay
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has the foll owing Hock structure

Al AL

where A'l",A'l’II ,Ag",Ag’" are respedively r xr, r x (N—r), (N—r) xr, (N—r) x

(N —r) sub-matrices. Moreover, A'l’I (x,t) isinvertible over the suppat of u(x,t) and
we have
(31) Al =0, Al'=0, A" =0 in {x=0}xR,
In view of assumption (C), we may even assume that the matrix M in the boundiry
condtion (28), isjust M = (I4,0), where I isthe identity matrix of sized. According
to (30), let us decompose the unknavnu asu = (u',u"); then we have Pu = (u',0).
Following the aguments of [3], one can prove that a locd courterpart of the
global estimate (27), asociated to the stationary problem (26), can be atached to the
locd problem (28). More predsely, there exist constants Cy > 0 and yp > 1 such that
for al ¢ € L2(RT1), suppatedin B x [0, 4], such that Ld € L2(RT) andy > vo,
we have

V||¢|||_z Rn+1 +||¢ | (= O}|||_2 RN)

(32 )
o S0+ L0z, + MO o1 P )

Regularity of the stationary problem (28)

The analysis performed in the previous ®dion shows that the tangentia regularity of
the homogeneous IBVP (20) can be deduced from the study o the regularity of the
stationary BV P (28).

For this dationary problem, we ae aleto show that if the dataF and G belong
to HT,(RT1) and HM(R™) respedively, and the L? a priori estimate (32) is fulfilled,
then the L? solution o the problem (28) belongs to HT,(RT™), the traceof its non-
charaderistic part u' belongsto H™(R") and the estimate of order m

(33 VHUH m (&™) Ul oy lfiman) <Cm( HFH m (R +||G||HmR"))

is stisfied with some constantsCry, > 0, ym > 1 andfor all y > ym.

Then we recover the tangential regularity of the solution u to problem (26),
posed on Q = Q x R, and we find an associated estimate of order m analogots to
(33). Recdling that the solution u to (26) is the extension o the solution uy of the
homogeneous IBVP (20), from the tangential regularity of u we can now derive the
tangential regularity of uy, namely that u, € HZ,(Qr) and Puy s, € H™(Z1). To get
the energy estimate (22), we observethat the extended dataF and G are defined in such
away that

IFlnm @ <ClIFlhm©r):  IGlamz) < ClIGyIumes;y)
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with paositive constant C independent of Fy, Gy andy.

In order to prove the annourced tangential regularity of the BVP (28), we aapt the
clasdcd technique of Friedrichs mollifiers to our setting. More predsely, following
Nishitani and Takayama[10], weintroduce a ‘tangential” mollifier J well suited to the
tangential Sobdev spaces. Let x be afunctionin CS°(R“+1). Foral 0<e <1, weset
Xe(y) := &~ (M Dx(y/e). We define J : L2(RT™) — L2(RTHY) by

(39 JeW(X) := /IR n+1w(xle*yl,x’ —y)e Y12 (y)dy,

which differs from the one introduced in Rauch [15] by the fadtor e Y1/2, Using J; we
follow the same lines in Tartakoff [ 22], Nishitani and Takayama[10] to get regularity
of the we& solutionu.

Starting from a dasdcd charaderizaion o the ordinary Sobdev spaces given
in [6, Theorem 2.4.1], the following charaderization of tangential Sobdev spaces
HZ,(RT) by means of J; can be proved.

PROPOSITION 1. Assumethat x € C (R"1) satisfies the foll owing conditions:
(39 X(&) =O([g|") as¢ — 0, for somep € N;

(36) X(t&) =0, forallt e R, implies§ = 0.
Then for all m e N with m < p, we havethat u € H (RT™) if and orly if

a. ue HE (R,

1 -1
b. / ||Jsu||iz(R,H1)e*2m (1+ S—i) % isuniformly bounced for 0 < & < 1.
0 +

In view of Propasition 1, showing that the solution u € H{Z, 1 (RT™) of (28) adually
belongs to HT,(RT1) amourtsto provide auniform bound with resped to 3, for the
integral quantity appeaingin b., computed for the molli fied solution Jsu. To get this
bound the schemeis the foll owing:

1. We naticethat J:u solvesthe following BVP

37) (Y+L)Ju=JF + L, &Ju, inRT*,
MJEu=Gg, onR",

where [L,Je] is the commutator between the operators L and J, and G is a
suitable boundry datum that can be computed from the original datum G and
the functionxe involved in (34) (see[9)]).

2. Sincethe BVP (37) is the same & (28), with data J;F + [L, JeJu and G¢, the L2
estimate (32) applied to (37) gives that the L2 norm of J.u can be estimated by

V96Ul g3y + 1960 540y 2

39) 1
<G (9||JsF - (L Ul e + |G8||52<R“>) :
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3. From the preceding estimate, we immediately derive, for the integral quantity in

b. andthe analogousintegral quantity associated to thetraceof noncharaderistic
part of the solution, the following bound

1 -1
_ & de
V[ IR0, a2 (14 5) %
1
2 de
+/ 19et oy P22 (14 5) L

19
(39) <Gy ( [ 1012, e (14 2)

2 &) tde
42 LIl g (14 5)

! - 2\ "lde
+ ) 1Gelganz ™ (14 %) ?)'

SinceF € HT (RT) andG € HM(R"), thefirst andthe last integralsintheright-
hand side of (39) can be estimated byHFH m (R and HGHHm R) respedively.

It remains to provide auniform estimate for the middle integra invalving the
commutator [L, Je]Ju. For this term we get the foll owing estimate

1

_ d

L0, 2 (14 5)

1

d

(40) <c/ 3eulZ e 2 (1) E
HOPIUIZ g 1 g, + CIF Iy i

The estimate (40) is obtained by treding separately the diff erent contributionsto
the commutator [L, Js] asociated to the diff erent termsin the expresdon (29) of
L (see[9] for detail 5). The terms of the the commutator involving the tangential
derivatives [Ai0;, J], fori = 2,...,n (nate that [d;,J¢] = 0) and the zeo-th order
term [B, J¢] are estimated by uising[10, Lemma9.2]. Theterm [A101, J], involv-
ing the normal derivative 01, needs a more caeful analysis, to estimate it, it is
essential to make use of the structure (30), (32) of the boundary matrix in (28).

Actualy, by inverting Al in (28);, we can write 41U as the sum of spacetime
tangential derivatives by

01U = AZu+R,

n |
AZu= —(AH)1 <6u'+ A-Z-u) + A oqut
! { h ,Zz iZj 1
R=(A}')"1(F —yu—Bu)".

Here, we use the fad that, if a matrix A vanishes on {x; = 0}, we can write
Ad1u = HZyu, where H is a suitable matrix; this trick transforms some normal
derivativesinto tangential derivatives.

where
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Combiningtheinequaliti es (39) and (40), and arguing byfiniteinduction onmto
estimate || uHth;El(RTl) in theright-hand side of (40), we get the desired uriform
bounds of the integrals

1 -1
2 —2m 3\ ~de
J 13eulz e (14 )

1 -1
| 2 -2 3\ Tde
/O HJSU‘{Xlzo}HLZ(Rn)S m (]—Jr g) &

appeaingin the left-hand side of (39). From this, in view of Propasition 1and
[6, Theorem 2.4.1], we conclude that u € HT (RT) and u' € H™(R"). The a
priori estimate (33) is deduced from (39), by foll owing the same aguments.

3.2. Thenonhomogeneous IBVP. Casem=1

For nonhamogeneous IBV P, we mean the problem (1)—(3) wherethe initial datum f is
different from zero.

As annourced before, we firstly prove the statement of Theorem 1 for m= 1,
namely we provethat, under the essumptions (A)—(F), forall F ¢ H1(Qr), Ge H(Z7)
and f € HY(Q), with (1) € L%(Q), satisfying the compatibility condtionM_ofjaq =
Gjt—o, the unique solution u to (1)~3), with data (F,G, f), belongs to cr(HY) and
Pus, € HY(=1); moreover, there exists a constant C; > 0 such that u satisfies the a
priori estimate

(4D ey IPUsy ey <Co (Tl +IF Iz o)+ Gz )-

To this end, we gproximate the data with regularized functions stisfying ore more
compatibility condtion. In this regard we get the following result, for the proof of
which we refer to [9] and the references therein.

LEMMA 1. Asaume that problem (1)—(3) obeys the assumptions (A)—(E). Let
F eHX(Qr), GeH(Zr), f e HY(Q), with (1) € L2(Q), suchthat Mo fjaq = Gy—o.
Then there exst i € H3(Qr), Gk € H3(Z1), fi € H3(Q), such that Myi_o fk = Gy
Mo+ Mi—o " = 8:Gyro 0NOQ, andsuch that Fy — F in H1(Qr), Gk — Gin
HL(S7), fc — finHY(Q), f1P — 1 inL2(Q), ask — +o.

Giventhefunctions g, Gy, fk asin Lemma 1, wefirst cdculate throughequation
Lu = R, U—g = fi, theinitia time derivatives fk(l) € H?(Q), fk<2) € HY(Q). Thenwe
take afunctionwy € H3(Qr) such that
1 2
Wit—o = fk, OtWit—o = fé ), O Wigr—o = f|£ )
Noticethat thisyields

(42 (Lwk)jt—0 = Fxt=0, 0t (Lwi)t—0 = 0tFq—o-
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Now we look for a solution uy of problem (1)—(3), with data F, Gy, fk, of the form
Uk = Vi + Wk, where v is lutionto

Lvk = R — Lw, in Qr
(43) Mvy = Gy — Mwy, onzt
Vk\t:O =0, in Q.

Let us denote again Uy, = e uy, Viy = e Vv and so on Then (43) isequivalent to

(Y+L)Viy =Ry — (Y+ L)Wy,  inQr
(44) Mviy = Giy — Mwiy, on St
ka‘tzo = 07 in Q.

We eaily verify that (42) yields
(Fy— (Y4 L)wiy) t=o=0, O (Fy— (Y4 L)wiy) t—0 =0
andMi—ofiaa = Gyi=0, tMji=0fiao +Mji—o fé‘la)g = 0tGyr—o yield
(Gky — MWiy)jt—0 = 0, 8t(Gky — MWy)ji—0 = 0.

Thus the data of problem (44) obey condtions (21) for h = 0,1; then we may apply
to (44) Theorem 2 for y large enoughand find vik € HZ,(Qr), with Pvs, € H?(Z7).
Accordingly, we infer that uy € H3,(Qr) < cr(H2) and Puys, € H2(Zr). Moreover
Uk € L2(Qr) solves

Luk = F, in Qr
(45) Mu, = Gy, on >t
Uyt=0 = fk, in Q.

Arguing as in the previous sdion, we take a ®vering {Uj}lj:O of Q and a related
partition o unity {qu}'j:O, and we reduce problem (45) into a correspondng prob-
lem posed in the positive half-spaceR", with new data F, € H3(R" x]0,T|), Gk €
H3(R"™1x]0,T]), fk € H3(R"), and boundry matrix M = (14,0). We dso write
the similar problem solved by the first order derivatives Zuy = (Z1Uy, .. .,Zn+1Uk) €
Hin(Qr) = HY(Qr) (Where Zn, 1 = d;). Since @umption (E) is sttisfied, applying
the apriori estimate (7) to a diff erence of solutions u, — ug of those problems readily
gives
[[Uic = Unll o 2y + IP(U= Un) sy [[H1csq)

< C (11— fulllze + IFc= Fullu o) + 1= Gnllrzy) )

From Lemma 1, we infer that {uc} is a Cauchy sequencein cr(H}) and {Puys, }
is a Cauchy sequencein HY(Zt). Therefore there exists afunctionin ¢ (H2) which
is the limit of {ux}. Passng to the limit in (45) as k — o, we seethat this function
is a solution to (1)«(3). The uniquenessof the L? solution yields u € ¢7(H}) and
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Pus; € H1(Zr). Applyingthe apriori estimate (7) to the solution uy of (45) and its
first order derivatives, and passng to the limit finally gives (41). This completes the
proof of Theorem 1 for m= 1in the cae of C” coefficients. Aswe drealy said, here
wedo nd ded with the cae of lessregular coefficients, for which thereader isreferred
to [9, Sed. 5].

3.3. The nonhomogeneous IBVP. Proaof for m> 2

Without entering in too many details (we still refer to [9, Sed. 6] for a more exten-
sive discusson), we briefly describe the diff erent steps of the prodf, for the reader’'s
convenience

We proceal by finite induction onm. Asaume that Theorem 1 is valid upto
m—1. Let f e HM(Q), F € HM(Qr), G € H™(Z7), with £ € HM™k(Q), with k =
1,...,m. Asaume dso that the compatibility condtions (9) hold at the order m— 1. By
the inductive hypathesis there exists a unique solution u of problem (1)—(3) such that
ue cr(HML).

