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NULLSTELLEN SATZ REVISITED

Abstract. In this note we give anew proof of Hilbert's Null stell ensatz, based onthe use of
Grobrer basis. The proof has two variants. The first one uses the fundamental theorem of
agebra and the second ore uses Gelfand-Mazur's theorem.

1. Introduction

Quite recently several new proafs of the Null stell ensatz and the Fundamental Theorem
of Algebra have gopeaed in the literature. Thisis a happy fad, since both results are,
in some sense, a keystone for clasgcd agebraic geometry and a better understanding
of bath isto be adknowledged.

The main gcel of this note is to present ancther proof of the Null stell ensatz
which, from our paint of view, is D easy to understand that, at least from a pedagogcd
view, it shoud have somevaue. We do nd claim that our proof isessentialy new, since
it is based onwell known idess, but we have not been able to locate any textbook a
article where this proof appeas.

We use abasic result onintegral dependence on pdynomial rings, which can be
combined with the properties of the division algorithm with resped to a Grobrer basis
of an ided. Our prodf has esentialy two variants: one which uses the fundamental
theorem of algebra and the other, more surprising, which depends on a well known
result from functional analysis. In particular, we prove that Gelfand-Mazur Theorem
implies both the Null stell ensatz and the Fundamental Theorem of Algebra

2. Grobner basis and thedivision algorithm

We recdl that a monamial order is atota order < over the set N (which induwces a
total order on the monamials in the indeterminates {xy, - - - , Xn}) with the following
two additional properties:

O; fa<bandce N", thena+c<b+c.
02 All norempty subset of N has a minimum with resped to this order.

For example, we can asociate to the ordering x, > --- > X of the indetermi-
nates the lexicographic order defined bya = (a1, -+ ,an) >jex b = (b1, --- , bp) if
and orly if ax, — bk, > O, wherekg = max{k € {1,---,n} : ax — bx # O} andthe
graduated lexicographic order <grjex given by

n n
() a>giexb lal=> lal> bl =2 Iblor[a = bl anda>jexb.
i=1 i=1
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Given anided | of C[xy, ---, Xn], the Hilbert basis theorem claims that there
exists a finite set of paynomials {fi}ik:l, cdled a Hilbert basis, such that | =<
f1, -+, fk >.

Given amonamia order < and anonzero pdynomia f € C[xy, ---, Xp], the
leading term Lt(f) is the greaest monamial, with resped to the monamia order <,
appeaing in the expansion d f as a sum of monamials of distinct multi-degree If
| #< 0 > theinitia ided Lt(l) isthe monamia ided formed by the leading terms
Lt(f)for0 £ f e |. A Hilbert basis of | is cdled a Grobrer basis if the leading
terms of its elements define aHilbert basis of the monamial ided Lt(1). Inthe 1960s
Buchberger, which was a student of Grobrer, gave an algorithm to compute aGrobrer
basis of the ided | in terms of a given Hilbert basis of | and proved the foll owing
fundamental result:

THEOREM 1 (Buchberger). Given | anideal of C[xy, --- , Xn] and
{01, -+, gs} a Grobrer basisof 1, the following claims hald true:

(@) Foral f € C[xg,- -, Xp] there edtstshy, --- , hg,r € C[Xq, - - - , Xn] such that
f = h101 + --- + hsgs + r. Moreover, the poynomial r in this expresson is
uniquely determined by f and notermappearinginr isdivisible by Lt(gj), for
i=1,...,s.

(b) Thereisan dgorithm which computes the paynomials h; andr above

For the proof of Theorem 1 we strongy recommend the very nice book byCox, Little
and O’ Sheg [5, pages 59-65].

We study the cnredions between Grobrer bases and the maximal i deds of the
ring C[xy, - - - , Xn]. We introduce some notationin order to state akey Lemma.

