
Rend. Sem. Mat. Univ. Pol. Torino - Vol. 62, 3 (2004)

A. Campillo – J.I. Farrán

ADJOINTS AND CODES

Abstract. We discuss an algorithm to compute bases for the space L(G), provided G is a
rational divisor over a non-singular absolutely irreducible algebraic curve. The algorithm is
founded on the Brill–Noether algorithm by using the theory of Hamburger–Noether expan-
sions, and it is given in terms of symbolic computation. As a byproduct, we introduce a
method to compute the Weierstrass semigroup at P together with functions for each value in
this semigroup, provided P is a rational point of this curve. This methods are nice applica-
tions of the classical adjuntion theory.

On the other hand, we discuss an alternative method for the computation of Weierstrass
semigroups and the corresponding functions on the basis of the Abhankar-Moh theorem, for
the case of a plane curve with only one branch at infinity. This method requires the pre-
computation of a certain integral basis. Both alternative methods be applied to the effective
construction (Riemann–Roch problem) and decoding (Weierstrass semigroups) of Algebraic
Geometry codes. The second method can be also regarded as a kind of adjunction procedure,
and we compare both alternatives from a general point of view.

1. An introduction to Coding Theory and AG codes

The general problem of error-correcting codes is as follows: A message should be
sent through a noisy channel and one wants, as far as possible, detect or even correct
the (possibly) committed errors. For that, on has to encode the original message with
enough redundancy, so that few errors can be detected of corrected in an algorithmic
(and efficient) way.

For the sake of simplicity, we assume that the above situation can be described
with mathematical terminology in the following way: The symbols of an information
source are identified to the elements of a finite field Fq , that is the alphabet which is
used to write such information. If the message is a sequence of k such symbols, it can
be considered as an element of the Fq-vector space Fn

q , whose dimension is k. Thus,
an encoding against errors is an injective linear map

Fk
q ↪→ Fn

q

and the image of such map is called (linear) code, that is, a linear subspace C ⊆ Fn
q

of dimension k. The number n is called the length of the code, and then n − k is the
redundancy. If a vector c is in C , it is called a codeword, and if an error vector e is
added, the received word is then x = c + e.

From a theoretical point of view, the code C detects a configuration of errors e if
the received word x = c + e is not a codeword. In practice, detecting errors is just
checking if x ∈ C or not, and this is easily checkable by just using linear algebra. Note
that there also exist non-linear codes in the literature, but this point (and many others)
would be more complicated to solve.

From a computational point of view, let {c1, . . . , ck} be a vector basis of C , and

209

210 A. Campillo – J.I. Farrán

construct the generator matrix G of C whose rows are the vector of such a basis. The
encoding process is just a matrix multiplication

m 7→ m · G

where m are the information symbols (the original message). In principle, checking if
x ∈ C (error detection) would be just checking whether x is a linear combination of
{c1, . . . , ck} or not. This is usually solved in the following way: Take a vector basis of
the orthogonal space C⊥ (with respect to the standard non-degenerated bilinear form
on Fn

q), namely {h1, . . . , cn−k}, and construct the parity-check matrix H of C whose
rows are these vectors. Thus

x ∈ C ⇔ H · xt = 0.

The problem of error correction is harder. In the origins of the Coding Theory the
approach was purely probabilistic: For a given received word, one considers that the
emitted word is the codeword that minimizes some conditioned probability (decoding
by maximum likelihood). Nowadays, from the development of the Algebraic Coding
Theory, the approach is more algorithmic: Find the “nearest” codeword to the received
word x, where proximity is defined from the metric given by the so-called Hamming
distance

d(x, y) :=]{i | xi 6= yi}

Unfortunately, this is a computationally hard problem (NP), and finding a efficient
solution for the decoding problem depends strongly on the structure of the concrete
code, that is, on the way in which the code is constructed.

On the other hand, one should know how many errors are expected to be detected
(or corrected) by the code. First, one defined the so-called minimum distance of the
code as

d ≡ d(C) := min{d(c, c′) | c, c′ ∈ C, c 6= c′}

Then, one easily checks that

a) C detects any t errors, whenever t < d.

b) C corrects any t errors, whenever 2t < d.

Note that “corrects” means just that the problem of finding the nearest word to a re-
ceived word has a unique solution and it equals the emitted word, not that we are able
to do it algorithmically. Finally, an important (but also hard) problem is to computed
(or estimate) d. In principle, we are satisfied with just finding a good enough designed
distance d∗ such that d ≥ d∗. You can see more details on Coding Theory for example
in [14] or [12].