In order to show that u € ¢t (HJ"), we have to increase the regularity of u by
order one, that is by ore more tangential derivative and, if mis even, aso by ore
more normal derivative. This can be dore asin [16, 17], with the small change of the
elimination o the auxili ary system (introducedin [16, 17]) asin[2, 19]. At every step,
we can estimate some derivatives of u throughequations, where in the right-hand side
we can pu other derivativesof u that have dready been estimated at previous deps. The
reason why the main ideain [16] works, even though lere we do nd have maximally
nonregative boundxry condtions, is that for the increase of regularity we cmnsider the
problem of the type of (1)—(3), solved by the purely tangential derivatives, where we
can use the inductive asssumption, and aher systems of equations lved by the mixed
tangential and namal derivatives where the boundiry matrix vanishes identicdly, so
that no boundry condtionis needed and we can apply an energy method, uncer the
assumption o the symmetrizeble system.
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Sewnd Conf. Pseudo-Differential Operators

P. Wahlberg

A TRANSFORMATION OF ALMOST PERIODIC
PSEUDODIFFERENTIAL OPERATORS
TO FOURIER MULT IPLIER OPERATORS
WITH OPERATOR-VALUED SYMBOLS

Dedicated to Profesor Luigi Rodino onthe occasion o his 60th birthday

Abstract. We present results for pseudodfferential operators on R whose symbal a(-,%)
is almost periodic (ap.) for eah & € RY and helongs to a Hérmander classsgfa. We study

alinea transformation a — U (a) from a symbad a(x,§) to a frequency-dependent matrix
U(a)(&) v, indexed by (A,\') € A x A where A is a ourtable set in RY. The map a —
U (a) transforms symbasof a.p. pseudodfferential operatorsto symbalsof Fourier multiplier
operators ading on \edor-valued function spaces. We show that the map preserves operator
positivity and identity, respeds operator compasition and respeds adjoints.

1. Introduction

The paper concerns pseudodfferential operators (abbreviated to WDO) on R in the
Kohn-Nirenberg quantization, where the symbadl a(-,&) is aimost periodic (ap.) for
eath & € RY, and belongs to a Hérmander cIa.ssSm This ymbad classis denoted
APS“ and the crrespondng orerators are cdled ap pseudodfferential operators.
We studythe symbal transformationa — U (a) given by

U (@) (E)rn = Mx(a(x,& — ) 2N -N))

where My denates the mean value functional of a.p. functions. This transformation
was introduced, for operator kernels rather than symbals, by E. Gladyshev [4, 5], for
the purposes of stochastic processs. The mnredion between stochastic processes
and ogerator theory originates from the fad that the so-cdl ed covariancefunction of a
stochastic processis the kernel of a positive operator. Gladyshev studied a particular
classof stochastic processs cdled almost periodically correlated, which means that
the symbad of the covarianceoperator is amost periodic in thefirst variable.

The dement U (a)(§) can be considered a matrix indexed by (A,A") € A x A
where A C RY is the courtable set of frequencies that ocaur in {a(-,€)}gcga. Thus
U (a)(&) isan operator that ads between sequencespaces andthefunctiong — U (a)(&)
may be considered the operator-valued symbadl of a Fourier multi plier operator denoted
U(a)(D).

Let a € APSF:6 and let 12 be the spaceof sequences (X )xca Such that the

247
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weighted nam

1/2
X[z = (Z (1+ |}‘|2)S|X)\|2)
AEN

isfinite. Using results by M. A. Shubin, we first observe that the norm of the operator
a(x,D) : HS(RY) — HS"™(RY) is equal to the norm of a(x, D) : H3(RY) - HS"M(RY)
for any s€ R. Here HS(RY) denotes the dassca Sobdev Hilbert space and HS(RS)
denates the Sobdev—Besicovitch spaceof a.p. functions, completed from the trigonc
metric polynomialsin the norm

1/2
HfHHSRd = (1+|)‘|2)s|f)\|2 )
(Rg)

AeRd

where f) = M( f(x)e~2™}) jsthe Bohr—Fourier coefficient of an a.p. function f. Then
we prove that the norm of the matrix U (a)(0) : 12 — 12_, is boundd by the norm of
the operator a(x,D) : HS(RS) — HS™(RY). We dso show that a(x,D) is positive
on .7 (RY) if and orly if it is positive on the trigonametric polynomias on RY and
a(x,D) = 0onTP(A) if and orly if U (a)(0) is a positive definite matrix. Thus much
information abou the operator a(x, D) can berea off fr om the evaluation of the matrix
symbal U (a) at the origin.

We provethat U (a) () isa continuowstransformation|2 — 12 for any & € RY,
andthemap RY 5 & — U(a)(§) € £(12,12 ) is continuows. Moreover, U (a)(D) > 0
if a(x,D) > 0. The latter result on preservation of pasitivity was proved by Gladyshev
[5] for uniformly continuous operator kernels. Here U(a)(D) ads on vedor-valued
function spaceslike .7 (RY,12). Then we show our main result that the transformation
a— U(a) respeds operator composition. More predsely, dencte the symbal prod-
uct, correspondng to operator composition, by a(x,D) o b(x,D) = (a#b)(x,D). If
ac APS;% andb e APS;%, my, M € R, then we have

U (arob) (&) = U (a)(&) -U (b)(§).

Finally, we prove that the requirement that the symbal is amost periodic in the first
variable is invariant under a common family of quantizations that is defined using a
parameter t € R. The family includes the Kohn-Nirenberg (t = 0) and the Weyl (t =
1/2) corresponcences.

In conclusion, the transformationa — U (a) isalinea, injedive map that pre-
serves operator identity, positivity, adjoint and compasition. In the proofsof our results
we use mainly results by Shuhin[9, 10, 11, 12].

In scaar-valued functionspaces, translation-invariant (or convdution ar Fourier
multi pli er) operators commute, but for vedor-valued function spaces, the product in C
is replaceal by the matrix product, so trandation-invariant operators are not commu-
tative. The transformation a(x,D) — a+ U(a)(D) transfers the non-commutativity
of almost periodic pseudodfferential operators with symbals in 8235 into the non
commutativity of the matrix product.



Transformation dof a.p. WDO to Fourier multipliers 249

A brief comment on some parts of the literature on a.p. pseudodfferential op-
eratorsfoll ows. Coburn, Moyer and Singer [1] devel oped an index theory for pseudod
ifferential operators on RY with almost periodic principal symbol. Shubin has made
many important contributionsto the theory of partial diff erential operatorswith almost
periodic coefficients and a.p. pseudodfferential operators. For example, he introduced
the Sobdev—Besicovitch spaces[9] and proved the equality of the spedrafor a.p. pseu-
dodfferential operators ading onL?(RY) and the Besicovitch spaceB?(RY), provided
the operator isbounced or elliptic[11, 12).

Lately Turunen, Ruzhansky and Vainikko have worked on pseudodfferential
operators with symbalsthat are periodic in thefirst variable [14, 15, 8]. The operators
may be mnsidered to ad on functions defined onthe torus TY, and the theory of pseu-
dodfferential operators on manifolds may be used. However, the use of Fourier series
representations gives a more dementary and gobal treament.

2. Notation and preliminaries

We use (X) = (1+ |x[%)¥2, x € RY, and the Fourier transform is defined by

~

FHE = Q) = [ fe ey, e ®),
R
For amultiindex a = (ay,...,0q), we define the partial diff erential operator

019/ f (x)

d
e R".
o1 Oq
0xq* -+ - 0%y

0% f(x) =03 f(x) =

We use C for a generic positive constant that may vary over equdlities and in-
equaliti es, we denate by C™(RY) the spaceof functions such that 8% f is continuowsfor
la| < mandC* = N,,,C™ isthe spaceof smooth functions. The symba C,(RY) stands
for the spaceof continuows and supremum bounced functions, andCff(IRd) isthespace
of functions whaose derivatives of al orders are continuows and bouned in supremum
norm. The spaceof compadly suppated smoath (test) functions is denoted C (RY).
The Schwartz spaceof smooth rapidly deaeaing functionsis denoted . (RY) andits
dual .'(RY) isthe spaceof tempered distributions. A spaceof trigonamnetric polyno-
mialsisdenoted TP(S) and consists of functions of the form

N .
f) =3 ane™™, aeC, &eSCRY
n=1

We will consider functions defined onR® and taking values in a Hil bert or Ba-
nach spaceX, andthen C(RY, X) denotes the spaceof continuous X-valued functions,
and likewise for other function spaces. The spaceof bounded linea transformations
between two Hilbert spacesH andH’ isdenoted £ (H,H’), and £ (H,H) = £ (H). The
operator normis denoted || - || . 1,17y OF || - [| £ (H)-
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A subset Y of a complete metric spaceX is precmpact if it istotally bounced,
which meansthat Y can be covered by afinite union o ballsof radiuse, for any € > 0.
This definitionis equivalent to the property that the dosure of Y is compad.

We define astandard family of symbal classes, the so cdl ed Hormander classes.
More predsely, the following symbal classes are global versions of Hérmander spaces
[3, 6,13].

DEFINITION 1. For me R and 0 < p,d < 1 the space S,;na is defined as the
spaceof all a € C*(R?%) such that

(1) sup (§)mPlal-oFl 5% afa(x,£)| <, o,pe N
x,E€Rd

We impose the condtions
0<p<gl 0<d<l d<p.
Foll owing cornvention, we set §p5 = Nmer S;a and §5 = Umer S;a

The spacesgj6 is a Frédhet spacewith seminorms defined by (1).

We consider the Kohn-Nirenberg quantization o pseudodfferential operators.
A symbal function a defined onthe phase spaceR? gives rise to an operator a(x, D)
acordingto the formula

) a(x,D)f(x) = [ e Va(x &)f(y)dyds, fe.7(RY).

R2

Whenae Sm the correspondng operator classis denoted me For the symbal classes
Sg‘B, the oscnl atory integral (2) is generally not absolutely convergent and shoud be
read astheiterated integral

© axD)f(x) = [ @ ax8)T(E)ce.

In order to extendthe operator to act on ather functionspacesthan . (RY) onemodifies
the definition (2) into

4 a(x,D)f(x) = lim [ (ey) (&)™ Va(x,&)f(y)dydE

e—+0/R2d

where ) € C°(RY) equalsorein aneighbahood d the origin. Integrating by arts we
may rewrite (4) as

axD)f(x) = [ | 0N (14[82) M1 -ag) MaxE)
X (L= )M (L4 [x=y1%) M (y)) dyd,
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where A denctes the normalized Lapladan A = (2m)~2 3§ 9%, which is an absolutely

convergent integral for f € C*(RY) provided that 2M > d and 2N > d + m. By differ-

entiation undér the integral it follows that a(x,D) : C(RY) — CP(RY) continuotsly.

Thisprocedureis dandard and fundamental in pseudo-differential cadculus[3, 6, 13].
For an admissble pair of symbadls a, b we define the symbal product #y by

c=a#hb <= c(x,D)=a(x,D)b(x,D).
We have the foll owing well -known result in the theory of pseudodfferential operators
[3, 6]. The symbol product is a continuows bili near map from S;% X S;% to Sg%*mz,
+
) oS C S

05 SSs 0 MM ER.

3. Almost periodic functions and pseudodifferential operators

We will work with spaces of almost periodic functions [2, 7, 12]. The basic space
of uniform almost periodic functions is denoted CAP(RY) and defined as follows. A
set U ¢ RY is cdled relatively dense if there exists a compad set K ¢ RY such that
(x+K)NU # 0 for any x € RY. An element T € RY is cdled an e-almost period o
afunction f € Co(RY) if sup,|f(x+1) — f(X)| < &. Then CAP(RY) is defined as the
spaceof al f € Cy(RY) such that, for any € > 0, the set of e-almost periods of f is
relatively dense. With the assumption that the uniform almost periodic functionsis a
subspaceof Cy(RY), this original definition by H. Bohr is equivalent to the following
three[2, 7, 12]:

(i) theset of trandations { f (- — X) } . ga IS precompad in Cy(RY);

(i) f=goigwhereigisthe canoricd homomorphism from RY into the Bohr com-
padificaionRY of RY andg € C(RY). Hence f can be extended to a continuous
function onRRY;

(iii) f isthe uniform limit of trigonametric polynomials.

The spaceCAP(RY) isa conjugate-invariant complex algebraof uniformly con-
tinuous functions. For f € CAP(RY) the mean value functional

(6) M(f)= lim T~¢ f(x)dx,
T4 s+KT

whereKr = {xcRY: 0<x; < T, j=1,...,d}, existsuniformly over s€ RY. By My
we understand the mean value in the variable x of afunction o several variables. The
Bohr (—Fourier) transformation[7] is defined by

fy = My(f(x)e72™%), A eRY,

and f, # 0 for at most courtably many A € RY. Theset {A € RY: f, 0} iscdled the
set of frequenciesfor f.
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A function f € CAP(RY) may be reconstructed from its Bohr—Fourier coeffi-
cients (f))aen Using Bochner—Fejér paynomias[7, 12]. We give abrief overview of
theresultswenead. Let B, € RY, n=1,2,..., be arationd basisfor the set of frequen-
ciesA for f. Thismeansthat (Bn)p_, is linealy independent over Q andeadh A € A
can be written

N
A= Z OnBn, Gh€Q,
n=1

with urique coefficients (gn)N_,. Every courtable set A C RY has a rational basis
contained in A [7]. The composite Bochner—Fejér kernel i s defined as

V1] [Vn|
Ko a2~ (o) o
l \V1\<(n!)2,.Z.,\vn\<(n!)2 (n)2 QK

<op(an (e ) 1)

We dencte its coefficients

(n)2

Since (Bn)%_, is linealy independent over Q, and since My (&%) = 0 when A # 0,
we have M(Kpg,  g,) = 1.

