E. Ballico*

RANK 2 ARITHMETICALLY COHEN-MACAULAY VECTOR BUNDLES ON CERTAIN RULED SURFACES

Abstract. Here we study rank 2 arithmetically Cohen-Macaulay vector bundles on a a ruled surface over a smooth genus q curve, essentially proving their non-existence if $q \ge 2$ and the ruled surface is rather balanced.

1. Introduction

Let X be an integral n-dimensional projective variety, $n \geq 2$, defined over an algebraically closed field. Let η_+ denote the ample cone of $\operatorname{Pic}(X)$ and η_- its opposite. Let η_0 (resp. $\widetilde{\eta}_0$) denote the set of all line bundles on X algebraically equivalent to \mathcal{O}_X (resp. numerically trivial). Set $\eta:=\eta_+\cup\eta_-$, $\gamma:=\eta\cup\eta_0$ and $\widetilde{\gamma}:=\eta\cup\widetilde{\eta_0}$. Let E be a vector bundle on X. We will say that E is ACM or arithmetically Cohen-Macaulay (resp. say that E is WACM or weakly arithmetically Cohen-Macaulay, resp. SACM or strongly arithmetically Cohen-Macaulay) if $H^i(X,E\otimes L)=0$ for all $1\leq i\leq n-1$ and all $L\in\gamma$ (resp. $L\in\eta$, resp. $L\in\widetilde{\gamma}$). Let E be a smooth and connected projective curve. Set E is a maximal degree rank 1 subsheaf of E. Hence E is stable (resp. semistable, resp. properly semistable) if and only if E if E or (resp. E o

THEOREM 1. Let C be a smooth curve of genus $q \ge 2$ and G a rank 2 vector bundle on C such that $2q - 3 \ge \max\{0, -s(G)\} + 3e(G)$. Set $X := \mathbf{P}(G)$. If $q \ge 2$, then there is no rank 2 WACM vector bundle on X.

Of course, we will also check the rank 1 case (see Proposition 1). As obvious from that proof and the proof of Theorem 1 with no restriction on G there are very strong numerical restrictions for the WACM and ACM line bundles and rank 2 vector bundles on the ruled surface X. We stress the existence of rank 2 ACM vector bundles on X when q=1 and $G=\mathcal{O}_C^{\oplus 2}$ ([1]) and of rank one ACM line bundles when q=0, i.e. for Hirzebruch surfaces ([2]). For large e there are more (but always finitely many) isomorphism classes of line bundles on F_e ([2]).

^{*}The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

146 E. Ballico

2. The proof and related results

Notice that on any scroll over a smooth curve numerical equivalence and algebraic equivalence are the same. Hence $\widetilde{\eta}_0=\eta_0$ and $\widetilde{\gamma}=\gamma$ on any scroll over any smooth curve.

REMARK 1. Let C be a smooth curve of genus q and F a rank r vector bundle on C. If $h^0(C, F \otimes L) = 0$ for all $L \in \operatorname{Pic}^0(X)$, then $\deg(F) < (r-1)(q-1)$ ([4], Corollary at p. 252). Thus Riemann-Roch and Serre duality give that if $h^1(C, F \otimes L) = 0$ for all $L \in \operatorname{Pic}^0(C)$, then $\deg(F) > (r+1)(q-1)$.

REMARK 2. Fix $t \in \mathbb{Z}$. Fix a rank 2 vector bundle F on C. Set $d := \deg(F)$ and s := s(F). Let L be a maximal degree rank one subsheaf of F. F/L is locally free, $\deg(L) = (d-2s)/2$ and $\deg(F/L) = (d+2s)/2$. Hence $s \equiv d \pmod{2}$. $s(F \otimes R) = s(F)$ for all $R \in \operatorname{Pic}(C)$. $h^0(C, F \otimes M) = 0$ for all $M \in \operatorname{Pic}^t(C)$ if and only $\deg(L) + t \leq -1$, i.e. if and only if $(d-2s)/2 + t \leq -1$. Notice that $s(F^*) = s(F)$. Hence Serre duality shows that $h^1(C, F \otimes M) = 0$ for every $M \in \operatorname{Pic}^t(C)$ if and only $\deg(F/L) + t \geq 2q - 1$, i.e. if and only if $(d+2s)/2 + t \geq 2q - 1$.