We now described shortly the construction of error-correcting codes from algebraic
curves (see [12] or [16] for further details). Let χ̃ be a non-singular projective algebraic
curve defined over a finite field F such that χ̃ is irreducible over F. In order to define the
Algebraic Geometry codes (AG codes in short), take F-rational points P1, . . . , Pn of

Adjoints and Codes 211

the curve and a F-rational divisor G (which can be assumed effective) having disjoint
support with D

.= P1 + . . .+ Pn , and then consider the well-defined linear maps

evD : L(G) −→ Fn

f 7→ (f (P1), . . . , f (Pn))
and

resD : �(G − D) −→ Fn

ω 7→ (resP1(ω), . . . , resPn (ω))
.

One defines the linear codes

CL ≡ CL(D,G)
.= Im(evD) , C� ≡ C�(D,G)

.= Im(resD).

The length of both codes is obviously n, and one has (C�) = C⊥
L by the residues

theorem. On the other hand, given D and G as above there exists a differential form ω

such that CL(D,G) = C�(D, D − G + (ω)) and thus it suffices to deal with the codes
of type C�.

Denote by k(C) and d(C) the dimension over F and the minimum distance of the
linear code C respectively, d(C) being the minimum number of non-zero entries of
a non-zero vector of C . Goppa estimates for k(C) and d(C) are derived from the
Riemann–Roch formula. In fact, if 2g − 2 < deg G < n then

(1)

[
k(CL) = deg G + 1 − g
d(CL) ≥ n − deg G

(2)

[
k(C�) = n − deg G + g − 1
d(C�) ≥ deg G + 2 − 2g

The main problem to solve for the construction of such codes consists in principle
of computing bases for L(G), finding points (rational or not) of the curve and evaluat-
ing functions of L(G) at some rational points. In practice, there is no general method
for computing bases for L(D), so that one must use a (possibly singular) plane model
χ for the non-singular curve χ̃ , for which there exist classical methods for doing it
(namely Brill–Noether [10] or Coates [6] algorithms). Thus, one must substitute the
term “points” by the term “branches” (or “places”, if one deals with the function
field instead of the geometric object). In this way, the computational problems which
are involved in the effective construction of AG codes can basically be reduced to the
following ones:

(1) Find sufficiently many F-rational places of χ̃ , so that n > 2g − 2. This can be
done by means of Gröbner bases computation, after having a good description of
the resolution of singularities of χ , what implies in particular the knowledge of
all its closed singular points. One should eventually compute some extra closed
points for auxiliary divisors.

(2) Find a basis for L(G) using the Brill–Noether method, what is our main task in
the following section and what can be done effective with the aid of Hamburger–
Noether expansions.

(3) Compute the order of a function at a rational point P and evaluate the function
at this point when possible, what can be done from lazy parametrizations at
the rational branch corresponding to P. More precisely, if φ = G/H is a
quotient of homogeneous polynomials of the same degree in three variables,

212 A. Campillo – J.I. Farrán

and (X (t), Y (t)) is the rational parametrization obtained from the symbolic
Hamburger–Noether expressions for the branch given by P, the order can be
computed taking at P the corresponding local affine equation g/h of φ and do-
ing the substitution

g(X (t), Y (t))

h(X (t), Y (t))
= ar tr + . . .

bs ts + . . .

obtaining the order r − s by lazy evaluation. Moreover, if φ is well-defined at
P (what always happens in the applications to Coding Theory), then r ≥ s and
φ(P) = as/bs .

(4) Find efficient decoding algorithms for AG codes. Roughly speaking, after solving
the above problems (preprocessing) the complexity of decoding AG codes is
reduced to that of solving linear systems. The idea is finding a set J of positions
Pi containing the error positions, and then is J is “small enough”, that is]J < d,
then the decoding is reduced to solving a certain linear system (see [11]).

We will see in the next section that everything can be reduced to deal with primi-
tive rational parametrizations (introduced in [2]) above any singular point of the plane
model (and eventually at some other points), and with Hamburger–Noether expansions,
as a consequence.

An interesting case is when G = m P, P being an extra rational point of χ̃ . In this
case the codes Cm

.= C�(D,m P) can be decoded by the majority scheme of the Feng
and Rao algorithm [8], which is so far the most efficient method for the considered
codes. In order to apply this decoding method, one has to fix for every non-negative
integer i a function fi in F(χ̃)with only one pole at P of order i for those values of i for
which it is possible, i.e. for the integers in the Weierstrass semigroup0 = 0P of χ̃ at P.
In this way, the set { fi | i ≤ m, i ∈ 0} is actually a basis for L(m P). Thus, a second
problem arises for AG codes: the computation of 0 and the corresponding functions
fi . This problem will be solved with two different approaches: either with the Brill–
Noether algorithm, or with the the theory of approximate roots, due to Abhyankar and
Moh [1], with the aid of some kind of “integral basis algorithm”. On the other hand,
the Goppa estimate can be substituted by the so-called Feng–Rao distance, depending
on the combinatorics of the semigroup 0, and whose computation is an additional (and
non-trivial) problem (see the details in [8]).

