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E. Ballico*

RANK 2 ARITHMETICALLY COHEN-MACAULAY VECTOR
BUNDLES ON CERTAIN RULED SURFACES

Abstract. Here we study rank 2 arithmetically Cohen-Macaulay vectordies on a a ruled
surface over a smooth gengsurve, essentially proving their non-existence i 2 and the
ruled surface is rather balanced.

1. Introduction

Let X be an integrah-dimensional projective varietyy > 2, defined over an alge-
braically closed field. Lef. denote the ample cone of PX) andn_ its opposite. Let
No (resp.no) denote the set of all line bundles ¥ralgebraically equivalent tox (resp.
numerically trivial). Set) :=n, Un_, y:=nuUne andy:=nuno. LetE be a vector
bundle onX. We will say thatt is ACM or arithmetically Cohen-Macaulafresp. say
that E is WACM or weakly arithmetically Cohen-Macaulasesp. SACM oistrongly
arithmetically Cohen-Macauldyf H (X,E@L)=0forall1<i<n-—1andallL €y
(resp. L € n, resp. L €V). LetC be a smooth and connected projective curve. Set
g:= pa(C). For any rank 2 vector bundie onC sets(F) = dedF) —2-dedL), where

L is a maximal degree rank 1 subsheafFofHenceF is stable (resp. semistable, resp.
properly semistable) if and only §F) > 0 (resp.s(F) > 0, resp.s(F) = 0). A theo-
rem of C. Segre and M. Nagata says (&) < g. If s(F) > 0, then seg(F) := s(F).

If s(F) <0, then seg(F) :=0.

THEOREM 1. Let C be a smooth curve of genus-R and G a rank2 vector
bundle on C such th&g— 3> max{0,—s(G)} + 3e(G). Set X:=P(G). If g > 2, then
there is no rankk WACM vector bundle on X.

Of course, we will also check the rank 1 case (see ProposijioAs obvious
from that proof and the proof of Theorem 1 with no restrictamG there are very
strong numerical restrictions for the WACM and ACM line blesland rank 2 vector
bundles on the ruled surfade We stress the existence of rank 2 ACM vector bundles
on X whenq=1 andG = O§2 ([1]D) and of rank one ACM line bundles when= 0,

i.e. for Hirzebruch surfaces ([2]). For largehere are more (but always finitely many)
isomorphism classes of line bundlesk([2]).

*The author was partially supported by MIUR and GNSAGA of INdAltaly).
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2. The proof and related results

Notice that on any scroll over a smooth curve numerical exjeivce and algebraic
equivalence are the same. Henpe= no andy =y on any scroll over any smooth
curve.

REMARK 1. LetC be a smooth curve of gengendF a rankr vector bundle on
C. If h%(C,F®L) =0forallL € Pic°(X), then degF) < (r — 1)(q— 1) ([4], Corollary
at p. 252). Thus Riemann-Roch and Serre duality give tha(,F @ L) = 0 for all
L € Pid®(C), then degF) > (r + 1)(q—1).

REMARK 2. Fixt € Z. Fix a rank 2 vector bundlE onC. Setd := degF)
ands:=s(F). LetL be a maximal degree rank one subshed ofF /L is locally free,
deglL) = (d—2s)/2 and de@¢F /L) = (d+2s)/2. Hences=d (mod 2. s(F ®R) =
s(F) for all R € Pic(C). h%(C,F @ M) = 0 for all M € Pid (C) if and only degL) +t <
—1, i.e. if and only if(d — 2s)/2+t < —1. Notice thats(F*) = s(F). Hence Serre
duality shows thal*(C,F @ M) = 0 for everyM € Pid (C) if and only degF /L) +t >
2g—1,i.e.ifandonly if(d+2s)/2+t>2q—1.

NOTATION 1. Fix a smooth and connected cu@svith genusg and the ruled
surfaceX = P(G), whereG is a rank 2 vector bundle dB. LetG; be arank 1 subsheaf
of G. SinceG; has maximal degre&; := G/G; is a line bundle. Sed; := ded G;).
Hence de(G) = a; + a; ands(G) = a; —a;. SinceP(G) 2 P(G®R) for anyR €
Pic(C), we will always normalize5 so thatG; =2 oc. Hencea; = 0, dedG) = &
ands(G) = —a;. Recall thate(G) := 0 if a; > 0 ande(G) := —ay if a1 < 0. Notice
thar 0< ¢(G) < g for anyX (Remark 2). Lett: X — C denote the ruling and(1)
the tautologicait-ample line bundle oiX. Pic(X) = Zox(1) @ 1t*(Pic(C)). For every
integert and everyM € Pic(C) setoq(t) := 0% andox (t,M) := ox(t) @ TT(M).

REMARK 3. TakeC,G,X,a;,e(G) as in Notation 1. FiXD € Pic(C). Notice
thatX =2 P(G® D). Applying [3], Theorem I11.1.1, to the vector bund®&® D we get
thatox(1,D) is ample if and only if deD) > 1+ e(G).

First Claim: For every integek > 0 S(G) ® D is an ample vector bundle if
degD) > 1+x&G).

