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NULLSTELLEN SATZ REVISITED

Abstract. In this note we give anew proof of Hilbert’s Nullstellensatz, based onthe use of
Gröbner basis. The proof has two variants. The first one uses the fundamental theorem of
algebra and thesecond oneuses Gelfand-Mazur’s theorem.

1. Introduction

Quite recently several new proofsof theNullstellensatz andtheFundamental Theorem
of Algebra have appeared in the literature. This is a happy fact, sinceboth results are,
in some sense, a keystone for classical algebraic geometry and a better understanding
of both is to be acknowledged.

The main goal of this note is to present another proof of the Nullstellensatz
which, from our point of view, is so easy to understandthat, at least from apedagogical
view, it should havesomevalue. Wedo not claim that our proof isessentially new, since
it is based on well known ideas, but we have not been able to locate any textbook or
articlewhere this proof appears.

Weuse abasic result on integral dependenceon polynomial rings, which can be
combined with theproperties of thedivisionalgorithm with respect to aGröbner basis
of an ideal. Our proof has essentially two variants: one which uses the fundamental
theorem of algebra and the other, more surprising, which depends on a well known
result from functional analysis. In particular, we prove that Gelfand-Mazur Theorem
implies both theNullstellensatz and theFundamental Theorem of Algebra.

2. Gröbner basis and thedivision algor ithm

We recall that a monomial order is a total order < over the set N
n (which induces a

total order on the monomials in the indeterminates {x1, · · · , xn}) with the following
two additional properties:

O1 If a < b andc ∈ N
n, then a + c < b + c.

O2 All nonempty subset of N
n has aminimum with respect to this order.

For example, we can associate to the ordering xn > · · · > x1 of the indetermi-
nates the lexicographic order defined by a = (a1, · · · , an) >l ex b = (b1, · · · , bn) if
and only if ak0 − bk0 > 0, where k0 = max{k ∈ {1, · · · , n} : ak − bk 6= 0} and the
graduated lexicographic order <gr lex given by:

(1) a >gr lex b ⇔ |a| =

n∑

i=1

|ai | > |b| =

n∑

i=1

|bi | or |a| = |b| anda >l ex b.
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Given an ideal I of C[x1, · · · , xn], the Hilbert basis theorem claims that there
exists a finite set of polynomials { fi }k

i=1, called a Hilbert basis, such that I =<

f1, · · · , fk >.

Given a monomial order < and a nonzero polynomial f ∈ C[x1, · · · , xn], the
leading term Lt( f ) is the greatest monomial, with respect to the monomial order <,
appearing in the expansion of f as a sum of monomials of distinct multi -degree. If
I 6=< 0 > the initial ideal Lt(I ) is the monomial ideal formed by the leading terms
Lt( f ) for 0 6= f ∈ I . A Hilbert basis of I is called a Gröbner basis if the leading
terms of its elements define aHilbert basis of the monomial ideal Lt(I ). In the 1960’s
Buchberger, which was a student of Gröbner, gave an algorithm to compute aGröbner
basis of the ideal I in terms of a given Hilbert basis of I and proved the following
fundamental result:

THEOREM 1 (Buchberger). Given I an ideal of C[x1, · · · , xn] and
{g1, · · · , gs} a Gröbner basisof I , the followingclaims hold true:

(a) For all f ∈ C[x1, · · · , xn] there exists h1, · · · , hs, r ∈ C[x1, · · · , xn] such that
f = h1g1 + · · · + hsgs + r . Moreover, the polynomial r in this expression is
uniquely determined by f and noterm appearing in r is divisible by Lt(gi ), for
i = 1, . . . , s.

(b) There isan algorithm which computes thepolynomials hi andr above.

For the proof of Theorem 1 we strongly recommend the very nicebook byCox, Little
and O’Shea, [5, pages 59-65].

Westudy the connectionsbetween Gröbner basesandthemaximal idealsof the
ringC[x1, · · · , xn]. We introducesomenotation in order to state akey Lemma.