We finally comment in few word why these codes are interesting. In fact, the so-
called main problem in Coding Theory is that when one constructs a sequence of codes
over Fq fixed

Ci ≡ [ni , ki , di]
with arbitrarily large length, that is

lim
i→∞

ni = ∞

then in most examples one gets either

lim
i→∞

ki

ni
= 0 or lim

i→∞

di

ni
= 0

Adjoints and Codes 213

what means that the performance of the codes tends to be bad when the length is arbi-
trarily large. Very few examples give both limits positive, and only with AG codes one
systematically gets constructions whose asymptotic behaviour is excellent, in the sense
that they go beyond the so-called Gilbert–Varshamov bound. The key point to do that
is finding sequences of curves whose ratio n/g is as large as possible in an asymptotic
way, that is achieving the so-called Drinfeld–Vlăduţ bound [5]. This problem is very
hard, essentially because ni → ∞ implies gi → ∞, by using the Hasse–Weil bound,
and it is connected with the problem of finding curves with many rational points (see
[16] for further details).

2. An aproach to the Brill–Noether algorithm

For a given plane curve χ one can consider its normalization, that is the proper bira-
tional morphism

n : χ̃ → χ

where χ̃ is the curve obtained by gluing together the affine charts given by the nor-
malization of the affine graded F-algebras AU for all affine charts U of χ . The curve
χ̃ can be regarded as the result of successive blowing-ups of all the closed points of
χ which are singular, until we get a curve without singular points. This process can
be represented by a combinatorial object called the resolution forest Tχ , consisting of
one weighted oriented tree for each singular closed point of χ . Such a tree consists
of the sequence of infinitely near points along with some weights giving the informa-
tion about the successive field extensions and some kind of multiplicities. The upper
extremal points of this forest are called branches.

The object Tχ follows from the computation of Hamburger–Noether expansions,
but what will be actually used in the sequel is just a primitive rational parametrization
of each branch over every singular closed point of the curve χ , and the so-called ad-
junction divisor A, which is nothing but the effective divisor given by the conductor
ideal Cχ on χ̃ . Let us write the adjunction divisor as

A =
l∑

j=1

dq j q j

where q1, . . . , ql denote the branches of Tχ . The coefficients dq j can be computed
from Tχ in different ways, but we will use a direct formula from the parametrizations
of the branches. In fact, from the Hamburger–Noether expansion at a given rational
branch q we can compute by lazy evaluation sufficiently many terms of a primitive
rational parametrization (X (Zr), Y (Zr)) at q, and then the Dedekind formula allows
us to compute the coefficient dq of A at q as

dq = ordt

(
fY (X (t), Y (t))

X ′(t)

)
= ordt

(
fX (X (t), Y (t))

Y ′(t)

)

where f is a local equation for χ at q (notice that either X ′(t) 6= 0 or Y ′(t) 6= 0). In

214 A. Campillo – J.I. Farrán

particular, one obtains the genus of χ by the formula g = (m − 1)(m − 2)

2
− 1

2
deg A,

where m denotes the degree of χ .

Our aim is to compute a basis for the vector space of finite dimension

L(G)
.= {φ ∈ F(χ̃) | (φ)+ G ≥ 0} ∪ {0}

for an arbitrary F-rational divisor G on χ̃ . A classical description of such space is
derived from the Brill–Noether theorem as follows. Assume that χ is given by the
homogeneous polynomial F ∈ F[X0,X1,X2], and take a divisor G on χ̃ that is rational
over F. Denote by Fn ⊂ F[X0,X1,X2] the set of forms of degree n, and consider
H0 ∈ Fn with n ∈ N \ {0}, not divisible by F and satisfying

N∗H0 ≥ G + A

where N = i ◦ n, n being the normalization of χ and i the embedding of χ in the
projective plane, and where N∗H denotes the intersection divisor between the curve
defined by the homogeneous polynomial H and χ . Then, the Brill–Noether theorem
states that

L(G) = { h

h0
| H ∈ Fn, H /∈ F · F[X0,X1,X2] and N∗H + G ≥ N∗H0} ∪ {0}

where h, h0 denote respectively the rational functions H, H0 restricted on χ .