NOTATION 1. Fix a smooth and connected curve C with genus q and the ruled surface $X = \mathbf{P}(G)$, where G is a rank 2 vector bundle on C. Let G_1 be a rank 1 subsheaf of G. Since G_1 has maximal degree, $G_2 := G/G_1$ is a line bundle. Set $a_i := \deg(G_i)$. Hence $\deg(G) = a_1 + a_2$ and $s(G) = a_2 - a_1$. Since $\mathbf{P}(G) \cong \mathbf{P}(G \otimes R)$ for any $R \in \operatorname{Pic}(C)$, we will always normalize G so that $G_2 \cong O_C$. Hence $a_2 = 0$, $\deg(G) = a_1$ and $s(G) = -a_1$. Recall that e(G) := 0 if $a_1 \geq 0$ and $e(G) := -a_1$ if $a_1 < 0$. Notice thar $0 \leq e(G) \leq q$ for any X (Remark 2). Let $\pi : X \to C$ denote the ruling and $O_{\pi}(1)$ the tautological π -ample line bundle on X. $\operatorname{Pic}(X) \cong \mathbb{Z}O_{\pi}(1) \oplus \pi^*(\operatorname{Pic}(C))$. For every integer t and every $M \in \operatorname{Pic}(C)$ set $O_{\pi}(t) := O_{\pi}^{st}$ and $O_{X}(t,M) := O_{\pi}(t) \otimes \pi^*(M)$.

REMARK 3. Take $C, G, X, a_1, e(G)$ as in Notation 1. Fix $D \in Pic(C)$. Notice that $X \cong \mathbf{P}(G \otimes D)$. Applying [3], Theorem III.1.1, to the vector bundle $G \otimes D$ we get that $O_X(1,D)$ is ample if and only if $\deg(D) \geq 1 + e(G)$.

First Claim: For every integer x > 0 $S^x(G) \otimes D$ is an ample vector bundle if $deg(D) \ge 1 + xe(G)$.

Proof of the First Claim: The vector bundle $S^x(G)$ has rank x+1 and it has an increasing filtration $\{F_i\}_{0 \le i \le x}$ such that $F_0 = 0$, $F_{x+1} = S^x(G)$, each F_i/F_{i-1} , $1 \le i \le x+1$, is a line bundle of degree ≥ 0 (case e(G) = 0) or degree $\ge -xe(G)$ (case e(G) > 0), and $\deg(F_1) = xa_1$. Just use that an extension of ample line bundles is ample and that a line bundle on C is ample if it has positive degree.

Second Claim: Fix an integer $x \ge 1$ and assume $\deg(D) \ge 1 + xe(G)$. Then $R := \mathcal{O}_X(x,D)$ is ample.

Proof of the Second Claim: By Nakai criterion ([3], Theorem I.5.1) it is sufficient to prove that $R^2>0$ and that $\mathcal{O}_X(T)\cdot R>0$ for every integral curve $T\subset X$. $R^2=2x\cdot \deg(D)+x^2a_1>0$. Take an integral curve $T\subset X$ and set $\mathcal{O}_X(y,M):=\mathcal{O}_X(T)$. Notice that $y\geq 0$ and that y=0 if and only if T is a fiber of π . $\mathcal{O}_X(T)\cdot R=xya_1+x\cdot$