Let I be an ideal of C[x1, · · · , xn] and let A : C
n → C

n be an invertible linear
map, so that A defines a change of coordinates x j =

∑n
i=1 ai, j yi (we use the notation

x = Ay). We consider, associated to I and A, the ideal I A = { fA(y) = f (Ay) :

f (x) ∈ I } ⊂ C[y1, · · · , yn].

LEMM A 1. Given I a maximal ideal of C[x1, · · · , xn], there exists a linear
change of coordinates A such that, for the graduated lexicographic order <gr lex de-
fined in (1), the initial ideal Lt(I A) of I A of C[y1, · · · , yn] contains monomials of the
form ynk

k for somenk ∈ N andk = 1, . . . , n.

Proof. Wedivide theproof in threesteps:

Step 1. Given f ∈ C[x1, · · · , xn] a polynomial of total degreed, there existsa change
of coordinates A of the form

(2) xn = yn, xn−1 = yn−1 + an−1 yn, · · · , x1 = y1 + a1 yn

(with a1, · · · , an ∈ C ) such that thepolynomial f A, which has total degreed, satisfies

(3) fA = yd
n + termsof degreesmaller than din C[y1, . . . , yn−1][yn].
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This isawell known fact. Itsproof can be located, for example, in [5, p. 169].

Step 2. Let I ⊂ C[x1, · · · , xn] be a prime ideal which contains an element f of the
form

(4) f = xd
n + terms of degreesmaller than din C[x1, . . . , xn−1][xn].

If I is a maximal ideal of C[x1, · · · , xn] then J = I ∩ C[x1, · · · , xn−1] is also a
maximal ideal of C[x1, · · · , xn−1]. In thisparticular casewehavethat J 6= (0).

We use abasic result about integral dependence which asserts that if A ⊂ B
is an extension of integral domains and if B is integral over A (which means that the
elements of B are solutions of equations p(x) = 0, for p ∈ A[x] a monic polynomial)
then B is afield if an only if A is so (see, [3, Proposition. 5.7, page 61]).

The ring A := C[x1, · · · , xn−1]/J can be identified with a subring of B :=

C[x1, · · · , xn]/I by the map h : A → B which sends xi + J ∈ A to xi + I ∈ B, for
i = 1, · · · , n − 1. The rings A, B are integral domains sinceif I is a prime ideal then
J = h−1(I ) is also a prime ideal. By step 1 there exists an element f ∈ I of the form
(4); this implies that tn := xn + I is integral over A, hence also B = A[tn] is integral
over A. It follows that B isafield (i.e., I ismaximal ) if and only if A isafield (i.e., J
ismaximal).

Step 3. The result holds true.

To end the proof of the lemma we take into account the facts proved in steps
1 and 2 to guarantee, by an inductive argument, that there exists a linear change of
coordinates A : C

n → C
n (obtained by composition of several changes of coordinates

of the form (2), the first one concerning all i ndeterminates, the second one involving
only the first n − 1 indeterminates, etc.) such that the ideal I A contains elements
fk ∈ C[y1, · · · , yk] of total degreenk ≥ 1 of the form:

fk = ynk
k + terms of degreelessthan nk in C[y1, · · · , yk−1][yk], for k = 1, · · · , n.

This implies that the monomial ideal Lt(I A), with respect to the graduated lexico-
graphic order <gr lex above (1), contains themonomials {ynk

k }n
k=1.

3. TheNullstellensatz

Now we are able to prove our main result.

THEOREM 2 (Nullstellensatz). The maximal ideals of C[x1, · · · , xn] are pre-
cisely the ideals of the form< x1 − a1, · · · , xn − an >, for a1, . . . , an ∈ C.

Proof. It is clear that, in order to prove this result for amaximal ideal I it i senoughto
prove it for the ideal I A, for A a linear invertiblemap.

By Lemma 1 and Theorem 1 the set of monomials which appear in the rests of
the divisions of polynomials in C[y1, · · · , yn] by a Gröbner basis of I A, with respect
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to the order <gr lex, is a finite set. It follows that the field K = C[y1, · · · , yn]/I is a
complex vector spaceof finitedimension N.