This result allows us to compute a F-basis of L(G) by means of the following

ALGORITH. (BRILL–NOETHER ALGORITHM)

For a given G, define G+ = max {G, 0} and J+ = A + G+.

(1) Take a large enough n ∈ N such that there exists H0 ∈ Fn not divisible by F with
N∗H0 ≥ J+ .

(For instance n > max

{
m − 1,

m

2
+ deg J+

m
− 3

2

}
, m = deg F being the de-

gree of χ).

(2) Compute a basis over F of the vector space

V = {H ∈ Fn : F|H or N∗H ≥ J+} ∪ {0}

(3) Compute a set of forms of Fn giving a basis over F of the vector space V ′ = V/W ,
where W = {A ∈ Fn : F|A} ∪ {0}.

(4) Choose H0 ∈ V \ W and compute the divisor N∗H0.

(5) Compute a set of forms of Fn being linearly independent over F which generate
(modulo W) the vector space of forms H satisfying N∗H ≥ A + R (or H = 0),
where R

.= N∗H0 − J and J = A + G.

Adjoints and Codes 215

(6) If {H1, . . . , Hs} is the basis obtained in (5) and for i = 0, 1, . . . , s we denote by
hi ∈ F(χ) the functions Hi restricted to χ , then

B =
{

h1

h0
, . . . ,

hs

h0

}

is a basis of L(G) over F.

Notice that if we want this algorithm to be effective we must solve the following
related problems:

(a) Compute the intersection divisor N∗H of a homogeneous polynomial H and the
curve χ , that is, the value υQ(H) at every rational branch Q of χ . This can be
solved by means of a suitable combination of Gröbner bases computation and
primitive rational parametrizations of such branches (again from Hamburger–
Noether expansions).

(b) For a given rational divisor J and a suitable n ∈ N, compute a basis over F for the
vector space

V ≡ V (J, n) = {H ∈ Fn : F|H or N∗H ≥ J } ∪ {0}

where J is either J+ = A + G+ or A + R, according to the Brill–Noether
algorithm. In the same way, one must describe the space W appearing in the
steps (3) and (5), and compute the respective quotients of vector spaces by using
standard techniques from Linear Algebra.

We show now how to impose the “adjunction conditions” defining the above
“spaces of adjoints” V (J, n). Thus, one starts from the homogeneous polynomial
F(X0,X1,X2) ∈ F[X0,X1,X2] defining the absolutely irreducible curve χ in the pro-
jective plane, and we have the data of a divisor J = A + R that is rational over F,
involving a finite number of rational branches of χ (singular or not) along with their
corresponding coefficients. Notice that R can be either G+ or N∗H0 − A − G in the
above algorithm.

We first take a value of n such that there exists an adjoint of degree n satisfying
the first step of the Brill–Noether algorithm. Then, we have to study the conditions
imposed on a form H ∈ Fn of degree n by the inequality N∗H ≥ A + R, R being an
extra effective divisor.

Now, assume again that from the Hamburger–Noether expansions we have com-
puted, for every branch q which is involved in the support of either A or R, sufficiently
many terms of a primitive rational parametrization (X (t), Y (t)), and consider then the
coefficients dq and rq of A and R at q. Then the local condition at q imposed to H by
the inequality N∗H ≥ A + R is given by

ordth(X (t), Y (t)) ≥ dq + rq

h being the local affine equation of H in terms of the coordinates X,Y at the corre-
sponding point P under q. A suitable number of steps of the lazy evaluation (which is

216 A. Campillo – J.I. Farrán

desirable to be determined a priori) suffices to describe the first dq + rq monomials of
the Taylor expansion of h(X (t), Y (t)) as a function of the indeterminate coefficients of
H , whose vanishing gives the required linear conditions at q.

REMARK 1. One needs the computation of successive symbolic extensions of F

for obtaining the parametrizations of conjugate branches of χ . However, one should
be able to apply the above conditions on only one of the conjugate branches and ap-
ply somehow the Galois group to obtain conjugate conditions at the same point (or at
the conjugate points). This would save substitutions of type h(X (t), Y (t)) (and the
corresponding translations to the origin) and hence time of computations.

3. Computing Weierstrass semigroups

As we have told before, the decoding procedure of Feng and Rao is just based on the
computation of a basis for L(l P), P being a rational point of χ̃ , in the way that if
l ∈ 0P , the Weierstrass semigroup 0P consisting of the Weierstrass non-gaps at P,
then such a basis is obtained by adding to a basis of L((l − 1) P) a function fl with
a unique pole at P of order l. What we are going to do now is to show how one can
compute the semigroup 0P and the functions fl in a quite general situation by using
the theory of adjoints.