Let | be anided of C[xg,---, Xp] andlet A: C" — C" be aninvertible linea
map, so that A defines a change of coordinates x; = >ty a,jyi (weusethe notation
X = Ay). We onsider, asociated to | and A, theided Ia = {faly) = f(Ay) :
f(x) e} CClys -, ¥l

LEMMA 1. Given | a maximal ideal of C[xq,---, Xn], there exsts a linear
change of coordinates A such that, for the graduaed lexcographic order <grjex de-
fined in (1), theinitial ideal Lt(I) of I o of C[ys, - -, ¥n] contains monamials of the
formy* for someny e Nandk = 1,...,n.

Proof. We divide the prodf in threesteps:

Step 1. Given f € C[xy, -- - , Xn] @ pdynomial of total degreed, there exstsa change
of coordinates A of the form

2 Xn=VYn, Xn-1=VYn-1t+a-1¥n, -, Xt=Y1+aiYn
(with &y, - - - , ay € C) such that the paynomial f 4, which hastotal degreed, satisfies

(©)] fa= y,ﬁ’ + terms of degreesmaller than din C[ys, ..., Yn—11[Yn].



Nullstellensatz 367

Thisisawell known fad. Its proof can be located, for example, in[5, p. 169.

Step 2. Let | € C[Xy,---, Xn] be a prime ideal which contains an element f of the
form

4 f = xﬂ + terms of degreesmaller than din C[xy, ..., Xp—11[%n].

If I isa maximal ideal of C[x1,---,Xa]Jthen J = | N C[xy,---,Xp—1] isalso a
maximal ideal of C[xy, -- - , Xn—1]. In thisparticular case we havethat J # (0).

We use abasic result abou integral dependence which aserts that if A ¢ B
is an extension o integral domains and if B isintegral over A (which means that the
elements of B are solutions of equations p(x) = 0O, for p € A[x] amonic polynomial)
then Bisafiedif an only if Ais 2 (see [3, Propasition. 5.7, page 61]).

Thering A := C[Xg,---, Xp—1]/J can be identified with a subring o B :=
C[x1, -+ ,%n]/l bythemaph : A — Bwhichsendsx +J € Atox; + | € B, for
i=1,---,n—1 Therings A, B areintegral domains snceif | isaprimeided then
J=h"1(l)isasoaprimeided. By step 1there exists an element f < | of the form
(4); thisimpliesthat t, := x, + | isintegral over A, hence dso B = A[t,] isintegra
over A. It followsthat B isafield (i.e., | ismaximal ) if and orly if Aisafield (i.e., J
ismaximal).

Step 3. Theresult haldstrue.

To end the proof of the lemma we take into acourt the fads proved in steps
1 and 2to guaranteg by an indwctive agument, that there exists a linea change of
coordinates A : C" — C" (obtained by compasition o several changes of coordinates
of the form (2), the first one cncerning al i ndeterminates, the second ore invalving
only the first n — 1 indeterminates, etc.) such that the ided | contains elements
fx € Clya, - - -, Yk] of total degreeny > 1 of the form:

fk = yQ" + terms of degreelessthanny in C[ys, - - - , Yk—1][¥], fork=1,--- ,n.
This implies that the monamial ided Lt(l), with resped to the graduated lexico-

graphic order <grjex above (1), contains the monamials {yli”‘}ﬂ:l. O

3. TheNullstellensatz

Now we ae életo prove our main result.

THEOREM 2 (Nullstellensatz). The maximal ideals of C[xy, - - - , X] are pre-
ciselytheidealsof theform < x; —ag, -+ ,Xn —an >, foray, ..., ap € C.

Prodf. Itisclea that, in order to prove thisresult for amaximal ided | it isenoughto
proveit for theided | 5, for A alinea invertible map.

By Lemma 1 and Theorem 1 the set of monamials which appea in the rests of
the divisions of paynomialsin C[ys, - - - , ¥n] by a Grobrer basis of | 4, with resped
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to the order <griex, isafinite set. It follows that the field K = C[ys, --- , ynl/l isa
complex vedor spaceof finite dimension N.