For agiven f € CAP(RY) the Bochner—Fejér polynomial of order n is defined

\Y) \% .
(7) Knvi,..vn = (1— %) (1— M), |Vj| < (I’1!)27 1<j<n

by
Pa(F)(X) = My (T(y)Knp,, .. (X—V))
€S) - vel<(n)2em \vn\g(n!)ZKn;Vlwvnf%Bﬁmﬂ”ﬁ? "
><eXp(2TIi (%Bl-ﬁ-""f'%ﬁn) -x).
Itfollowsfrom M(Kpg, p,) =1landKyp, g, (X) = 0[7] that
©) [IPa( )l < ([ flLe

If we define the function onA

Knvy,.un ITA= %[314_ N %Bn, vj| < (n!)z7 1<j<n,

Kn(A) = L :
0 otherwise,

then we may write (8) in shorter form as

(10) Pn(f)(x) = Z Kn(A) €™,

AEN
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We observe that K, (A) hasfinite suppat and 0< Kn(A) < 1. For an arbitrary A € A we
may writefor somen > 0and |vj| < (n')%, 1< j <n,
V]_ Vn
A= HBl-ﬁ-"'-FEBn

_ vi(n4+m)!/nt
~ (n+m)!

vn(n+m)!/nl

Bat (n+m)!

Bn+0-Bnyr+---+0-Bnim,

where m > O isarbitrary. It foll ows that

For nandvs, ..., v, fixed, it follows from (7) that the right hand side gproaches 1 as
m — oo, becaise

_ vil(n+mt/nt Vil

(n+mn2 — 7n!(n+m)!%1

m—o, 1Ljg<n.

)

We may concludethat Kn(A) — 1 asn— +oo, for any A € A.

We state the fundamental approximation result for the Bochner—Fejér palyno-
mias[7, 12]. If f € CAP(RY) then we have the uniform limit

(11 sup [Pa(f)(X) — f(X)] = 0, n— co.

xeRd
Thelimit in (11) holds for any f € CAP(RY) whose set of frequenciesis contained in
.

The next lemma resembles [12, Corollary 2.1]. We give aproof for complete-
ness

LEMMA 1. For a precompact set # € CAP(RY), the li mit
sup |Pa(f)(x) — f(X)] =0, n— o

xeRd

isuniformover f € 7.

Proof. Denaote||-|| = || - ||L~. Dueto the asssumptionthat 7 is precompad, there exists
for ead integer k > 0 afinite set {fk,j}:-\lil C 7 suchthat ||f — fi || < 1/k holdsfor
eath f € ¥ for some j, 1 < j < Nk. Let Ag bethe union o the frequencies that occur
in {fk,j}:-\'il andlet A bethe linea hull over Q of Uy, /Ax. Define the Bochner—Fejér

Let e > 0and pick aninteger k > £~1. Accordingto limit (11) we have || fi j —
Pa(fij)|l < eforal 1< j < N¢if n> N for asufficiently largeinteger Ne. Let f € 7
and pick an fy j suchthat || f — fi j|| < 1/k < €. We have, using (9),

[F=Pa(E)I < 1= Ficill + 1 fij — Pa(ficj) | + IPa(ficj — P
< =Tl + [ iy — Pa(fip) | + [ fij — Tl <38, n>Ne.
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For me N, the spaceCAP™(RY) is defined as all f € C™(RY) such that 0% f €
CAP(RY) for |a| < m, and CAP?(RY) = ey CAPT(RY). Then CAP® = CAPNCY
[12.

The mean value defines an inner product
(12) (f,9)8 =M(fg), f,geCAPRY).
The completion o CAP(RY) in the norm | - ||g is the Hil bert spaceof Besicovitch ap.

functions B(RY) [12].
Inspired by the usual Sobdev spacenorm

R 1/2
b = ( [, 1+ EPPITOPCE )

Shubin [9] has defined Sobd ev—Besi covitch spaces of ap. functionsHS(RY) for s€ R,
as the completion o TP(RY) in the norm correspondngto the inner product

(F.Qnsmg) = Y (148G, f.ge TPRY).
£eRd
The spaces HS(RS) are Hil bert spaces containing TP(RY) as adense subspace HO(RS)
= B?(RY), and ore defines

H™(RE) = (| H(RE), H"(RE) = [JHRY).
seR

seR

We have the inclusion CAP?(RY) ¢ H*(R$), but thereis noresult correspond
ing to the Sobdev embedding theorem for the Sobdev—Besicovitch spaces. In fad,
H*(RY) is not embedded in CAP(RY) [12]. Thereasonis that the frequencies may be
contained in aboundxd set, for example asin

_ 5 1 onigex _
0= 3 Q&% =1
This functionis clealy a member of H*(RS), and if the frequencies {&c}y_, arelin-
ealy independent over Z, then || f||L= = Y 1 1/k= 0 [12].
Next we define the symbol spacesfor almost periodic pseudodfferential opera-
tors.

DEFINITION 2. For me R, the spa(:eAPS‘?5 is defined asthe spaceof all a €
S)'5(R?) suchthat a(-,&) € CAP(RY) for all € € RY. The correspondng oerator class

in the Kohn-Nirenberg quartization is denoted APLg‘5, and its members are clled
almost periodic pseudodfferential operators.

For fixed & € RY, we denote the Bohr—Fourier coefficients of a(-,&) by

(13) ay(8) = (a(-,&))) = My(a(x,§)e ™) gcRI AeRY
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LEMMA 2. Forac APS‘?5 the set of frequencies
A=A@)={AeRY: JEcRY: (&) #£0}
iscourtable.

Proof. Asalready mentioned Ag = {A € RY: a, (&) # 0} iscourtablefor eah & € RY.
Using A = Ugcga /s, it suffices to show that Ugcga As C Ugcga e If A € Ugcra A
there exists € € RY such that ay () # 0. By the mean value theorem we have

(14 ax,§+n)—ax&) = (O2Rea(x,§ +61n) +id2lma(x,§ +62n))-n

where [0, denotesthe gradient in the secondRY variable and 0< 61,0, < 1. It follows
that |ay (§+n) —a(&)| < Mx(|la(x,&+1n) —a(x,&)|) <C|n|. Hencethere exists &’ € Q¢
such that a, (§') # 0. O

Withou lossof generality we may asaumethat A isalinea spaceover Q. Fur-
thermoreit foll owsfrom (14) that 0¢a(-, &) € CAP(R?) for all o € N and€ € RY, since

a &-derivative is a uniform limit of CAP(RY) functions. Thus 6?65a(~,£) € CAP(RY)
foral o, e N9 and& € RY.

LEMMA 3. Suppsea c APS]'; andA € A. Then a, € C*(RY) and
() 0%(an)(8) = () (§), aeN,
(16) (9Fa) (€) = (2riA)Pay(8), BeN.

Proof. By differentiation uncer the mean value we obtain (15). To prove (16), we
integrate by partswhich gives

(08a)x (€) = Mx((3B) (x,E)e 2™)
= My(a(x,&)(~0,)P (e 2™))
— (2riA)Pay (§).

Lemma 3 gives
0%(an) (&) = (0Fa)a(8) = (2mir)P(ogoka)a(§), A #0.
From (13) and Definition 1we thus obtain the estimate

(17) 10%(ay) (8)] < CaN) (@)™ PIAF*  keN, aeNd
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LEMMA 4. If ac APS]'; and f € TP(RY) then

(18) ax,D)f(x) = 5 ™ a(x\)f,

AeRd

Proof. Since f(x) = ¥, f\e?™** isafinite sum we have by the definition (4)

z B lim [ W(ey)w(eg)em ¥ ENa(x §) dydg

e—+0

£—+0

(19) 7213 lim xz)eZT"EX (€8) ( / P(ey)e 2 EN) dy) d¢

=2 lim, [, 2 EFNEPEN (e +2) e D(E/e)dE

Let usdefineg(€) = a(x, & +A)e#™ &N c C*(RY). Usingthefad that [ € 93 (E/€)dE
= (0) = 1weobhtain

400 /g (lE-+N)e (e o) 0
/|g *d|w<z/s|dz+/ 11— W(e(E + M)l 0(E) e IB(E/e) e
— |,10(0) — (e8)I D) [d& + [, 1~ W(e(e& + 1))l |a(e8) |H(E)] .

The integrand o the first term tendsto zeo as€ — O foreah & e RY. For0<e < 1
it isdominated by C(1+ (&)™ (A\)I™)|@(€)| whichisintegrable, so by L ebesgue’'sdom-
inated convergencetheorem the first integral approaches zero as€ — 0. Likewise, the
secondintegral approacheszero as€ — 0, sincetheintegrand approacheszeroase — 0
for ead & € RY, andis dominated by C|§i(&)|(E)I™ (\)!™ which isintegrable. We con-
clude that

lim [ ax &+ A EN (g€ +1))e 9P (E /e)dE = a(x,\)e™*

e—+0/Rd

which inserted into (19) proves (18). O

As Shuhin has shown[9, 12], most of the basic results of pseudodfferential cd-
culuswith symbalsin Sg‘é, such as asymptotic expansions, the formulafor composition
of two operatorsandthe formal adjoint of an operator, are truefor APS’;"'ES, with the con-
clusionthat all i nvolved symbals satisfy a(-,&) € CAP(RY) for al & € RY. In particular
we have[12, Theorem 3.1]: If a € APST andb € APST% then avob € APSTS™™.

We will need threemore results from Shubin’sarticle [12].

THEOREM 1 (M.A. Shubin). LetAe APLg"'5.
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(i) Ifu,ve CAP”(RY) then

(AuV)a = Jim_[Be|*(A(dr). =),

where {pr}r>1 C CT(RY) isa family of functions that satisfy
[ 1 for X <R
R0 = { 0 for |x >R+RX,
1090R(X)| < CaR ™1,

where 0 < k < 1. Here Bg c RY denoates the ball of radius R centered at the
origin and|Bg] its volume.

(i) If ue #(RY) and y = ux* Py € CAP?(RY), where {W}y_, € CAP(RY) are
chosenin a paticular way (see[12, Lemma 4.3]), then

(Au,u) 2 = lim (Au, uk)s.
k—+00

(i) (Al 2ray) = Al B2(ra))-

Theresult (i) isan immediate consequenceof (i) and (ii).
From Lemma4 we seethat (D)Sisaunitary operator from HS(R3) to HO(RY) =
B*(R?), just asin the cae of H3(RY). The well-known result that a € S 5 implies

a(x,D) € £ (L%(RY)) [6] has the foll owing consequence.

COROLLARY 1. Ifac APSEB thenfor anyse R

1206 D)l . (his(re) 1o m(a)) = 1806 D)l 45 s mimg)) < -

Proof. We have

2%, D) ||, (Hs(ray ps-mrayy = sUp - [|a(x, D) f[|pys-mpa)
”f”HS(Rd)<l

= sup [(D)* Ma(x,D)(D)" (D)l 2 ()
H<D>SfHL2(Rd)<1

= sup  [(D)* Ma(x,D)(D) || z(q)
||f”|_2(Rd)<l

= sup (D) Ma(x, D)(D) *f|gz(a)
HfHBZ(Rd)gl

= sup ||a(x,D)f||Hgm(RdB)
Hf”HS(R%)<1

= ||a(X, D) HL(HS(R%),HS*m(RdB))'
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In fad, the fourth equality is Theorem 1 (iii). The finiteness of the operator norm
foll ows from the observation that the symbol

(€)* Mroakn (€) Se Py,

due to (5), and the ebove mentioned L?(RY)-continity for operators with symbal in

p,5’ O

4. A transformation of symbolsfor a.p. pseudodifferential operators
DEFINITION 3. Leta € APS]; andlet A = A(a) dencte the frequencies whose

Bohr—Fourier coefficientsay, are not |dent|cally zero. e set

(20) U@Ewn=ava§=N), ANeEA, EeRY

where a,, (§) isthe Bohr—Fourier coefficient defined in (13).