Proof of the First Claim: The vector bundleS‘(G) has rankx+ 1 and it
has an increasing filtratiofiF }o<i<x such thaty = 0, Fx;1 = S(G), eachF /F_1,
1<i<x+1,isaline bundle of degree 0 (casee(G) = 0) or degree> —x&(G) (case
e(G) > 0), and de@F1) = xa1. Just use that an extension of ample line bundles is ample
and that a line bundle o@ is ample if it has positive degree.

Second ClaimFix an integeix > 1 and assume dég) > 1+ x&G). Then
R:= ox(x,D) is ample.

Proof of the Second ClainBy Nakai criterion ([3], Theorem 1.5.1) it is suf-
ficient to prove thaR? > 0 and thatox(T) - R > 0 for every integral curvd@ cC X.
R? = 2x-dedD) + x?a; > 0. Take an integral curve C X and sex (y,M) := ox(T).
Notice thaty > 0 and thaty = 0 if and only if T is a fiber ofrt. 0x(T)-R= xya +x-
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degM) +y-degD). If y=0, thenox(T)-R=x> 0. From now on we assunye> 0.
First assumey > 0. Hencee(G) = 0 andox (T) - R> xya + x-dedM) +y > x(yas +
degM)). Hence it is sufficient to prove that d@d) > —ya;. Assume degV) <
—ya; — 1. To get a contradiction it is sufficient to show thétX, ox(y,M)) = 0. Since
y>0,h%(X, 0x(y,M)) =h°(C,9(G)®M). The vector bundl&(G) has rank/-+1 and

it has an increasing filtratiofiF }o<i<x such thatrg = 0, Fyy1 = §(G), eachk /F_1,
1<i<y+1,is aline bundle of degre@ + 1 —i)a;. Henceh%(X, ox(y,M)) = 0.
Now assumey < 0. Hencee(G) = —a; andox(T)-R>y+x-degM). Hence itis
sufficient to observe that the same filtration¥fG) used in the previous case gives
ho(C,9(G) @ M) = 0 if degM) < 0.

REMARK 4. TakeC,G,X,a;,e(G) as in Notation 1. LeF be a rank 2 vector
bundle orC.

(a) Sete :=1t*(F). We want to check thd is not WACM if 3e(G) < 2q—3.
Assume thak is WACM. h'(X,E(1,D)) = h}(C,G® F ®D). If h}(C,G®F ® D) =
0, thenh'(C,G, ® F ® D) = 0. Recall thatG, = oc and thatox(1,D) is ample if
degD) > 1+ e(G). VaryingD € Pict**P)(C) and applying Remark 1 we get dég >
3q—3—e(G). Setd := 0x(2,M) with M € Pic**?4®)(C). J is ample. Serre duality
givesh!(X,E ® J*) = h}(X,E*(0,F* ® wc ® detf(G) ® M ® A*)) = h'(C,F* ® wc ®
detG) ® M) = h%(C,F ® M*). Remark 1 shows that H°(C,F ® M*) = 0 for all M,
then degF) < q—2+ 1+ 2e(G).

(b) SetE := 1*(F)(—1,0¢c). h*(X,E®L) = 0 for allL € no. Here we check
thatE is not WACM if 3e(G) < 29— 2. Assume thaE is WACM. h'(X,E(1,D)) = 0 if
and only ifh! (X,F © D) = 0. Hence we get!(X,F ® D) = 0 for all D € Pict*%®)(C).
Remark 1 gives déf ) + 2+ 2e(G) > 3(q— 1), i.e. dedF) > 3q—2—2¢e(G). Serre
duality shows thah'(X,E(—1,M)) = 0 if and only if K} (X, 7t (F*)(0,M* ® tc)) = 0,
i.e. if and onlyh!(C,F* @ M* ® uxc) = 0, i.e. if and only ifh%(C,F @ M) = 0. Varying
M in Pic 1% (C) we get de¢F ) < q— 1+ €(G).

(c) SetkE := 1" (F)(—2,0¢). Serre duality and part (a) shows tHais not
WACM if 3(G) < 2q— 3.

PropPosITIONL. Take GG, X, a;,e(G) as in Notation 1. If g~ 2and2q— 3>
max{0,a;1 } + 3e(G), then there is no WACM line bundle on X.

Proof. Fix anyR:= 0x(x,A) € Pic(X) and assume th& is WACM.

(a) Here we assume> —1. Take anyL := 0x(1,D) such that de@®) =
1+ €¢(G). L is ample (Remark 3). Since+1> 0, h'(X,R®L) = 0 if and only if
h'(C,S}(G)® A® D) = 0. Sinceoc = G is a quotient of3, oc is a quotient oS (G)
for anyt > 0. Hence it > 0,M € Pic(C) andh'(C,S(G)®M) = 0, thenh!(C,M) = 0.
VaryingD in Pict*®©)(C) we see that iRis WACM, then degA) + 1+e(G) > 2q—1,
i.e. dedA) > 2q—-2—¢e(G).