Now we may conclude the proof in two ways:

First, we have shown that K : C is afinite dgebraic field extension, and, by
the fundamental theorem of algebra, K = C and N = 1, which meansthat Lt(l15) =
{y1, -+, ¥n}. Alternatively, if we denote Ay := C[ys, ..., Ykl/IaNC[y1, ..., Yk] we
can use step 2 and the fundamental theorem of algebra to show that the sequence of
integral ring extensions:

C— A1—> Az—)-~-—>An=K

isadually asequence of field isomorphisms.

If follows by any of these two arguments that | o contains a maximal ided of
theform (y1 — b1, ..., yn — bp) for somebs, ..., by € C. Thisendsthe prodf in this
case.

The second way to end the proof of the Nullstellensatz is to use the Gelfand-
Mazur Theorem from functional analysis. This theorem is at the core of the theory
of commutative Banach algebras and has many interesting applicaions [4], [13]. It
claims that the only normed fields that there exists, up to Banach algebra isometries,
areR (the set of red numbers) and C (the set of complex numbers), bath equipped with
their standard absolute value. This result was annourced by Mazur in 1938[10] and
proved by Gelfandin 1941[7].

Let us now consider thenarm || - ||s : K — R* given by ||a|l« = ||Lall, where
La : K — K isthelinea operator given by La(b) = a- b and ||La| denctes the
standard narm of L, (i.e. we consider over K = CN the standard Euclidean narm || - ||
andset [|[Lall = supyx =1 lILa(X)|)). Clealy, (K, || - |l.) isanormed field, since

la-blls = l[Labll = [LaLbll < [ILalllLbll = lIall[bll.

It foll ows from Gelfand-Mazur’s theorem that there exists an isometry of Banach alge-
brasz : K — C. Of course, thisimpliesthat N = 1 since z isalso an isomorphism of
C-vedor spacesand dmc K = N. Thisends the proof. O

REMARK 1. We shoud nate that there ae proadfs of Gelfand-Mazur theorem
which do nd use the fundamental theorem of algebra nor any ather result, like the
well known Liuovill €'s principle, which is at the heat of other demonstration o this
result. Infad, althoughthe most extended proof of Gelfand-Mazur’s theorem uses Li-
ouvill € s theorem (see[12]), fortunately there ae other proofs. Concretely, those by
Kametami [8] and Rickart [11] are based onthe continuity properties of the prodict in
aBanad algebra andthe fad that for every n € N the polynomial x" — 1 isdecompos-
able in linea fadors over the set of complex numbers, which is a result wegker than
the fundamental theorem of algebra (and easy to prove if you knav Euler’'s formula
€? = cosf +ising). Thisgivesits dgnificanceto ou proof that Gelfand-Mazur’s the-
orem impli es the fundamental theorem of algebra and, on the other hand, also allows
to interpret that both results are indeed equivalent, since the fundamental theorem of
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algebraimplies the existence of the n-th roats of unity. The proofs by Kametami and
Rickart have dso the advantage that they belongto the so cdled “elementary proofs’
of Gelfand-Mazur’'s theorem. Indeed they can be explained at the second yea under-
graduate level in a mathematics facaulty.

REMARK 2. Aswe have dready naed, the proof we have presented in this pa-
per has essntially two variants: one which uses the fundamental theorem of algebra
and the other one based onthe Gelfand-Maaur’'s theorem. It isinteresting to nae that
the first of these variantsis dill valid for a proof of the Null stellensatz in its grongest
version, where the result is gated for ideds of K[xy, - - , Xn], where K is any alge-
braicdly closed field. Meawwhile, the proof based on Gelfand-Maaur's theorem is
only valid for K = C.

Acknowledgement. The author is quite grateful to the refereg since his (her) com-
ments have been very useful to improve the readability of this note.
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