We note the property

U(@)(@an =U(@)E+MWhiprip HEA.
By Lemma 1 theinverse transformation of a+— U (a), y is

a(x, &) _I|mZKn no(&)eFmAx

n— oo
which converges uniformly in x for ead . For a € ngé the map ar— U (@), y isthus
injedive. '
For fixed & € RY we may look uponU (a)(&) as amatrix,
U(@)(&) = U@ E)anhnen

indexed by (A,A") € A x A. This matrix defines an operator on complex-valued se-
quences defined on/A\, which are denated z = (2, ) e, ac@rdingto

U@)(©&)-2y= 3 U@Ehrrav-
NeA

It follows from (15) that

(21) 02 (U (@))(§) = U (3%a)(&).
Moreover, denating translation by (To —na)(x,§) = a(x, & +n) we have
(22 U(To-n@)(&)an = (To—n@)n-a(E =) =U(@)(E+n)an-

Sincethe operator-valued functionU (a) dependsonthefrequency variableonly,
it may be used to define aFourier multiplier operator for vedor-valued functions ac
cordingto

@3 U@OF (X = [ U @(E)-FE)dE.
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where F (x) = (K (X))aen iSthe vedor-valued function

RY5 x> (F(X))rcn-

Theinner product for vedor-valued functionsis

(F,G)L2(ra2) = (F,G) 2(rd 12(n)) :/ (F (%), G(x))2 dx

Rd

:/Rd Y RGN dx, F.GeL(RY12).

AEN

If the symbal a does not depend onx, i.e. a(x,D) isa Fourier multiplier (convdution)
operator, then @, (&) = 0 when A # 0 followsfrom (13). ThusU (a)(§) isthe pointwise
multi pli er operator

U@)()-2), = z ay-A(E—N)zv =a(§ - Nz =al€ - Nz,
NeN

and

(U@(D)F (X)), = /]R €A ~MR(§)dg = (Tha) (D)F(x).

Thus U (a)(D) ads pointwise in the A variable by a convdutionin x. If a does not
depend ong, then U (a) does not depend ong either, and U (a)) y» = ay_». Thus, in
this case we have

U@ (DFX)), = U(@)-FX)) = Z avAFv (%),
NeN

which is an operator that ads pointwisein x, by a convdution ower theindex set A. In
particular we haveU (1) (&), > = &y _) which denotesthe Kronedker delta. Thismeans
that U(1)(D) = 1.

The aowve discussonis nat predse sincewe have not yet proved in what sense
U(a)(€) is a continuous operator for fixed & € RY, and whether the operator-valued
function& — U (a)(§) is continuows and boundd. Let ustherefore addressthese ques-
tions.

We shall first evaluate the operator-valued function U (a)(§) in the origin. It
will turn out that U (a)(0) contains much information about continuity, positivity and
invertibility of a(x,D). We need the sequence spaces

1/p
(24) 18 =18(N) = {(xmem IXllip = (Z <A>psl><x|p> < w},

AEN

parametrized by s € R and named by || - |[;p where 1 < p < . In some places we

will use the symbal 12 which denotes the spaceof square-summable sequences with
compad suppart.
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ProPOSITION 1. Forac APS‘?5 we havefor anysc R
(29 W@ O, azz ) < 12D, s s-mrg)) < -
Proof. Let f,g e TP(A). Lemma4 gives

(ax,D)f,g)s = 5 Mx(@(x ™)) fg,
(26) = > ayv (M) Hgy

= U(@(0)-f,9)

where f) = f_,. We ebreviate HS = HS(RY). Using the duality (HS)’ = H~S under
the form (-,-)g, we obtain

1% D)l £ sps-my = sup_[|a(%, D) f[ps-m
st

= sup |(a(X7 D)fvg)B|
I flls<L[gllym-s<1

Z sup [(U(@)(0)- f,d)
Hf"‘|52<l~,“g“||%75<1

=[U(a)(0)

022 -

where we denote || f.HIZg = Sa ()| [2. O

Asa mnsequenceof (26) and Theorem 1 (i) and (i) we have thefoll owingresult
on paitivity. Ascustomary we say that A is a pasitive operator onatopdogicd vedor
spaceX if (Af, f)y > O0foral f € X, whereX C H andH isaHilbert space naturaly
asociated with X. (We avoid the requirement (Af, f)y > O for al f € H since the
expresson (Af, f)y may not be well-defined if A is not a bounded operator on H.)
Thisisdenated A > 0 (wherethe spaces X and H are understoodfrom the context). We
will use the following pairs (X,H): (.7 (RY),L2(RY)), (TP(RY),B?(RY)), (12,12) and
(7 (RY,12),L2(RY,12)).

COROLLARY 2. Ifae APS’;‘ES then a(x,D) > 0 on.#(RY) if and ory if a(x, D)
> 00onTP(RY). Moreover, a(x,D) > 00onTP(A) if and ory if U (a)(0) > 0onl2.

The next result gives a continuity statement of the operator-valued map & —
U(a)(&).

PrROPOSITION 2. Iface APS‘I‘.6 then we have

(27) V@@ a2, 1) < C(e)™,
(28) U(a) € C(RY, £ (Iy,17))-
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Proof. Usingtheinequality (x+y)¥ < C(x)U(y)!!, Definition 3and (17) we obtain
U (@) (E)an| <CE-N)M<CE)MN)M.
Hence
IV (@) (&) - Xlh= < C&)™Ixl
which proves (27). To prove (28), we note that
(29) (U(a)(&) —U(@E+n)hn =U(@—To-na)()rn

follows from (22). Thus, by the mean value theorem (14), and again Definition 3and

(17)
(U@E -U@E+n)

(
< Inf[(O2Rea)y_x(§ — N +61n) +i(O21ma)y_» (E — N +62n)|
<CIn| ((E=N+6)™ P4 (E—N'+82n)™P)

<CININ)™P (& +8n)™ P!+ (€ + Bn) ™01
< CIn|(N) ™y Im=Pl gy Im-el

and therefore
1U(@)(€) U@+, 1o
= sup sup|((U(a)(&) —U(@)(&+n)) X
HXH'\an\ <IreA
<Cln|(n)™ Pl (g)m-P
—0, |n|—0.
This proves (28). O
The next result gives a sharpening o condtion (28), since we have I‘lm‘ C I‘zm‘
and I‘Zm‘fm cl>.
ProPOSITION 3. Ifae APS‘I"6 then we havefor anyse R
(30) U@ () e £ ), R,
(31) U(a) eC(Rd,L(|SZ7|527m))

Proof. From (22) we seethat U (a)(§) = U (Tp _¢@)(0). Since Ty _sac APSJ"a for any
& e RY, (30) follows from Propasition 1
In order to prove (31), it sufficesto prove continuity in the origin, since

U(@)(&+n)—-U(@®)=U(To-na)(&) —U(Tona)(0).
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We use (29) and again Propasition 1and Corollary 1, which give
IU(@)(@&) -U@ 0Ol gzi2 ) =V (To—za=2a)(0)l .qzs2
< |[(To—ga—a) (X, D) || - (1is(ret) s m(way)-
In the next step we use
1D, D)l - (Hs(eaty 1s-m(reyy = [[{D)* (%, D)(D) "%l . 1)

forbe ngé, andthefad that the £ (L?)-norm of an operator with symboal in 52‘6 may be
estimated by afinite sum of seminorms of the symbal in Sg‘é (see[6, Theorem 18.1.117]
and[3, Theorem 2.80]). By (5) it thus suffices to provethat

(32 Toz;a—a—0 in S5 as &0
The mean value theorem (14) gives
a(X, n + E) - a(X, r]) = (Dz Rea(X, n + 912) + iDZIma(Xa n + eZE.)) : E,

with 0< 61,6, < 1, sowe have

0808 (To_sa—a)(x.n)
<[g

< C[E| (<n +6,8)™ POy (4 ezz>mfp<\a\+l)+6\m)
< CJE|(&)Im-Plal+1)+318 (ym-p(lal-+1)+8[p]

83080, Rea(x,n + B:€) + 0208 T Ima(x,n + ezz)\

This proves (32), and therefore (31). O
Thefollowingresult concerns positivity.

ProPOSITION 4. Ifac APS‘?5 then we have: a(x,D) > 0 on.7(RY) implies
U(a) (D) = 00on.#(RY,12). Moreover,U (a)(D) > 0on.#(RY,12) impliesa(x,D) > 0
onTP(A).

Proof. Suppasea(x,D) > 0 on.#(RY). For f € .7 (RY) and My, f (x) = €2™1%f (x) we
have, for any n € RY,

0 < (a(x,D)Mp f,Mp f)2(z0)
= /Rzu eZde-(E*r])a(X’E)’\(E . H)dedz
= [ e g+ ) TR T dec
= ((To—n@)(x,D)f, ) 2(ze).-
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Thus (To._na)(x,D) > 0 on.#(RY) for al n € RY. By Corollary 2 and (22) it follows
that U (a)(§) > 0 onl2 foral £ € RY. If F €. (RY,12) we obtain

U@ODF.Fliegese) = [ (U@E)-F(E).FE)pdE >0,

Rd

sincetheintegrandis nonregative everywhere. ThusU (a)(D) > 0 on.#(RY,12).
Suppase on the other hand that U (a)(D) > 0 on.”(R%,12). Let z< 12 and

pick ¢ € CZ(RY) with suppat in the unit ball such that ¢ > 0 and ||§||, 2 = 1. With

be(x) = €792 (x/€) and Fe(X)) = .7 1 (X)2, we then have

0< (U(a)(D)Fe, Fe) 2(ra j2) = /Rd(U (3)(8) -2,2)120¢(§)*dE

— (U(a)(0)-2,2)2, £€—0,

where we have used (31) and the shrinking suppat of ¢¢. ThereforeU (a)(0) > 0 onl?2
which impliesthat a(x,D) > 0 onTP(A) acordingto Corollary 2. O

The previous result is dmilar to Gladyshev's results [4, 5], which were formu-
lated in the framework of almost periodicdly correlated (or cyclostationary) stochas-
tic processes and vedor-valued wegkly stationary stochastic processs. The so-cdled
covariance operator of a second-order stochastic processis a paositive operator, and an
almost periodicdly correlated stochastic processhas a covarianceoperator whase sym-
bal isamost periodic in the first variable. We&kly stationary stochastic processes have
trandationinvariant covarianceoperators, that is, they are convdution (or Fourier mul-
tiplier) operators. Gladyshev showed that the transformation (20), a — U (a), which
he formulated in terms of operator kernels, transforms a uniformly continuots kernel
correspondngto a positive ap. pseudodfferential operator to the kernel of a positive
trangdation-invariant operator ading on \edor-valued function spaces. The kernel of
the operator (2) is

axy) = [, €0 alE)de = (5 a)(xx-y),

understoodas an oscill atory integral. Here %, denotes partial Fourier transformin the
secondRY variable. The study of almost periodicaly correlated stochastic processsis
in many respeds rather similar to the theory of positive ap. pseudodfferential oper-
ators. The symbad classes ngé are however rarely used for stochastic processes. One
usually restricts to operators whose kernels are continuous functions.

The next result concerns composition.

THEOREM 2. Ifae APS;‘}) and be APS;%, mg,mp € R, then
(33 U (a#b)(§) =U(a)(€)-U(b)(§), EeR™

Proof. Let A denotethelinea hull over Q of A(a) UA(b). Accordingto (30) in Propo-
stion 3 U(a)(§) € £ (12,12 ,) andU (b)(§) € £ (12,12 ,,) for any s€ R. Therefore
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the sum

U(@)(&)-Ub)(E)ar = ZAU (@) &)U (0)(&)n
pe

(39 ,
= Z\apf)\(a — Wby (€=
pe

is absolutely convergent for al (A\,\") € A x A, andthematrix U (a)(§) - U (b)(§) maps
12t012 ,, p, cOMtinuotsly for anys€ R andany & € R,

We study the left hand side of (33) by regularizing the symbal b in two steps.
First we pick a test function ¢ € C?(RY) which equals one in a neighbahood d the
origin, set ¢¢(§) = $(€€) and define

be(x,&) =b(x,§)¢e(§) €S 5, O0<e<l
By [6, Propasition 181.2] ¢ — 1in ﬁ,o ase — 0for any 8 > 0. Since mnwvergence
in S , implies convergencein 8’5,5 and be = b#gde, it follows from (5) that b — b in
S’;”%*e ase — 0, and

amob=limasbe in ™, 8> 0.
£ )
Conwvergencein ngé for any m € R implies the uniform convergence

sJp |a#0b(xa E) - a#ObE(Xa E)| - 07 €— Oa

xeRd

for any & € RY, and therefore we have for the Bohr—Fourier coefficients

(39) (a#ob)u(§) = lij(])(a#obs)u(z), pHeERY, EeRY

In the second step we regularize the symboal be. Fix o, € N9 and define the
family of functions # = {999%be(-,€) }gcpa C CAP(RY). Thefamily # depends con-

tinuowsly in the CAP(RY) norm on & by (14), and has compad suppat with resped to
&. Thus 7 is precompad, and by Lemma 1 the Fourier series reconstruction with the
Bochner—Fgjér paynomials

0F 08be (x,€) = lim Pn(6“65b8(~,2))(x)

(39 = lim Z Kn(A) (9§ 05be), (§)e™

is uniformly convergent in bath variables, i.e. in R%. By Lemma 3 we have
(9 9%be)x (8) = 05 (95be) () = (2miA)Pog (be)x (&),

which meansthat we can rewrite (36) as the uniform limit over R%

AEN

(37) 0 ofbe(x,€) = lim of of (z Kn(A )A(z)em*)



Transformation dof a.p. WDO to Fourier multipliers 265

Let us denote, observingthat (be)y (§) = by (§)d(€8),
ben(X,€) = 0(€8) 5 Kn(A)by(§)&™ .