(b) Here we assume> 0. Setl := 0x(x,D) with degD) >> 0. SincelL is
ample andh!(X,R® L*) = h'(C,A® D*) > 0 if deg(D) > 0, Ris not WACM.

(c) Here we assume= 0. TakeL := 0x(2,D) with degD) = 2-¢(G) + 1.
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HenceL is ample (Remark 4). Serre duality givieyX,R® L*) = h'(X, 0x(0,wc ®
det(G) ® D® A*)) = h!(C,wc ® defG) ® D ® ®A*). VaryingD in Pict+2%®)(C) we
see thaRis not WACM if def(G) + 1+ 2-e(G) —dedA) <0, i.e. if dedA) > a1+ 1+
2e(G). If 29— 2—¢(G) > a1 + 1+ 2¢(G), then part (a) shows th&is not WACM.

(d) Here we assume= —1. TakelL := 0x(1,D) with degD) = 1+ e(G).
L is ample. h'(X,R® L) = h°(C,A® D). Hence varying in Pic*®®)(C) we see
that if R is WACM, then deg¢A) +1+¢€(G) > 29— 1, i.e. dedgA) > 2q—2—¢e(G).
Serre duality gived*(X,R® L*) = h1(X, 0x(0,D ® A* ® we ® det(G))). Hence IfR
is WACM, then 1+ e(G) —dedA)+29—2+a; > 29—1, i.e. dedA) < e(G) + a1.
Thus if Ris WACM, then 21— 2 —¢(G) < dedA) < ¢(G) + a;. First assumey < 0.
Hencee(G) = —ay. Sinceq > 2, we get a contradiction. Now assumge> 0. Hence
e(G) = 0. In this case the contradiction comes from the assumptien2> a;.

(e) Here we assume< —2. Serre duality shows th& is not WACM un-
der the same assumptions we used in the gasd. Notice that ifx < —2, then no
assumption at all is needed. O

Proof of Theorem 1.Let E be a rank 2 WACM vector bundle oK.
Since Pi¢X) = Zogr(1) & 1" (Pic(C)), there are an integerandA € Pic(C) such that
detE) = ox(x,A). By [1], proof of Theorem 2, and [2], Theorem 44 < x < 0 and
there are an integerc {—2,—1,0}, N € Pic(C), and an exact sequence

1) 0— 0x(zN) - E — ox(x—z,A®N*) =0

Moreoverx < 2z

(a) Here we assume= 2z. A base-change theorem ([5], p. 11) says that
F :=m.(E(—z0c)) is a rank 2 vector bundle d@ and that the natural map'(F) —
E(—z oc) is an isomorphism. Apply Proposition 1. Hence from now orhi@ proof
we will assumex < 2zand in particulaz € {—1,0}.

(b) Here we assume= —1. Hencex € {—4,3}. Fix anyD € Pic**®©®)(G)
and selL := 0x(1,D). L is ample (Remark 3). Since—z+ 1< 0, (X, 0x(x—z+
1,A®N*®D)) = 0. SinceE is WACM, the exact sequence (1) givegX, ox(—1,N)®
L) =0. Sincex—z— 1< 0,h%(X, ox(x—z—1,A®@ N*®D*)) = 0. SinceE is WACM,
we geth!(X, ox(—1,N)®L*) = 0. Part (d) of the proof of Proposition 1 gives a con-
tradiction, because> 2 and 21— 1> a.

(c) Here we assune= 0 andx < —2. Takel as in part (b). Sinck®(X, ox (x—
z+1L,A®N*®D)) = h%(X, 0x(x—z— 1,A® N* ® D*)) = 0, we conclude as in part
(b).

(d) Here we consider the casex) = (0,—1), i.e. the unique remaining
case. Fix anD € Pict*®®)(G) and setlL := 0x(1,D). L is ample (Remark 3). Set
R:= 0x(—1,A®N*). Sinceh?(X, 0x(1,N® D)) = h*(X, 0x (—1,N®D*)) = 0 andE
is WACM, the exact sequence (1) giie§X,R® L) = h}(X,R® L*) = 0. Part (d) of
the proof of Proposition 1 gives a contradiction, becayse? and 21— 1 > a;. O



vector bundles on ruled surfaces 149

References

[1] E. Ballico, ACM vector bundles on products of smooth @gypreprint.
[2] E. Ballico, ACM vector bundles on scrolls, preprint.

[3] R. Hartshorne, Ample subvarieties of algebraic vaegtiLect. Notes in Math. 156, Springer, Berlin,
1970.

[4] S.Mukaiand F. Sakai, Maximal subbundles of vector baadin a curve, Manuscripta Math. 52 (1985),
no. 1-3, 251-256.

[5] C. Okonek, M. Schneider and H. Spindler, vector bundlepmjective spaces, Birkhauser, Boston,
1980.

AMS Subject Classification: 14J60; 14H60.

E. Ballico, Dept. of Mathematics, University of Trento, 380Povo (TN), ITALY
e-mail: ballico@science.unitn.it

Lavoro pervenuto in redazione il 13.04.2008 e, in forma d@&fa il 14.05.2008.