There are two ways to proceed (see the details in [4]). One way is to compute the
functions fl for all l ≤ l̃ , l̃ being the largest non-gap that is needed in the computations
with the considered one-point code. The other way is to compute first a generator sys-
tem for the Weierstrass semigroup (namely, the Ap éry system related to the minimum
element e in the semigroup, since then calculations in 0P would be very nice), which
can be assumed to be contained in the set of the first g + e non-gaps. Then one saves
the functions only for all l in such a system and compute the functions for all the other
by using the arithmetic of the semigroup. In this case, l̃ denotes the largest generator.

In both situations, one must compute first a basis {h1, . . . , hs} of L(l̃ P) over F.
Then we propose a triangulation method which works by induction on the dimension s
as follows:

(1) By computing first the pole orders {−υP(hi)} at P, assume that the functions {hi}
are ordered in such a way that these pole orders are increasing in i . Thus, the
maximum non-gap l ′ such that l ′ ≤ l̃ is just l ′ = −υP(hs).

(2) Since −υP(hs) = l ′, we set fl′
.= hs . If any other h j satisfies the same condition,

there exists a non-zero constant λ j in F such that −υP(h j −λ j hs) < l ′; then we
change such functions h j by g j

.= h j − λ j hs and set gk
.= hk for all the others.

The result now is obviously another basis {g1, . . . , gs} of L(l̃ P) = L(l ′ P) over
F but with only one function gs = fl′ whose pole at P has maximum order l ′.

(3) Since the functions gi are linearly independent over F and −υP(gi) < l ′ for i < s,
one has obtained a basis {g1, . . . , gs−1} of L(l ′′ P) over F, where l ′′ denotes the

Adjoints and Codes 217

largest non-gap such that l ′′ < l ′. But now the dimension drops to s − 1 and we
can continue by induction.

As a consequence, the above procedure computes all the poles up to l̃ and also
provides us with a function fl for each non-gap l ≤ l̃ . The above algorithm is imple-
mented by Farr án and Lossen in the library brnoeth [7], distributed with the computer
algebra system SINGULAR [9].

EXAMPLE 1. Let χ be the Klein quartic over F2 given by the equation

F(X,Y,Z) = X3Y + Y3Z + Z3X = 0

whose adjunction divisor is A = 0, since χ is non-singular. We are going to compute
the Weierstrass semigroup at P = (0 : 0 : 1), which is not the only point at infinity.
Thus, by means of the Brill–Noether algorithm we first compute a F2-basis of L(7P)

{h1 = 1, h2 = Z

Y
, h3 = Z(Y2 + YZ + Z2)

X2Y
, h4 = Z2(Y + Z)

X2Y
, h5 = Z3

X2Y
}.

By using Hamburger–Noether expansions at P, one computes the pole order of these
functions at such point

−υP(h1) = 0,−υP(h2) = 3,−υP(h3) = −υP(h4) = −υP(h5) = 7.

Thus, we take f7 = h5 and replace h4 = h4+h5 =
Z2

X2 and h3 = h3+h5 =
Z(Y + Z)

X2 .

Now the pole orders are

−υP(h1) = 0,−υP(h2) = 3,−υP(h3) = −υP(h4) = 6

and then we take f6 = h4 . Thus, by replacing h3 = h3 + h4 = YZ

X2 we obtain now

three different pole orders

−υP(h1) = 0,−υP(h2) = 3,−υP(h3) = 5

and we can stop. In particular, we have computed the Weierstrass semigroup, since we
know the three Weierstrass gaps {1, 2, 4} (note that the genus of χ is g = 3).

4. Semigroups at infinity

Let χ̃ be again a non-singular projective algebraic curve defined over a finite field F

and which is absolutely irreducible. Let χ be now a plane model for χ̃ , and assume
that the hypothesis

(H1) χ has a unique branch at infinity

218 A. Campillo – J.I. Farrán

is satisfied, i.e. there exist a birational morphism

n : χ̃ → χ ⊆ P2

and a line L ⊂ P2 defined over F such that L ∩ χ consists of only one point P and χ̃
has only one branch at P. Notice that both P and the branch at P are defined over the
underlying finite field F, since χ does. Thus there is only one point of χ̃ over P, which
will be denoted by P .

Set ϒ̃ = χ̃ \ {P} and ϒ = χ \ {P}. One has the two following additive subsemi-
groups of N:

0P
.= {−υP(f) | f ∈ Oχ̃ (ϒ̃)}

SP
.= {−υP(f) | f ∈ Oχ (ϒ)}

Notice that 0P is just the Weierstrass semigroup of χ̃ at P and it contains SP , but they
are different unless the curve χ is non-singular in the affine part. Moreover, N\0P has
g elements, g being the genus of χ̃ , and 0P \SP , which is also finite, will be computed
below.