 $\deg(M)+y\cdot\deg(D)$. If y=0, then $\mathcal{O}_X(T)\cdot R=x>0$. From now on we assume y>0. First assume $a_1\geq 0$. Hence e(G)=0 and $\mathcal{O}_X(T)\cdot R\geq xya_1+x\cdot\deg(M)+y>x(ya_1+\deg(M))$. Hence it is sufficient to prove that $\deg(M)\geq -ya_1$. Assume $\deg(M)\leq -ya_1-1$. To get a contradiction it is sufficient to show that $h^0(X,\mathcal{O}_X(y,M))=0$. Since y>0, $h^0(X,\mathcal{O}_X(y,M))=h^0(C,S^y(G)\otimes M)$. The vector bundle $S^y(G)$ has rank y+1 and it has an increasing filtration $\{F_i\}_{0\leq i\leq x}$ such that $F_0=0$, $F_{y+1}=S^y(G)$, each F_i/F_{i-1} , $1\leq i\leq y+1$, is a line bundle of degree $(y+1-i)a_1$. Hence $h^0(X,\mathcal{O}_X(y,M))=0$. Now assume $a_1<0$. Hence $e(G)=-a_1$ and $\mathcal{O}_X(T)\cdot R\geq y+x\cdot\deg(M)$. Hence it is sufficient to observe that the same filtration of $S^y(G)$ used in the previous case gives $h^0(C,S^y(G)\otimes M)=0$ if $\deg(M)<0$.

REMARK 4. Take $C, G, X, a_1, e(G)$ as in Notation 1. Let F be a rank 2 vector bundle on C.

- (a) Set $E:=\pi^*(F)$. We want to check that E is not WACM if $3e(G) \leq 2q-3$. Assume that E is WACM. $h^1(X,E(1,D))=h^1(C,G\otimes F\otimes D)$. If $h^1(C,G\otimes F\otimes D)=0$, then $h^1(C,G_2\otimes F\otimes D)=0$. Recall that $G_2\cong \mathcal{O}_C$ and that $\mathcal{O}_X(1,D)$ is ample if $\deg(D)\geq 1+e(G)$. Varying $D\in \operatorname{Pic}^{1+e(D)}(C)$ and applying Remark 1 we get $\deg(F)\geq 3q-3-e(G)$. Set $J:=\mathcal{O}_X(2,M)$ with $M\in \operatorname{Pic}^{1+2e(G)}(C)$. J is ample. Serre duality gives $h^1(X,E\otimes J^*)=h^1(X,E^*(0,F^*\otimes \omega_C\otimes \det(G)\otimes M\otimes A^*))=h^1(C,F^*\otimes \omega_C\otimes \det(G)\otimes M)=h^0(C,F\otimes M^*)$. Remark 1 shows that if $h^0(C,F\otimes M^*)=0$ for all M, then $\deg(F)\leq q-2+1+2e(G)$.
- (b) Set $E:=\pi^*(F)(-1,\mathcal{O}_C)$. $h^1(X,E\otimes L)=0$ for all $L\in \eta_0$. Here we check that E is not WACM if $3e(G)\leq 2q-2$. Assume that E is WACM. $h^1(X,E(1,D))=0$ if and only if $h^1(X,F\otimes D)=0$. Hence we get $h^1(X,F\otimes D)=0$ for all $D\in \operatorname{Pic}^{1+e(G)}(C)$. Remark 1 gives $\deg(F)+2+2e(G)>3(q-1)$, i.e. $\deg(F)\geq 3q-2-2e(G)$. Serre duality shows that $h^1(X,E(-1,M))=0$ if and only if $h^1(X,\pi^*(F^*)(0,M^*\otimes \omega_C))=0$, i.e. if and only $h^1(C,F^*\otimes M^*\otimes \omega_C)=0$, i.e. if and only if $h^0(C,F\otimes M)=0$. Varying M in $\operatorname{Pic}^{-1-e(G)}(C)$ we get $\deg(F)\leq q-1+e(G)$.
- (c) Set $E := \pi^*(F)(-2, O_C)$. Serre duality and part (a) shows that E is not WACM if $3e(G) \le 2q 3$.