AEA

Thefad that bg (%, -) andbe n(x, -) have suppatin a compad set, commonfor all x € R,
in combinationwith the uniform limit (37), impli es that

sup <E>7m+p‘a‘76‘[3‘

) agaﬁ(b&n(x,é)fbg(x,é)) —0, n— o,
X,E€R'

for any me R. Thisholdsfor any o, € N9, and hencebg n — b in Sg‘é asn — oo for
any me R. Thismeans by (5) that a#be n — a#obg in S‘;‘é asn— o foranyme R. As
above wethusobtain

(38) (a#ob)u (&) = lim lim (a#obe n)u(§), MeRY, EeRY,

£—-0N—
using (35).
Sincethe symbal ¢, (x,&) = €™ Xb, (£)(£&) gives the pseudodfferential op-
erator

(9 oDk = [ "0 E-N0(EE—-N)IE-N T ge S (R,
it foll ows that
a(xD)(c\(x D)9 = [ ™ Fa(x &) F (6 (x D)g) (&)
— [, ™ Cax E)by(E - N (e(E ~N)GE - M) dE
= [ MEMNa(x g+ N)by(E)d(e8)d(E) dE,

Rd
andthus _
a0y (X, &) = a(%,& + A)bx (8) 9 ()™,
This gives _
(atoben) (%, &) = H Kn(A)a(x,E+A)br(& &) (e8)e?,
AeN
Hence
rlwcl(a#ob”) (&) = ¢(€T) I|m z Kn(M)ay_x (E+A)by(&)
(40) = (e8) zau,xzmbx(z),

AEA

dueto 0< Kp <1, Kn(A) = Lasn— oo for al A € A, the absolutely convergent sum
(34), and the dominated convergencetheorem. Now (38) and (40) yield

(a#0b)u(8) = Y aua(E+A)bA(E), MEA, EEeRY
AeN
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Finally we have

U (a#ob) (E)a v = (a#ob)y A (E—N)
= Z\a)\’f)\fu(z — N +pbu(E -\
HE

= 3 2 A&~ Wby y(E-N).

HEA

A comparisonwith (34) completesthe proof. O

To summarizeour findings hitherto, the transformationa — U (a) maps a sym-
bd ae 5 defined onthe phase spaceR? x RY to an operator-valued symba U (a) that

dependsonthefrequency variable € RY only. The operator correspondngto the sym-
bal U (a) ads on sequence-spacevalued function spaces, e.g. . (RY,12). The operator
correspondng to the symba U (a) is thus a convdution (Fourier multi pli er) operator.
The map a(x,D) — U (a)(D) islinea, injedive, preserves identity and pdsitivity, and
respeds operator compasiti on,

a(x,D)b(x,D) — U (a#b)(D) =U(a)(D)-U(b)(D).

Convdution ogeratorsdo nd commute when function spaces are vedor-valued as they
do for scdar-valued function spaces. The transformationa +— U (a) encodes the non
commutativity of a(x,D) and b(x,D) in the matrix product of the symbols U (a) and
U (b). That is, with the notation for the commutator [A, B] = AB— BA, we have

[a(x,D),b(x,D)] — U (a)(D) -U (b)(D) —U (b)(D) -U (a)(D),
where the right hand side operator ads by
[U(2)(D),U(b)(D)IF (%)
= [, &MU @E)-UbB)E) U (b)(E)-U(a)(@)-F(E)dE.
In ou final result we show that the basic assumption o this paper, i.e. that

symbols are dmost periodic in the first variable, is invariant under the quantization.
More predsely, let usintroducethe family of quantizaions

(42) a(xD)f(x) = /R LA - tx+ty, &) f(y) dydg

parametrized by t € R. The Kohn-Nirenberg quantization is obtained for t = 0 and
the Weyl quantization hast = 1/2. The following result says that if an operator is
expressed in two diff erent quantizaions, thenif its symbol isalmost periodicin thefirst
variable in ore quantization, it will have the same property in any other quantization.
In other words, the fad that we have worked in the Kohn-Nirenberg quantizaionis not
essential.
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PrROPOSITION 5. If a € APS"

e STER, s#t, and a(x,D) = bs(x,D), then
b e APST;.

Proof. We use atedhniquethat is smilar to the proof of Theorem 2. If a,b € .7 (R%)
and f € .7 (RY) thentheintegral over & in (41) isapartial Fourier transform, so we get

a(x D)f / Faa((L—t)x+ty,y—x)f(y)dy
:/Rd‘%a (x+ty,y) f(y+x)dy
— //Rzri a(z y)e”™"#Ye? 2% f (y 4+ x) dydz.
Thusif a(x,D) = bs(x, D) we have

(X E) 72Tu (s—t)x: (X E)

which extends by continuity to a,b € .#”/(R?d) [3]. This transformation is often de-
noted [6]

(42) b(x,£) = e 2" VPxPea(x £) := (Ta) (x.).
Accordingto [3, Theorem 2.37], we have
(43) e ZM( DD g s g continuowsly, meR.

Thereforeit sufficesto provethat (Ta)(-,&) € CAP(RY) for all € € RY.

We proceal with aregularization o the symbal a asin the proof of Theorem 2.
Thuslet ¢ € C2(RY) equal onein aneighbahood d the origin, set ¢¢(&) = ¢(£&) and
define a(x,&) = a(x,&)p(£). Thenaz — ain S;‘,ge ase — O for any 6 > 0. By the

continuity (43) we have Tag — Tain ngge ase — 0. Moreover, if we define

SE Z Kn eZTu)\x
AEA
then we obtain agy — a¢ in Sg(é asn— o for any m' € R, asin the proof of Theorem
2. Again bythe continuity (43) it followsthat Tag n — Tag in ngé asn— oo. It follows
that for eat fixed & € RY we have the uniform limits

(Ta)(+,&§) =limlim(Tagn)(:,&).

£—0N—00

Since CAP(RY) is closed uncer uniform convergence|[7], the proof is complete if we
show that (Tagn)(-,&) € CAP(RY) forany & € RY, e > 0andnc N,

We have, since (ag)) (&) = ax (&) (€€),
7 (8en)(N,2) = H Kn(A)B(n)F (ae)r(2),

AEN
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where 8, = 0o(- — A) denates atrandated Diracdistribution. Hencewe have

e (N2 7 (5, = 3 Kn(\)e NI, (). (ac), (2)
AEA
= 5 KaW)&HM)Z (Tt (@) (2)
AEA

and, sinceTa= .7 'M.Z where (Mf)(n,2) = e 2" U12f (5 2),

(Taen)(x.€) = > Kn(A) ae)y) (E)&
AeN

= z Kn(}\)(ag))\(af (S,t))\)ezm';\.x.
AEN

Hence (Tagn)(+,§) isatrigonametric palynomial, becaise the sum isfinite, so we may
conclude that (Tagn)(-,&) € CAP(RY) forany & € RY, e > 0andn € N. O

REMARK 1. We haveworked in the Kohn-Nirenberg quantizationandthetrans-
formationa— U (a). For the Weyl quantization, the correspondng transformationis
a— V(a) where

V(@) = By (z _

With the Wey! product defined by a; /»(x,D)by/2(x,D) = (a#h)1/>(x,D), we then have
V(a#b) (&) =V (a)(§)-V(b)(E), correspondngto Theorem 2. Moreover, V (a) (&) v =
V(@)(&)y 18 V(3@)(&§) =V(a)(&)" where A* denotesthe Hermiti an (conjugate trans-
pose) matrix, which gives V(a)(D) = V(a)(D)*. Sinceay/(x,D) = a1/»(x,D)*, we
obtain as a consequence that the transformation a; >(x,D) — V(a)(D), as well as
a(x,D) — U (a)(D), respeds adjoints.

)\+)\’)
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THE KLEIN-GORDON EQUATION
INANTI-DE SITTER SPACETIME

Dedicated to Profesor Luigi Rodino onthe occasion o his 60th birthday

Abstract. Inthis article, we gply the fundamental solution constructed in a previous paper,
and olain the representation d the solution to the Cauchy problem for the Klein-Gordon
equation Cg@— mP@= f in anti-de Sitter spacdime.

1. Introduction

In this article, we study the Cauchy problem for the Klein—-Gordon equation, namely
Og@— mPe= f, in anti-de Sitter spacdime.
Inthe model of the universe propased by de Sitter, the line dement hasthe form

2 2\ 1
a2 — —(1-Mon AT oz (4 2Mon AT
r 3 r 3
+12(d6? +sin’d¢?).

The mnstant My, may have an interpretation as the “massof the bladk hole”, while
A is the cosmological constant. The correspondng metric with this line dement is
cdl ed the Schwarzschil d—de Sitter metric. Hubbe'sdiscovery in 1929 ¢ an expanding
universe(see e.g.,[9]), which can be understoodas due to a amsmologicd constant, has
initiated alot of work with the dm to study hav A affeds, e.g., quantum mechanics,
guantum field theory, and cdestial medanics. In principle, the cosmologicd constant
shoud take part in phenomenaon every physicd scde[10].

The Cauchy problem for the linea and semili nea Klein—-Gordon eguation in
Minkowski spacdime (Mpn, = A = 0) iswell i nvestigated. (See e.g., [8], [11] and ref-
erences therein.) In particular, for the semili nea eguation Wy — Au+ u = F(u), with
initial condtions u(0,x) = edo(x), U (0,X) = €p1(x), Ked and Tao [8] proved that if
n=123and 1< p <1+ 2/n, then there exists a (hon-Hamiltonian) norlineaity F
satisfying |DF (u)| < C|u|P~1%! for 0 < a < [p] and such that there is no finite energy
global solution suppated in the forward light cone, for any nortrivial smooth com-
padly suppated ¢o and $p; andfor any € > 0.

The Cauchy problem for the linea wave eguation (m = 0) withou sourceterm
on the maximally extended Schwarzschild—de Sitter spaceaime in the cese of non
extremal black-hole correspondngto parameter values 0 < Mpp < 1/3v/A\, is consid-
ered by Dafermos and Rodnianski [5]. They proved that in the region bouned by a set
of bladk/white hale horizons and cosmologicd horizons, solutions converge pointwise
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to a constant faster than any given pdynomial rate, where the deca is measured with
resped to natural future-direded advanced and retarded time aordinates.

Catania and Georgiev [4] studied the Cauchy problem for the semili nea wave
equation Og@ = |@|P in the Schwarzschild metric (34 1)-dimensional spaceime, that
is the case of A =01in 0 < Mpp < 1/3v/A. They established that the problem in the
Regge-Wheder coordinatesis locdly well-posed in H® for any ¢ € [1,p+1). Then
for the spedal choiceof theinitial datathey proved the blow-up o the solutionin two
cases. (a) p € (1,1+ +v/2) andsmall i nitial datasuppated far away from theblack hale;
(b) p € (2,1+ +v/2) and large data suppated nea the black hole. In bath cases, they
also gave an estimate from abowve for the lifespan of the solution.

In the present paper we focus on anather limit case & Mpp — 0 in the interval
0 < Mph < 1/3V/A, namely, we set Mpp = 0 to ignare completely influence of the
blad hdle. Thus, the line dement in the de Sitter spacdime has the form

2 2\ 1
d = — (1_ %) c2dt? + (1_ %) dr? +r? (d6®+sin?0d¢?) .

The Lamaitre-Robertson transformation[9]

R 2
r/:;eia/R; t/:t‘i‘_ln(l_%)’ 9/:9’ d:(p)

VI-12/R 2c

leads to the following form for the line dement:
ds? = —c2dt’? + /R (dr’2 L r2de? ¢ r'Zsjnze'ddz) .

By defining coordinates X', Y, Z conreded with r’, &, ¢ by the usual equations con-
neding Cartesian coordinates and pdar coordinatesin a Euclidean space theline de-
ment may be written [9, Sec134]

4 = —2dt’? 4 ¥/R (dx’z +d>/2+dz’2) .

The new coordinates r’, &', ¢, t’ can take dl values from —« to . Here Ris the
“radius’ of the universe. In the Robertson-Walker spacdime [3, 7] one can chocse
coordinates @ that the metric hasthe form

ds? = —dt? 4 S(t)do?.

In particular, the metric in the de Sitter and anti-de Sitter spacdime in the Lamaitre—
Robertson coordinates [9] has this form with S(t) = € and S(t) = e™!, respedively.

In the paper [16], we study the Cauchy problem for the Klein—-Gordoneguation
in Robertson-Walker spacdime by applying the Lamaitre-Robertson transformation
and by employing the fundamental solutions constructed there for the Klein—-Gordon
operator in Robertson-Walker spacdime, that is for s := 02 — e 2 A +M?2. The fun-
damental solution £ = £ (X,t;xo,tp), that is Slution of S = 8(X— Xo,t —tp), with
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a suppat in the forward light cone and the fundamental solution with a suppat in
the badkward light cone ae cmnstructed in [16]. The fundamental solution with the
suppat in the forward light cone has been used in [16] to represent solutions of the
Cauchy problem andto prove LP — L9 estimates for the solutions of the equation with
and withou a sourceterm.