The first question to solve is the description of the semigroup SP . In order to do
that, we state the Abhyankar–Moh theorem, where the additional hypothesis

(H2) char F does not divide either deg χ or eP(χ)

is assumed. This result provides us with a set of generators for SP with nice arithmetic
properties (see for example [1]).

THEOREM 1 (ABHYANKAR–MOH). Assumed that (H1) and (H2) are satisfied by
χ , then there exist an integer h and a sequence of integers δ0, . . . , δh ∈ SP which
generate SP such that:

(I) dh+1 = 1 and ni > 1 for 2 ≤ i ≤ h, where di
.= g c d (δ0, . . . , δi−1) for

1 ≤ i ≤ h + 1 and ni
.= di/di+1 for 1 ≤ i ≤ h.

(II) niδi is in the semigroup generated by δ0, . . . , δi−1 for 1 ≤ i ≤ h.

(III) niδi > δi+1 for 1 ≤ i ≤ h − 1.

Such semigroups are a particular case of telescopic semigroups, and their main
arithmetic property is that they are free, i.e. every n ∈ SP can be easily written in an
unique way in the form

n =
h∑

i=0

λiδi

with λ0 ≥ 0 and 0 ≤ λi < ni for 1 ≤ i ≤ h.

Now we will say how to obtain these generators of SP in a constructive way to-
gether with functions in B

.= Oχ (ϒ) having poles of order equal to those generators
(and hence one will have functions in B with poles of order any element in SP by us-
ing the arithmetic properties of such generators). For it, we need first the concept of
approximate root.

Adjoints and Codes 219

DEFINITION 1. Let S be a ring, G ∈ S[Y] a monic polynomial of degree e and F ∈
S[Y] a monic polynomial of degree n with e|n. Then G will be called an approximate
b-th root of F if deg (F − Gb) < n − e = e (b − 1).

Now the main remark is that for every monic polynomial F ∈ S[Y] of degree n
and for every b divisor of n which is a unit in S, there exists a unique approximate b-th
root of F , and it can be computed very efficiently by solving a triangular (non-linear)
system.

Thus, let the affine plane model of the curve given by the equation

F = F(X,Y) = Ym + a1(X)Ym−1 + . . .+ am(X)

and suppose that char F satisfies the assumption of the Abhyankar–Moh theorem. Up
to a change of variables in the form X′ = X + Yn, Y′ = Y, we can actually assume
that char F does not divide the total degree m of χ . On the other hand, denote the
approximate d-th root of F with respect to the coefficient ring S = F[X] by app(d, F).
Thus, the so called algorithm of approximate roots computes the generators given by
the Abhyankar–Moh theorem as follows:

F0 = X , δ0 = d1 = m , F1 = Y , δ1 = degX ResY(F, F1)

n > 1 ⇒

dn = g c d (δ0, δ1, . . . , δn−1)

Fn = app(dn, F)
δn = degX ResY(F, Fn)

The procedure stops at the first h ≥ 1 with dh+1 = dh+2 , what happens just when
dh+1 = 1, since the point at infinity is unibranch. In fact, assumed that there is only
one point at infinity, then the algorithm succeeds (i.e. gets to the end and the obtained
semigroup satisfies the three properties of the Abhyankar–Moh theorem) if and only if
that point is unibranch.

As a consequence, the generators of SP given by the Abhyankar–Moh theorem and
the corresponding functions can be easily computed in terms of approximate roots of
F and resultants of polynomials. In particular, we can compute a rational function with

an only pole at P of order n for every n ∈ SP . In fact, if n =
h∑

i=0

λiδi with λ0 ≥ 0

and 0 ≤ λi < ni for 1 ≤ i ≤ h, then fn =
h∏

i=0

Fλi
i is the searched function, where Fi

are the polynomials which are obtained in the algorithm of approximate roots.

Now the remaining part of the method is the computation of 0P \ SP with the
corresponding functions, what can be done effective by means of the following result
(see [3]).

LEMMA 1 (TRIANGULATION). Let A and B be the respective affine coordinate
F-algebras of ϒ̃ and ϒ , i.e. A = Oχ̃ (ϒ̃) and B = Oχ (ϒ); then one has

](0P \ SP) = dimF(A/B)

220 A. Campillo – J.I. Farrán

Proof. Take a basis {h1, . . . , hl} of A/B over F. We show a triangulation procedure
to find the values in 0P \ SP as well as functions which provide these values.