PROPOSITION 1. Take $C, G, X, a_1, e(G)$ as in Notation 1. If $q \ge 2$ and $2q - 3 \ge \max\{0, a_1\} + 3e(G)$, then there is no WACM line bundle on X.

Proof. Fix any $R := O_X(x, A) \in Pic(X)$ and assume that R is WACM.

- (a) Here we assume $x \ge -1$. Take any $L := \mathcal{O}_X(1,D)$ such that $\deg(D) = 1 + e(G)$. L is ample (Remark 3). Since $x + 1 \ge 0$, $h^1(X, R \otimes L) = 0$ if and only if $h^1(C, S^{x+1}(G) \otimes A \otimes D) = 0$. Since $\mathcal{O}_C = G_2$ is a quotient of G, \mathcal{O}_C is a quotient of $S^t(G)$ for any t > 0. Hence if t > 0, $M \in \operatorname{Pic}(C)$ and $h^1(C, S^t(G) \otimes M) = 0$, then $h^1(C, M) = 0$. Varying D in $\operatorname{Pic}^{1+e(G)}(C)$ we see that if R is WACM, then $\deg(A) + 1 + e(G) \ge 2q 1$, i.e. $\deg(A) \ge 2q 2 e(G)$.
- (b) Here we assume x>0. Set $L:=\mathcal{O}_X(x,D)$ with $\deg(D)\gg 0$. Since L is ample and $h^1(X,R\otimes L^*)=h^1(C,A\otimes D^*)>0$ if $\deg(D)\gg 0$, R is not WACM.
 - (c) Here we assume x = 0. Take $L := O_X(2, D)$ with $\deg(D) = 2 \cdot e(G) + 1$.

148 E. Ballico

Hence L is ample (Remark 4). Serre duality gives $h^1(X, R \otimes L^*) = h^1(X, \mathcal{O}_X(0, \omega_C \otimes \det(G) \otimes D \otimes A^*)) = h^1(C, \omega_C \otimes \det(G) \otimes D \otimes A^*)$. Varying D in $\operatorname{Pic}^{1+2e(G)}(C)$ we see that R is not WACM if $\det(G) + 1 + 2 \cdot e(G) - \deg(A) \leq 0$, i.e. if $\deg(A) \geq a_1 + 1 + 2e(G)$. If $2q - 2 - e(G) \geq a_1 + 1 + 2e(G)$, then part (a) shows that R is not WACM.

- (d) Here we assume x=-1. Take $L:=\mathcal{O}_X(1,D)$ with $\deg(D)=1+e(G)$. L is ample. $h^1(X,R\otimes L)=h^0(C,A\otimes D)$. Hence varying D in $\operatorname{Pic}^{1+e(G)}(C)$ we see that if R is WACM, then $\deg(A)+1+e(G)\geq 2q-1$, i.e. $\deg(A)\geq 2q-2-e(G)$. Serre duality gives $h^1(X,R\otimes L^*)=h^1(X,\mathcal{O}_X(0,D\otimes A^*\otimes \omega_C\otimes \det(G)))$. Hence If R is WACM, then $1+e(G)-\deg(A)+2q-2+a_1\geq 2q-1$, i.e. $\deg(A)\leq e(G)+a_1$. Thus if R is WACM, then $2q-2-e(G)\leq \deg(A)\leq e(G)+a_1$. First assume $a_1\leq 0$. Hence $e(G)=-a_1$. Since $q\geq 2$, we get a contradiction. Now assume $a_1>0$. Hence e(G)=0. In this case the contradiction comes from the assumption $2q-1\geq a_1$.
- (e) Here we assume $x \le -2$. Serre duality shows that R is not WACM under the same assumptions we used in the case $x \ge 0$. Notice that if x < -2, then no assumption at all is needed.