The matter waves in the de Sitter spacdime ae described by the function @,
which satisfies equations of motion. In the de Sitter and anti-de Sitter spacdime the
equationfor the scdar field with mass m isthe covariant Klein—-Gordoneguation

_ 1 i ik@ o _
Og@—mPe=1f or g o (\/Iglg axk) mfe=f,

with the usual summation convention, where x = (x%,x%,...,x") and g’ is a metric
tensor. Written explicitly in coordinatesin the de Sitter spacdime it has the form

(1) @ + N — e 2AQ+ = f.

Heret is x2, while A isthe Laplaceoperator on the flat metric in R". If we introduce
the new unknawn function u= egt(p, then the equation (1) takes the form of the linea
Klein—-Gordonequationfor u on ce Sitter spacdime

) w—e 2 Au+Muu=f,

wherethe “curved mass' M isdefined by the equation M? := m? —n?/4. Inthe case of
0 < m< n/2, equation (2) can be regarded as Klein—-Gordoneguation with imaginary
mass Equationswith imaginary massappea in several physicad models such asthe ¢
field model, tachion (super-light) fields, Landau—-Ginzburg—Higgsequation and athers.

The equation (2) is grictly hyperbdlic. That implies the well -posednessof the
Cauchy problemin the diff erent functional spaces. Consequently, the solution operator
is well-defined in those functional spaces. Then, the speed of propagationis variable,
namely, it is equal to et. The second-order strictly hyperbolic equation (2) possesss
two fundamental solutions resolving the Cauchy problem withou sourceterm f. They
can be written in terms of the Fourier integral operators, which give complete descrip-
tion o the wave front sets of the solutions. Moreover, the integrabilit y of the charader-
isticroats, [y |Ai(t,&)|dt < o, i=1,2, leasto the existenceof the so-cdled “horizon”
for that equation. More predsely, any signal emitted from the spatial point xg € R"
at timeto € R remainsinside the ball Bf) (%) := {x € R"[|x—xo| < e %} for all time
t € (to,o). In particular, it can cause anorexistenceof the LP — L% decg for the solu-
tions. In [14] this phenomenonis ill ustrated by a model equation with a permanently
bounded damain of influence power decay of charaderistic roots, andwithout LP — LA
decy. The ebovementioned LP — L9 decay estimates are one of the important toolsfor
studying norinea problems (seg e.g. [11]). Equation (2) is neither Lorentz invariant
nor invariant with resped to usual scding andthat creaes additional difficulties.

In the present paper we consider Klein—-Gordon ogerator in anti-de Sitter space
time, that is

S:=02 -2 A+M?,
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where M is the aurved mass M € C, andx € R", t € R. Results of [16] (by means
of the timeinversiontransformationt — —t) provide us with the fundamental solution
£ = E(X,t;Xo,t0),

Ett — eZAE + MZ‘Z = 6(X7 Xo,t 7t0),

with suppatin the “forward light cone” D (xo, to), X0 € R", to € R, and for the funda-
mental solutionwith suppat in the “badkward light cone” D_(xo,to), X0 € R", t € R,
defined asfoll ows

©) Dy (xo,to) = {(x,t)eR"“; IX— Xo| gi(etofet)}.

Infad, any intersedion o D_ (o, tp) with the hyperplanet = const < to determinesthe
so-cdled dependencedomain for the point (Xo,to), while the intersedion of D (xo,to)
with the hyperplanet = congt > tp is the so-cdled domain of influence of the point
(X0,t0). The eguation (2) is norrinvariant with resped to time inversion. Moreover, the
dependencedomain is wider than any given ball i f time congt > tg is aufficiently large,
whil e the domain of influenceis permanently, for all time const < tg, in the ball of the
radius €°. In fad, the representation formulas obtained in [16] for the solution o the
Cauchy problem in the de Sitter spacdime canna be gplied to the solutions of the
Cauchy problem for the equationin the anti-de Sitter spacdime. The present paper is
aimed to fill upthat gap.

Definefor tp € R in the domain D (Xp,tg) UD_ (Xp,to) the function

1.
—5—iM

(4 Elxtixot) = (4607)M((e + €97 (x—x0)2)

1ol (- €)?— (x—%0)?
><F(§+IM,§+'M'1'(eto+et)2(xxO)Z)’

where F (a,b;c; ) is the hypergeometric function (See eg., [2].). In (4) we use the
notationx? = |x|? for x € R". Let E(x,t;0,to) be function (4), and set

(X t:010) = {E(x,t;o,to) in D (0,to),
0 elsawhere.

Sincethe function E = E(x,t;0,tp) is snoath in D (0,tp) andis locdly integrable, it

follows that £, (x,t;0, to) and £_(x,t;0, to) are distributions whose suppats are in

D, (0,tg) andD_(0,tp), respedively. In order to make the present paper self-contained

we make the transformationt — —t in Theorem 0.1 [16] and introducethe next result.

THEOREM 1 ([1€]). Suppaethat M € C. The distributions £ (x,t;0,tp) and
£_(x,t;0,1p) are the fundamental solutions for the operator s = 7 — €92 4+ M? rela-
tiveto the paint (0,tp), that is s £4 (X, t; 0,tp) = d(x,t —to), Or

2 2

%Zi(x,t;o,to) — ezt%zi(x,t;o,to) +M2E4(x,t;0,t9) = (X, t —to).
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To motivate our construction for the higher-dimensional case n > 2 we foll ow
the goproach suggested in [13] and represent the fundamental solution £..(x,t;0,tg) as
follows

d—éo . —1j
£, (x,t;0,tg) = /etofel (4et0+t)|M ((etoJret)zirz) 7—iM

Lag 1. (€0 €212y gy
X F(§+|M,§+|M,1,m)z "M9(x,r)dr, t>to,
where the distribution £ %11"9(x t) is the fundamental solution of the Cauchy problem
for the string equation:

2 2
6_ dring a_Zstring -0

ot2 Fv . 2¥9(x 0) = 8(x), £3"9(x,0) = 0.

Hence £3MM9(x,t) = 2{8(x+t) +&(x—1)}. Theintegral makes ense in the topdogy
of the spaceof distributions. The fundamental solution £_(x,t;0,tp) for t < to admits
asimilar representation.

We goped to the wave equation in Minkowski spacdime to oktain in the next
theorem very simil ar representations of the fundamental solutions of the higher-dimen-
sional equation in the anti-de Sitter spacdime. In fad, the transformationt — —t in
Theorem 0.2 [16] implies the next theorem.

THEOREM 2 ([16]). If x€ R", n> 2, andM e C, then for the operator s =
02 — e A +M? the fundamental solution £, n(X,t; Xo,to) With suppat in the forward
cone D4 (Xo,t0), X0 € R", to € R, SUPPZ4n C D4(Xo,t0), is given by the following
integral (t > tg)
d—go . 71_7-M
(5) Ein(Xt;Xo,t0) = 2/ dr (4gott)iM ((é°+é)2—r2) 2"
0
(do—¢)2—r2

)EW(X—Xo,r).

Here the distribution £%(x,t) is a fundamental solution to the Cauchy problem for the
wave gjuaion

£ - AV =0, £"(x,0)=08(x), £"(x,0)=0.

The fundamental solution £_ »(X,t;Xo,to) With suppat in the backward cone, that is,
SUPPE_n C D_(xo,t0), X0 € R", to € R, isgiven by the followingintegral (t < to)

1_im

6) E_n(XtX0,t0) = —2/eloietodr(4et0“)”"'((et0+et)2—r2)72

(do—¢g)2—r2

)EW(X—Xo,r).



276 K. Yagdian and A. Galstian

In particular, formula (5) shows that Huygens's Principle is not valid for waves propa-
gatingin the anti-de Sitter spacdime (cf. [12]).

Next we use Theorem 1 to solve the Cauchy problem for the one-dimensional
equation

7) Ut — U+ M2u = f(x,t), t>0, XeR,
with vanishinginitial data:
(8) U(X, O) = Ut(X, O) =0.

THEOREM 3. Asame that f € C* andthat for evey fixed t it has compact
suppat, suppf(-,t) C R. Then the function u= u(x,t) defined by

/ db/ dy F(y.b)(4e )™ ((é + )2 (xfy)z)*%*‘“”

(€ — €)%~ (x—y)?
(eb+e‘)2(XY)2)

isa C” solutionto the Cauchy problem for equation (7) with vanishinginitial data (8).

xF( +|M +|M1

The representation o the solution d the Cauchy problem for the one-dimen-
sional case of equationwithou sourceterm is given by the next theorem.

THEOREM 4. Thesolution u= u(x,t) of the Cauchy problem
(9 W uxtMU=0, u(x0)=¢o(x),  W(x0)=01(x),

with ¢o,¢1 € Cy(R) can berepresented as foll ows
uxt) = le [¢o(x+ d 1)+ do(x—€ + 1)}
é-1
+/O [bo(X—2) + do(X+2)|Ko(z t) dz
d-1
+ [ [hatx= 2+ 0200+ 2 Ka(z )z
where the kernelsKo(zt) andK(zt) are defined respedivey by

Ko(zt) = @nom}

0
|3

_ iM __2\—iM 1
= N e A e
d—-132-7
x[( —iM(@E@ —1-A))F ( |M,2+|M1$)
. . d—-1)32-27
+(1- @+£M-|My{%ﬂMé+mmx%aﬁ%j_ﬂ

0<z<é-1,
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1 .
—5—iM

(@-12-2

Ki(zt) := E(zt;0,0) = (4&)M((é +1)2 - 2)

xF(%—i—iM,%—i—iM;l; ) 0<z<é-1

The kernels Ko(zt) and Ky (zt) play leadingrolesin the derivation of LP — L9
estimates. Their main properties follow from the ones of the function E(x,t; X, to),
which arelisted in Propaosition 1 d Sedion 2

Next we turn to the higher-dimensional equationwith n > 2.

THEOREM 5. Ifnisodd n=2m+1, me N, then the solution u= u(x,t) to the
Cauchy problem

(10) Wt —€?Au+M2u= f(xt), ux0) =0, u(x,0) =0,
with f € C*(R™1) andwith vanishinginitial data is given by

toee 0 10\ 2
U(X,t): 2/0 db/o dry (E (FE) m/g]lf(x—i—ry,b)dg,)

(12) x (4PtHM ((é +eP)2- r{)f%fiM

@ _e)2_r2

(LM dimy & €SN

where q()”) =1-3-...-(n—2),andwn_1 isthe area of the unit sphere ™1 C R".
If niseven, n=2m, me N, then the solution u= u(x,t) isgiven by

t etfeb %2 n—1
u(x,t) = 2/ db/ dry E<}ﬂ> 2r n/ fxtub) g
0 0 or \ ror (*)nflc(o) B7(0) 1_|y|2 -
. 1 im
(12 x (4™ (@ +e2-rf) |
ebiet)ZirZ
x F (l+i|v|,l+i|v|;1;(7l>.
2 z (P +e)2—r2

Here BI(0) := {Jy| < 1} istheunit ball in R", while " =1-3...- (n—1).
Thus, in bath cases, of even and oddn, one can write

ux,t) = Z/Otdb/oéebdr v(x,r; b) (4€P+t)iM ((et+eb)2,r2)*%*”\"

(ebé)2r2> 7

oM iriMi1
(13 X F<2+|M,2+|M,1, @ )2 12

where the functionv(x,t; b) is a solution to the Cauchy problem for the wave equation
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Vit — Av=0, Vv(x,0;b)=f(x,b), w(x,0;b)=0.

The next theorem represents the solutions of the equation with the initial data
prescribed att = 0.

THEOREM 6. The solution u= u(x,t) to the Cauchy problem
(14) Ut — & AU+MAU=0, u(x0)=do(x), W(x0)=0hi(x),
with ¢o, §1 € CF'(R"), n> 2, can berepresented as foll ows:
1
Uxt) = e bvg(x@(t) + 2/0 Voo (%, ()9 Ko(@(t)s.t)g(t) ds
1
(19 2 Vo (X @K (@US DO s, XE R, 10,

@(t) ;= € — 1, andwhere the kenels Ko andK; have been defined in Theorem 4. Here
for ¢ € C3'(R") andfor xe R", n=2m+1,meN,

9 (10\Z 2
Vo (X, @(t)s) = (E (%E) mél"’(x“wd%)

whilefor xe R", n=2m, me N,

r=@(t)s

n-2
d /192 21 1
==(>%= S S \, .
Vo (X, @(t)s) (ar (r ar) PEQ /Bgm) h_|y|2¢(x+ry)d y)r .

The function vy (X, @(t)s) coincides with the value (x, @(t)s) of the solution v(x,t) of
the Cauchy problem

Wit — Av= Oa V(X7 0) = (I)(X), Vi (X7 0) =0.

Asa mnsequence of the ébove theorems, we obtain in aforthcoming paper the
following LP — LY decey estimate for the particles with “large” massm, m > n/2, that
is, with nonregative aurved massM > 0.