Set B i .= B + Fh1 + . . . + Fhi , for 0 ≤ i ≤ l; we will proceed by induction,
so let 0 ≤ i < l and suppose we have found functions g1, . . . , gi which are linearly
independent over F with

0i
P
.= SP ∪ {−υP(g1), . . . ,−υP(gi)} ⊆ 0P

−υP(g j) /∈ 0i−1
P

B + Fg1 + . . .+ Fgi = B i

Now look at hi+1; if −υP(hi+1) /∈ 0i
P , then set gi+1 = hi+1 and go on.

Otherwise, there exists f ∈ B i with

υP(hi+1) = υP(f)
−υP(hi+1 − f) < −υP(hi+1)

Thus we can repeat the process with h i+1 − f replacing to hi+1 ; since hi+1 /∈ B i , one
obtains in a finite number of steps a function gi+1 such that

gi+1 ≡ hi+1 (mod B i) and − υP(gi+1) /∈ 0i
P

At the end of the procedure l different elements in 0P \ SP will be added, and then
](0P \ SP) ≥ dimF(A/B). The equality follows immediately from the formula A =
Bl = B + Fg1 + . . .+ Fgl .

REMARK 2. The only non-trivial part of this algorithm is how to obtain the initial
“integral basis” to start the triangulation procedure. In principle, there are several ways
to proceed:

i) Try to implement any of the known integral basis algorithms, basically based on
generalizations of algorithms coming from algebraic number theory, which have
been adapted to the function field of the curve. They actually compute a basis
of A as B-module, but it is not very difficult to derive a basis of A/B over F.
However, the problem is interesting itself, since this algorithm does not work
correctly for positive characteristic in most of the computer algebra systems
(namely, MapleV or AXIOM). For example, in [13] a very efficient algorithm
is developed for characteristic zero, by using Puiseux expansions with MapleV,
but it seems that it has not been possible (as far as we know) to generalize it
to any characteristic, probably because of the use of either such expansions or
MapleV. We are now testing and speeding-up a new algorithm for SINGULAR

with the use of Hamburger–Noether expansions instead, what solves the above
problem.

ii) Try to take advantage of the normalization library of SINGULAR, which describes
A as a function of some added ring variables, and try to eliminate somehow such
variables. This has been also implemented in SINGULAR, though the algorithm
mentioned in i) seems to be more efficient for plane curves, since the complexity
lies on the computation of some Gröbner bases.

Adjoints and Codes 221

iii) Try to design a new algorithm with computes A in geometric terms from the
Hamburger–Noether expansions of the plane curve. This should be possible to
do in principle, since in some sense the data of A is equivalent to the resolution
of singularities of the affine part of the curve, but the way to implement it by an
algorithm is not clear for us yet. The idea is basically that

A/B =
⊕

Oϒ,Q/Oϒ,Q

where the sum runs over the set of all (closed) singular points in the affine part;
thus, the Hamburger–Noether expansions would provide local bases at each Q,
and the Chevalley’s principle (independence of valuations) should allow us to
glue up such local basis into a global one. This idea is still to be developed.

5. Examples and conclusions

The choice of the method to use in order to compute a Weierstrass semigroup depends
on the situation. In fact, the Brill-Noether method works in a general situation, but the
implementation is complicate and it does not give a nice description of the semigroup
(namely, an Ap éry system in order to calculate the Feng–Rao distance of certain one-
point AG code).

On the other hand, the Abhyankar-Moh method gives such a description of 0P

and the algorithm works in a very simple way (see [3]), but it requires some additional
hypothesis on the plane model: it must have an only rational branch P at infinity which
is defined over the base field F and the characteristic of F must not divide at the same
time to the degree of the plane model and the multiplicity of P, what is frequently
satisfied, but not always. If moreover the plane model has no other singular points at the
affine part the curve, the algorithm of approximate roots directly yields the Weierstrass
semigroup, and then the algorithm can be very easily implemented (for instance, such
a programme takes a few lines in AXIOM code).

Anyway, the complement of this semigroup requires the previous computation of a
certain integral basis (see remark 2), what is essentially equivalent to the desingulariza-
tion of the affine part of the plane model, but what follows from such basis by means
of a simple triangulation procedure, with the additional advantage of a nice description
of the obtained semigroup. We will briefly illustrate these ideas with two examples.