Proof of Theorem 1. Let E be a rank 2 WACM vector bundle on X. Since $\operatorname{Pic}(X) \cong \mathbb{Z} \mathcal{O}_{\pi}(1) \oplus \pi^*(\operatorname{Pic}(C))$, there are an integer x and $A \in \operatorname{Pic}(C)$ such that $\det(E) \cong \mathcal{O}_X(x,A)$. By [1], proof of Theorem 2, and [2], Theorem 1, $-4 \leq x \leq 0$ and there are an integer $z \in \{-2, -1, 0\}$, $N \in \operatorname{Pic}(C)$, and an exact sequence

$$(1) 0 \to \mathcal{O}_X(z,N) \to E \to \mathcal{O}_X(x-z,A\otimes N^*) \to 0$$

Moreover, $x \le 2z$.

- (a) Here we assume x=2z. A base-change theorem ([5], p. 11) says that $F:=\pi_*(E(-z,\mathcal{O}_C))$ is a rank 2 vector bundle on C and that the natural map $\pi^*(F)\to E(-z,\mathcal{O}_C)$ is an isomorphism. Apply Proposition 1. Hence from now on in the proof we will assume x<2z and in particular $z\in\{-1,0\}$.
- (b) Here we assume z=-1. Hence $x\in\{-4,3\}$. Fix any $D\in\operatorname{Pic}^{1+e(G)}(G)$ and set $L:=\mathcal{O}_X(1,D)$. L is ample (Remark 3). Since x-z+1<0, $h^0(X,\mathcal{O}_X(x-z+1,A\otimes N^*\otimes D))=0$. Since E is WACM, the exact sequence (1) gives $h^1(X,\mathcal{O}_X(-1,N)\otimes L)=0$. Since E is WACM, we get $h^1(X,\mathcal{O}_X(-1,N)\otimes L^*)=0$. Part (d) of the proof of Proposition 1 gives a contradiction, because $q\geq 2$ and $2q-1\geq a_1$.
- (c) Here we assume z=0 and $x \le -2$. Take L as in part (b). Since $h^0(X, \mathcal{O}_X(x-z+1, A \otimes N^* \otimes D)) = h^0(X, \mathcal{O}_X(x-z-1, A \otimes N^* \otimes D^*)) = 0$, we conclude as in part (b).
- (d) Here we consider the case (z,x)=(0,-1), i.e. the unique remaining case. Fix any $D\in \operatorname{Pic}^{1+e(G)}(G)$ and set $L:=\mathcal{O}_X(1,D)$. L is ample (Remark 3). Set $R:=\mathcal{O}_X(-1,A\otimes N^*)$. Since $h^2(X,\mathcal{O}_X(1,N\otimes D))=h^2(X,\mathcal{O}_X(-1,N\otimes D^*))=0$ and E is WACM, the exact sequence (1) gives $h^1(X,R\otimes L)=h^1(X,R\otimes L^*)=0$. Part (d) of the proof of Proposition 1 gives a contradiction, because $q\geq 2$ and $2q-1\geq a_1$.

References

- [1] E. Ballico, ACM vector bundles on products of smooth curves, preprint.
- [2] E. Ballico, ACM vector bundles on scrolls, preprint.
- [3] R. Hartshorne, Ample subvarieties of algebraic varieties, Lect. Notes in Math. 156, Springer, Berlin, 1970.
- [4] S. Mukai and F. Sakai, Maximal subbundles of vector bundles on a curve, Manuscripta Math. 52 (1985), no. 1-3, 251–256.
- [5] C. Okonek, M. Schneider and H. Spindler, vector bundles on projective spaces, Birkhäuser, Boston, 1980.

AMS Subject Classification: 14J60; 14H60.

E. Ballico, Dept. of Mathematics, University of Trento, 38050 Povo (TN), ITALY e-mail: ballico@science.unitn.it

Lavoro pervenuto in redazione il 13.04.2008 e, in forma definitiva, il 14.05.2008.