[(=2)7u(xt) || Lagrn)

11 t
16 < cd(®=nEh) / 11 (%,b) | Lpem (L+t — b):~9™Mdb
0
n(di_1 _
+C(L+ )M (e — 1) 6 9o(x)Logen + (1 - €791 lLogen |

: 1 1 1 1 1 1 1
providedthat 1< p<2,5+5 =1, i(n+1)(5—a) <2s< n(ﬁ_ﬁ) < 2s+1.

We anphasizethat the estimate (16) impliesexporential decgy for largetime. It
is esentialy diff erent from the decay estimate obtained in [16] for the wave equation
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in the de Sitter spacdime. This differenceis caused by the striking dff erence between
the global geometries of the forward and backward light cones of the equation (7).
The paper is organized as follows. In Sedion 2we gply the fundamental so-
lutions to solve the Cauchy problem with the source term and with vanishing initial
datagivenatt = 0. More predsely, we give arepresentation formulafor the solutions.
In that sedion we dso give several basic properties of the function E(x,t;Xo,t). In
Sedions 3—4, we use the formulas of Sedion 2to derive and to complete the list of
representation formulas for the solutions of the Cauchy problem for the case of one-
dimensional spatial variable. The higher-dimensional equation with the sourcetermis
considered in Sedion 5 where we derive arepresentation formulafor the solutions of
the Cauchy problem with the sourceterm and with vanishinginitial datagivenatt = 0.
In the same sedion this formulais used to complete the proof of Theorem 6. Appli-
cdions of all these results to the norlinea equations will be dore in a forthcoming

paper.

2. Application to the Cauchy problem: sourcetermandn=1
Consider now the Cauchy problem for the equation (7) with vanishinginitial data (8).
The oefficients of the equation (7) are independent of x, therefore the equation is

tranglation invariant in x that implies £ (x,t; y,b) = £, (x—y,t;0,b). Using the fun-
damental solutionfrom Theorem 1 ore can write the convdution

17 uxt) — /j;/joz+(x,t;y,b)f(y,b)dbdy

t 00
/db/ £4(x—Y,t;0,b) f (y,b) dy,
0 —o00

which is well-defined since suppf C {t > 0}. Then acordingto the definition o the
distribution £ we obtain the statement of Theorem 3. Thus, Theorem 3 is proven.
The following corollary implies the existence of an operator transforming the
solutions of the Cauchy problem for the string equationto the solutions of the Cauchy
problem for the inhamogeneous equation with time-dependent speed of propagation.

CoOROLLARY 1. Thesolution u= u(x,t) of the Cauchy problem (7)-(8) can be
represented by (13), where the functions v(x,t; 1) := 3(f(x+t,T) + f(x—t,1)), T €
[0, 0), form a one-parameter family of solutions to the Cauchy problem for the string
equation, that is, vt — ux =0, v(x,0;1) = f(x, 1), w(X,0;T) =0.

Proof. From the convdution (17) we derive

uxt) = | db L é:b dy f(x-+y.b) (4™ ( (& +eb)2—y2)7%7iM

(ebe‘)zyz)

x F (%+i|v|,%+i|v|;1;m
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¢ eb
- 2/ db/ F(x+y,b) + f(x—y,b)}
) _1l_im e _d)2_\2
+H\IM (ot | a—by2 2 1,.im 1 M- | ) -y
x (4ePTHM (et 4 e7P) yz) F <2+'M’2+'M'1'7(eb+ef)2—y2)'
The aorollary is proven. O

In the next propasitionwe mlled some dementary auxili ary formulasin order
to make the proafs of the main theorems more transparent. The proof of that proposi-
tionis graightforward and we omit it.

ProPOSITION 1. Let E(X,t;Xo,t0) be function defined by (4). One has

(18) E(xtyb) = E(ybxt),

(19 E(xt;y,b) =E(x—V,t;0,b), E(xt;0,b) = E(—x,t;0,b),
: ) = 1

(20) E(x,t;0,In(d —x)) = NN

ey L(PE@-dton) - e

1e712eP2(2 1 1),

22 %(bebE(ebfet,t;O,b))

(23) lim iE(x—y,t;O,b) = A (1+am?)e2PeP2d/2(P ),
yax+e‘7ebax

(24) lim EE(X y,50,b) = A(1+4M2)e2b0e/2eP/2(d —¢P),
y—X— d4eb 0X

- 2
(25 [%E(X,t;07b):|b|n(éx) 1_16673t/2( 4¢ j./)%[”\/' )),
(4et)iM ((1+ et)Z_XZ)fiM
2[(et*1)2fx2] (1+et)2—

(26) { aab (xt;0 b)} . =

_ _ _ (—14€)2—x2
X {(2I|\/|:|.)((—Z‘2t 1- X)F( %+|M,%+IM,1,m>

B B . 12 TV I M
2(1—é+iM (& -1 x>>F<2+|M,2+|M,L (Het)z_xz)}'

3. The Cauchy problem: second dataandn =1

In this £dion we prove Theorem 4 in the cae of ¢o(x) = 0. More predsely, we
have to prove that the solution u(x,t) of the Cauchy problem (9) with ¢o(x) = 0 and
$1(x) = ¢(x) can be represented as foll ows
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é-1
(27) ux,t) = /o {¢(x+ z)+¢(xfz)} Ki(zt)dz

[ [oocr 019+ 0x- 009 Ka(s tottos

where @(t) = € — 1. The proof of the theorem is divided into several steps.

PROPOSITION 2. The solution u= u(x,t) of the Cauchy problem (9) for which
do(x) = 0andd1(x) = ¢(x) can berepresented as foll ows

uxt) = /otdb[%e*‘/zeb/z(ub)+1—16be*3t/2eb/2(eb—et)(1+4|v|2)}
(29) x {¢(x+e‘feb)+¢(xfe‘+eb)}
t x+6 —eP 92
b . 2 .
+/O olb/He_eb)o|y<|)(y)b[e2 (@) E(x—y,t:0,b) — M E(x—y,t,O,b)].

Proof. We look for the solutionu = u(xt) of the form u(x,t) = w(x,t) +td(x). Then
(9) implies

Wit — eZthxJF MZW: te2t¢(2) (X) - M2t¢(x)a W(Xa O) = Oa \Nt(X, O) =0.
We set f(x,t) =te?$@ (x) — M2t (x) and due to Theorem 3 oltain

—_—~

t x+e —eP
WX t) = w(x t _MZ/ bdb/ dyd(y)E(X—V.t:0.b),
(xt) =w(x,t) o PP/ o OWIECX—YEOD)

where
wW(x.t) = tbebdb " d ¢(2) E 0,b
W(X,t = X=y,t;0,b).

Then we integrate by parts:

wixt) — /0t be?db [q><l>(x+et _PE(—€,t;0,b)
—0D(x— e +)E( —€°t;0,b)

tbe?-bdb ’ dyp® 0 E 0,b
— —E(x—y,t;0,b).
/o /xf(etfeb) y (y)ay (=, )

But¢M(x+€& — ) = —e PLp(x+6€ —€), oW (x—&+&’) =ePIo(x— €& +€).
Then, E(e’—¢€,t;0,b) = E(—€’+ €,t;0,b) dueto (19), andwe obtain
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wixt) = /Otdb<¢(x+e‘ eb)a(bebE( é+ebt;0b))
~b(x—e+e’) (loebE(et ebt0b)))
/be2bdb/7 ) dyq) SyE(x-¥L0b).

One more integration by partsleadsto
wixt) = —2dd(XE(0,t:0,t)
/Otdb<¢(x+et &) 0 (bebE( ¢+€t:0,b))
—o(x— é+eb) (beE(é ebt0b))>

/beZbdb/ pyEl¥t0D).
Since E(0,t;0,t) =e'/2 weuse (22) of Proposmon 1to derive the representation
W(X,t) +td(x) /db1 t/Zeb/z(Zer)(cp(eret )+ d(x— é+eb))
/be2bdb/7 ) dyq) Sy ¥L0b).
Integration by partsin the secondterm Ieadsto
W(X,t) 4+t (X) /db1 t/Zeb/z(Zer)(cp(eret )+ o(x— é+eb))

0
&b 9
+/Ob dbp(x+€& —€°) [a E(x— y,tOb]y o

t 0
J— b — —_
/o be®®dbd (x — € + €°) [6 E(x—y,t;0,b) L do

+ tb db X+eLEbd — 2E 0,b

&2 X—V,t;0,b).
/O /x—(elfeb y¢(y)( (x=y )
Applying (23) and (24) of Propasition 1and —a"y (x=y,t;0,b) = =L E(x—V,t;0,b),

WX o) = [ [1et22(24b) +li6be*3t/2eb/2(eb—et)(1+4M2)}
X {¢(x+etfeb)+¢(xfet+eb)}db
- x+e —e? 9\ 2 .
+/O be? db/x(eteb)dyq)(y)(@) E(x—y,t;0,b).

Finally, we get (28). The propasitionis proven. O
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COROLLARY 2. The solution u= u(x,t) of the Cauchy problem (9) with ¢o(X)
=0and¢1(x) = §(x) can berepresented by

u(x,t) = /0t [%e’t/zeb/2(2+b)+li6be’3‘/2eb/2(eb—et)(l+4M2)}
xh@+é—@ﬂ¢@—é+@ﬂ%
&
+/ db/el O(x—2)+(x+2)]

2
X b[eZb (aﬂz) E(zt;0,b) —MZE(z,t;O,b)},
aswell asby (27), where

Ki(zt) = [%e’t/z(ZJrln(e‘fz))f1—16(1+4M2)e*3t/zzln(e‘fz)] \/etl—z

n(e—z 2
(29 +/OI ( )b leZb <§z) E(zt;0,b) — M?E(zt;0, b)} db.

Proaf of the Corollary. By means of the statement (28) of Propasition 2, the change
y =XxX—2, and (19) we obtain

u(x,t) = /Ot db{%e*t/zeb/2(2+ b)+ Lbe /262 — et)(1+4|v|2)}
XHW+é*@H¢W*é+@ﬂ

_(d_eb 2
_/tdb/ ( )dzq)(x—z) [beZb (3) E(z,t;O,b)—MzbE(z,t;O,b)]
2
+/ db/ 4z9(x+2) [beZb( Z) E(z,t;O,b)—MZbE(z,t;O,b)].
To prove (27) with K1 (z,t) defined by (29) we gply (19) and write

u(xt) = /Ot db{%e*t/zeb/z(ZJr b) + Abe/2eP/2(eP — &) (1+ 4|v|2)}
xh@+é7@H¢@7é+@ﬂ

+/ olb/et “ dzlomx 2)+0(x+2)]
X [loe2b (O—Z)ZE(z,t;O,b)—MZbE(z,t;O,b)}.

Next we make changez= € — €, dz= —e’db, db= —(¢ —2)~'dz andb = In(& — 2)
in thefirst integral:
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/Ot db| je V2€7/2(2+-b) + & (1+ aM2)pe 32/ 2(e &)
x [¢(x+ d—e’)+o(x—¢ +eb)}
= Aélhu+a+¢u 2)|[4e/2(2+In(e - 2))
— & (1+4M?)e */2zIn(é - z)} \/%ddz.
uxt) = Aél[wx+a+¢u 2)|[4e22+In(é - 2)

— & (1+4M?)e */2zIn(d - z)}

+/ db/é ¢ d(X+2)+o(x— z)}

X [beZb (G—Z)ZE(z,t;O,b)—MZbE(z,t;O,b)}.

In the last integral we change the order of integration,

dz

Ve —z

u(xt) = Aélhu+a+¢a 2| 322+ In( - 2)

— & (1+4Mm?)e ¥/2zin( fz)] dz

Ve -z
+/Oél dz[¢(x+z)+¢(xfz)} /Oln(etZ)dbb

2
X [eZb (aﬂz) E(zt;0,b) — M?E(zt;0, b)],
and oltain (27), where K1 (z t) is defined by (29). The wrollary is proven. O

The next lemma compl etes the proof of Theorem 4 in the case of ¢o = 0.

LEMMA 1. The kenel K1(zt) defined by (29) coincideswith oregivenin The-
orem4.

Proof. Dueto Lemma1.2[16], (19), and byintegration by parts, we have

In(e—2) d\?2
/ b e2b<a—z) E(zt:0,b) — M?E(z,t;0,b) | db
0

= In(d - )[aab (zt;0, b)} —E(zt;0,In(¢ —2)) +E(zt;0,0).

b=In(¢ -z
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On the other hand, (20) and (25) of Propasition 1imply

In(d —2) d\?2
/ b ezb(a_z) E(zt;0,b) — M?E(zt;0,b)| db
0

e 2V (—4€ +z(1+4aM?))
16V -z
Thus, for the kernel K1(z,t) defined by (29) we have

In(€ —2)

- %e’5 (€ — 2% +E(z1;0,0).