Now wemay conclude theproof in two ways:

First, we have shown that K : C is a finite algebraic field extension, and, by
the fundamental theorem of algebra, K = C and N = 1, which means that Lt(I A) =

{y1, · · · , yn}. Alternatively, if wedenote Ak := C[y1, . . . , yk]/I A ∩ C[y1, . . . , yk] we
can use step 2 and the fundamental theorem of algebra to show that the sequence of
integral ringextensions:

C → A1 → A2 → · · · → An = K

is actually asequenceof field isomorphisms.

If f ollows by any of these two arguments that I A contains a maximal ideal of
the form (y1 − b1, . . . , yn − bn) for some b1, . . . , bn ∈ C. This ends the proof in this
case.

The second way to end the proof of the Nullstellensatz is to use the Gelfand-
Mazur Theorem from functional analysis. This theorem is at the core of the theory
of commutative Banach algebras and has many interesting applications [4], [13]. It
claims that the only normed fields that there exists, up to Banach algebra isometries,
areR (theset of real numbers) andC (theset of complex numbers), both equipped with
their standard absolute value. This result was announced by Mazur in 1938[10] and
proved byGelfand in 1941[7].

Let us now consider the norm ‖ · ‖∗ : K → R
+ given by ‖a‖∗ = ‖La‖, where

La : K → K is the linear operator given by La(b) = a · b and ‖La‖ denotes the
standard norm of La (i.e. we consider over K ∼= C

N thestandard Euclidean norm ‖ · ‖

and set ‖La‖ = sup‖x‖=1 ‖La(x)‖). Clearly, (K , ‖ · ‖∗) is anormed field, since

‖a · b‖∗ = ‖La·b‖ = ‖LaLb‖ ≤ ‖La‖‖Lb‖ = ‖a‖∗‖b‖∗.

It follows from Gelfand-Mazur’s theorem that there existsan isometry of Banach alge-
bras τ : K → C. Of course, this implies that N = 1 sinceτ is also an isomorphism of
C-vector spaces and dimC K = N. Thisends theproof.

REMARK 1. We should note that there are proofs of Gelfand-Mazur theorem
which do not use the fundamental theorem of algebra nor any other result, li ke the
well known Liuovill e’s principle, which is at the heart of other demonstration of this
result. In fact, althoughthe most extended proof of Gelfand-Mazur’s theorem uses Li-
ouvill e’s theorem (see[12]), fortunately there are other proofs. Concretely, those by
Kametami [8] andRickart [11] arebased onthe continuity propertiesof theproduct in
aBanach algebra andthefact that for every n ∈ N thepolynomial xn −1 isdecompos-
able in linear factors over the set of complex numbers, which is a result weaker than
the fundamental theorem of algebra (and easy to prove if you know Euler’s formula
ei θ = cosθ + i sinθ ). Thisgives its significanceto our proof that Gelfand-Mazur’s the-
orem implies the fundamental theorem of algebra and, on the other hand, also allows
to interpret that both results are indeed equivalent, since the fundamental theorem of
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algebra implies the existenceof the n-th roots of unity. The proofs by Kametami and
Rickart have also the advantage that they belong to the so called “elementary proofs”
of Gelfand-Mazur’s theorem. Indeed they can be explained at the second year under-
graduate level in amathematics faculty.

REMARK 2. Aswehave already noted, theproof wehavepresented in thispa-
per has essentially two variants: one which uses the fundamental theorem of algebra
and the other one based onthe Gelfand-Mazur’s theorem. It is interesting to note that
the first of these variants is still valid for a proof of the Nullstellensatz in its strongest
version, where the result is stated for ideals of K[x1, · · · , xn], where K is any alge-
braically closed field. Meanwhile, the proof based on Gelfand-Mazur’s theorem is
only valid for K = C.

Acknowledgement. The author is quite grateful to the referee, since his (her) com-
ments have been very useful to improve the readabilit y of thisnote.
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