Ki(zt) = [%e*t/2(2+ In(€ —2)) — & (1+4M?)e~*/2zIn(e' - z)}

In(é—2)
L A
0

= He’t/z(Z—k In(€ —2)) — &(1+4M?)e~¥/?zIn(é - z)} —

fin@ -9 Ye (1:9‘1;2(21* ) _

Ve —z

2
eZb(aﬂZ) E(z,t;O,b)—MzE(z,t;O,b)l db

NI
(¢
N
@.
\
[T
+
m
~
N
—t
o
o
~—"

= E(zt;0,0).

Thelast line mincideswith K1(zt) of Theorem 4. Thelemmais proven. O

4. The Cauchy problem: first dataandn =1

Inthis edion, we prove Theorem4 in the cae of ¢1(X) = 0. Thus, we haveto provethe
representation gven by Theorem 4 for the solutionu = u(x,t) of the Cauchy problem
(9) with ¢1(x) = 0, that is equivalent to
uxt) = e 2[po(x+€ 1)+ do(x— € +1)]
1
+ [ [bolx—0(t)s) + dalx+ 0(D)s | Ko(elt)s)g(t s

where @(t) = € — 1. The proof of this case consists of several steps.

PropPosITION 3. The solution u= u(x,t) of the Cauchy problem (9) can be
represented as foll ows

Ut = e 2[go(x+€ 1)+ do(x— € +1)]
- db[%ege*LZ+%6(1+4M2)e*2‘ege5(eb—et)}
x [Go(x+€ — &)+ do(x— & + &)

t X+ —ed d\?2
b( 9 . M2E (vt
+/O db/x(eteb)dyq)o(y)[ez (ay) E(x—y,t;0,b) — M2E(x y,t,O,b)].
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Proof. We set u(x,t) = w(x,t) + ¢o(x), then
- eZthx+ MZW = e2[¢(02) (X) - M2¢0(X) ) W(X7 0) =0, Wt(X7 0) =0.

Next we plug f (x,t) = €2 (x) — M2¢o(x) into the formulagiven by Theorem 3 and
obtain

30 wxt) = W(x,t)/Otdb/xxt::)dyqu:o(y)E(xy,t;O,b),
where we have denoted
- /ez'odb/i ) o|y<1>0 E(x—y,t;0,b).
Next we integrate by parts and apply (19):
wixt) = /OteZbdb(d)(()l)(XJret—eb)E(—etJreb,t;O,b)
f¢él)(xfet+eb)E(etfeb,t;o,b))

t b x+el —eP 1) 2 .
7/0 & db/)(i(éieb)dyq)o () 5y EX-¥L:0.).
On the other hand,
o (x+e—eP)=—e —¢o(x+é &), oY (x— e + &) =eP —cl)o(x d+e)

implies that

/ebdb(——d)o (x+ €& — PE(—& +€,t;0,b)
a—b¢o(xet+eb)5(éeb,t;o,b))

x+e —eP
/e2bdb/7 PR e 3y ¥t0b).

One more integration by partsleadsto

W(x,t) +do(x) = %e*l?(¢o(x+etfl)+¢o(xfet+1))
+/ db((l)o (x+€ - &)= (ebE( é+eb,t;o,b))

+o(x— é+eb) (ebE(é ethb))>

/e2bdb/7 ) dycp0 oy W0,
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where E(0,t;0,t) = et/2,and E(¢ —1,t;0,0) = E(1—¢€,t;0,0) = &2 /2 have been
used. Next we gply (21) of Propasition 1and an integration by partsto oltain

wixt)+dox) = Le? (¢o(x+ d—1)+po(x—€+ 1))

+ /t dble?e? <¢o(x+é —€") +do(x—€ +eb))

y=x+¢& —&®

/e2bdb do ) E(x—y,t;0,b)] o

x+e— eb 0\2
e2bdb/ d N E(x—y.t:0.b).
+ freran " aybo () B w0

From (23) and (24) of Propasition 1, we have

Wt +do(x) = %eﬁ[¢o(x+etfl)+¢o(xfet+1)}
+/Otdb%1ege*5{¢o(x+etfeb)+¢o(xfet+eb)}
—/Ot e2bdb1—16(1+4M2)e’2(b“)eb/2et/2(et —é) [¢o(x+ & — &)+ do(x— (€ — eb))}

+/ ezbdb/ dyq)o (:y) E(x—y,t;0,b),

Then the last equation together with (30) provesthe desired representation. The propo-
sitionis proven. O

Completion o the proof of Theorem 4. We make the changez= € — €°, dz= —€’db,
andb = In(€ — 2) in the secondterm of the representation given by the previous propo-
sition:

x {¢0(x+é — &) +do(x— ¢ +eb)} db

-1 ¢ ¢
= /o He’? — & (1+4M?)e ez z} [q)o(x— 2) + do(x+ z)} dz

1
Ve —z
Next we gply (19) to the last term of that representation, and then we change the order
of integration:

/Ot db/XX:t::) dydo(y) [e’-b (%)ZE(xy,t;O, b) — M?E(x—V,t;0, b)}

:/Oetldz{q)o(x+z)+¢0(x—z)} /In(e‘z)db

0

X [e-?t’ <%>2E(z,t;0,b)—MZE(z,t;O,b)].
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On the other hand, since the function E(z t;0,b) solves the Klein-Gordon equetion,
the last integral is equal to

[ oot 2+ b0t [

_ /Oéldz[¢o(><+ 2+ 0ol 2)] [ FEELOINE ~2) - HEE00).

d-2) d\2
db(%) E(zt;0,b)db

Applicaion o (25) and (26) gives

+35 0 E(z,t,o In(€ —2)) — =—E(z,t;0,0)

0

ab

i 73t/2( —4€ +2(1+4M?))
VeE—z

He*% — A1+ 4M2)e’2‘et?z}

Ve —z

+

= [%e*5 — 1—16(1+4M2)e*2‘e?z} _etl
1
(¢ -1)2-2\/(1+€)>—

. , , (—1+é)2—22

—(a)M (11 )2—2A) ™

(—1+€)2-2
—2(1—d+iM (P —1-2))F (3 |M,2+|Mlm)}.

The terms on the line &ter the last equality all cancd out, leaving the last threelines
that add upto Ko(z t). This completesthe proof of Theorem 4. O

5. Then-dimensional case, n > 2

Proof of Theorem5. Let usconsider the case of x € R", wherefirssn=2m+1, meN.
First, for the given function u = u(x,t), we define the sphericd means of u abou the
paint x:

1

lu(x,r,t) = P Sp71u(x+ry,t)d§,,

where wy,_1 denctesthe aeaof the unit sphere S~ € R". Then we define an operator
Q; by

Qr () (x,t) := (:;r) rzm’llu(x, rt).

One can show that there ae cnrstantscj , ] =0,...,m—1, wheren = 2m+ 1, with
) =1.3-5.--(n—2), suchthat

m-1

(Fap)" e tom = g i go.
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One can recover the functionsacmrdingto

. . 1
BY) u(x,t) = limly(xrt)=Ilim——Q;(u)(xt),
r—0 reoc(()n)r
. 1 . 1
(32 u(x,0) = lim——Qr(u)(x,0), w(x,0)=Ilim——Q(0tu)(x,0).
r—0 cg')r r—0 C(()n) r

It is well known that AxQrh = %th for every function h € C2(R"). Therefore we
arrive & the foll owing mixed problem for the functionv(x,r,t) := Q;(u)(x,r,t):

Vit (X, 1,1) — v (x,1,t) + M2v(x,1,t) = F(x,r,t),  t>0,r>0 xcR",

v(x,0,t) =0, foralt>0, xeR",
v(x,r,0) =0, w(xr,0)=0, foral r>0, xeR",
F(xrt) :=Q(f)(xt), F(x0,t)=0, foral xeR".

It must be noted here that the sphericd mean 1, defined for r > 0 has an extension as
an even function for r < 0 and hence Q;(u) has a natural extension as an oddfunc-
tion. That alows repladng the mixed problem with the Cauchy problem. Namely,
let functions V and F be the continuations of the functions v and the forcing term F,
respedively, by

- v(x,r,t ifr>0 ~ F(xr,t ifr>0
vxnt) = { —(v(x,lr,t) ifr <0, Fixrt)= { —I(:(x,—)r,t) ifr<0.

Then V solves the Cauchy problem
vit (X7 rat) - eztvrr (X7 rat) + M2\7(X, rvt) = ﬁ(xv rat)v t Z Oa re Rv Xe Rna
v(x,r,0) =0, %(x,r,00=0 foral re R, xe R".

Hence, acoordingto Theorem 3, one has the representation

t r+e—e _
V(x,r,t):/o db/,,(et,eb)F(X’rl’b)E(r’t;rl’b)drl'

Since u(x,t) = limy_o (V(x, r,t)/(cé”)r)), we consider the cae of r <t in the above

representationto ohtain:

1 F(x,r+r1,b) +F(x,r —rq,b)

t d e )
u(x,t) = @/o db/0 drlE(O,t,rl,b)lm . .

Then by definition of F, we replacelimHo{lg(x,r —r1,b)+F(xr +r1,b)}/r with
2<@F(x, r, b)) in the last formula. The definitions of F(x,r,t) and o the operator

or r=ry

Q; yield:

2 €9 19 \mL .
u(xt) = @/o db/O (EGE) r If(x,r,t)) E(O,t;r1,b)dryq,

r=rp
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wherex € R", n=2m+ 1, me N. Thus, the solution to the Cauchy problem is given
by (11). We employ the method d descent to complete the proof for the case of even
n,n=2m, me N. Theorem 5 is proven. O

Proof of Theorem 6. First we consider the case of ¢o(x) = 0. More predsely, we have
to prove that the solution u(x,t) of the Cauchy problem (14) with ¢o(x) = 0 can be
represented by (15) with ¢o(x) = 0. The next lemmawill be used in bath cases.

LEMMA 2. Consider the mixed problem

Vit — €2y +M2v =0, foral t>0,r>0,
v(r,0) =1o(r), w(r,0)=14(r) foral r>0,
v(0,t) =0, foral t >0,

and cenate by To(r) andT1(r) the continuaions of the functions 1o(r) andty(r) for
negative r as odd functions: To(—r) = —To(r) andT1(—r) = —14(r) for all r > 0,
respedively. Then the unique solution v(r,t) to the mixed problem is given by the
restriction o (27)tor > 0:

vrnt) = %e’ﬁ[?o(r+etfl)+fo(rfet+1)}
+ /01 [To(r — @(t)s) +To(r + @(t)s) | Ko(@(t)s,t)@(t) ds
+/Ol [ﬁ(r +(p(t)s) +f1(r - (p(t)s)} K1(q(t)s,t)g(t) ds,

where Ko(zt) andK;(z t) are defined in Theorem 4 andg(t) = € — 1.
Proof. Thislemmaisadired consequenceof Theorem 4. O

Now let us consider the cae of x € R", wheren = 2m+ 1. First for the given
functionu = u(x,t) we define the sphericd means of u abou point x. One can recover
the functions by means of (31), (32), and

¢i<x>mwi(x,r)my)érer(mxx), i=0,1.

Then we arive & the foll owing mixed problem

v(x,0,t) =0 foral t>0, xe R",

Vit (X, 1, 1) — €y (X, 1,t) + M2v(x,r,t) =0, foral t>0,r>0, xcR",
v(x,r,0) =0, w(xr,0)=®d1(xr) foral r >0, xe R",

with the unknavn functionv(x,r,t) := Q,(u)(x,r,t), where

(39  di(xr)i=Q(0)(X) = (%%)mflrmli [, oix+my)ds,

(34) ®(x,00=0, i=01  foral xeR".
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Then, dueto Lemma2andto u(x,t) = lim_o (V(x, r,t)/(c(()n)r)), we obtain:

ux,t) = Ljima ' [5131(x, r+@(t)s) + Py (x,r — (p(t)s)} Ka(@(t)st)@(t)ds

(Mr=or
Co 0

Thelast limitisequal to

2/ ( ®1(x,1) >r o K1(0(t)s,t)o(t) ds

:2/0 (a (:;r) (ronzl 91¢1<X+W>d3/)rW)sKﬂwS,t)(p(t)ds

Thus, Theorem 6 in the case of ¢o(x) = 0is proven.

Now we turn to the cae of ¢1(x) = 0. Thus, we arive & the following mixed
problem

Vie (X, 1, 1) — €vie (x,1,t) + M2v(x,r,t) =0, foral t>0,r>0, xcR",

v(x,r,0) = Po(x,r), w(x,r,0)=0 foral r >0, xe R",
v(x,0,t) =0 foral t>0, xeR",

with the unknowvn function v(x,r,t) := Q;(u)(x,r,t) defined by (33), (34). Then, ac

cordingto Lemma2 andto u(x,t) = Ilrrév(x r.t)/(co " )r), we obtain:
r—

1 t [0
7t = e2(—ad ,
u(x,t) é) <6r (X r)>r(p<t)
2 /9
+@/0 (g%(xﬁ))rw) Ko(@(t)s,t)@(t)ds
1,00 0(0) + 2 [ o 6 0 Ko( @500 s

Theorem 6 is proven. O

-~
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