EXAMPLE 2. Consider the affine plane curve F(X,Y) = Y9+Y8+XY6+X2Y3+
Y2 + X3 defined over F2, with only one branch at infinity P = (1 : 0 : 0). The
algorithm of approximate roots yields

F0 = X , δ0 = d1 = 9 , F1 = Y

δ1 = degXResY(F,Y) = 3 , d2 = g c d (9, 3) = 3

F2 = app(3, F) = Y3 + Y2 + Y + X + 1

δ2 = degX ResY(F, F2) = 8 , d3 = g c d (9, 3, 8) = 1

222 A. Campillo – J.I. Farrán

thus h = 2 and SP = 〈9, 3, 8〉.
On the other hand, according to the lemma 1, take a F2-basis for A/B

h1 = Y(1 + Y6)

X + Y3
h2 = Y(1 + Y6)

(X + Y3)(Y2 + Y + 1)

h3 = X2 + Y6

Y2 + Y + 1
h4 = Y2(1 + Y3)(Y2 + Y + 1)

X + Y3

The values at P of this functions are −υP(h1) = 13 /∈ SP , −υP(h2) = 7 /∈ 01
P ,

−υP(h3) = 10 /∈ 02
P and −υP(h4) = 13 ∈ 03

P . Then change h4 by

g4 = h4 + h1 = Y(1 + Y3)(Y2 + Y + 1)

X + Y3

and now −υP(g4) = 10 ∈ 03
P , so still one has to take the function

g4 = h4 + h1 + h3 = Y(1 + Y3)(Y4 + Y2 + 1)+ (X + Y3)3

(X + Y3)(Y2 + Y + 1)

and now −υP(g4) = 4 /∈ 03
P . Hence, the Weierstrass semigroup at P is

0P = {0, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, . . .}

Unfortunately, there are examples where this method cannot be applied (consider
again the example 1), and then the Brill-Noether is the only way to compute0P and the
functions, even though it does not help (in general) to compute the Feng–Rao distance.

We finally remark that the philosophy of the Abhyankar–Moh theorem and the
computation of an integral basis is somehow the same as the adjunction theory, that
is, searching for polynomial curves passing through some points with designed multi-
plicities. This is actually what is done inside the integral basis algorithm given in [13],
taking the discriminant instead of the conductor. On the other hand, the approximate
roots computed by the Abhyankar–Moh method are curves with maximal contact order
at the only point at infinity (see [15]).

References

[1] ABHYANKAR S.S., On the semigroup of a meromorphic curve, Intl. Symp. on Algebraic Geometry,
Kyoto (1977), 249–414.

[2] CAMPILLO A. AND CASTELLANOS J., Curve singularities, preprint, Univ. Valladolid (1997).

[3] CAMPILLO A. AND FARRÁN J.I, it Computing Weierstrass semigroups and the Feng–Rao distance
from singular plane models, Finite Fields and their Applications 6 (2000), 71–92.

[4] CAMPILLO A. AND FARRÁN J.I, Symbolic Hamburger–Noether expressions of plane curves and ap-
plications to AG codes, Mathematics of Computation 71 (2002), 1759–1780.

[5] DRINFELD V.G. AND VLĂDUŢ S.G., Number of points of an algebraic curve, Funktsional’-nyi Analiz
i Ego Prilozhenia 17 (1983), 53–54.

Adjoints and Codes 223

[6] DUVAL D., Diverses questions relatives au calcul formel avec des nombres algbriques, Ph.D. thesis,
Universit é de Grenoble, Grenoble 1987.

[7] FARRÁN J.I. AND LOSSEN CH., “brnoeth.lib”, A SINGULAR 2.0 library for the Brill–Noether
algorithm, Weierstrass semigroups and AG codes (Software and Reference Manual, 16 pp.), in SIN-
GULAR 2.0, A Computer Algebra System for Polynomial Computations, G.-M. Greuel, G. Pfister
y H. Sch önemann, Centre for Computer Algebra, University of Kaiserslautern (2001), available via
http://www.singular.uni-kl.de/.

[8] FENG G.L. AND RAO T.R.N., Decoding algebraic-geometric codes up to the designed minimum
distance, IEEE Trans. Inform. Theory 39 (1993), 37–45.

[9] GREUEL G.-M., PFISTER G. AND SCHÖNEMANN H., “SINGULAR 2.0.3”, A computer algebra sys-
tem for polynomial computations, Centre for Computer Algebra, University of Kaiserslautern (2002),
available via http://www.singular.uni-kl.de/.

[10] HACHÉ G. AND LE BRIGAND D., Effective construction of Algebraic Geometry codes, IEEE Trans.
Inform. Theory 41 (1995), 1615–1628.

[11] HØHOLDT T. AND PELLIKAAN R., On the decoding of algebraic-geometric codes, IEEE Trans. In-
form. Theory 41 (1995), 1589–1614.

[12] HØHOLDT T., VAN LINT J.H. AND PELLIKAAN R., Algebraic Geometry codes, in: “Handbook of
Coding Theory” vol.1, (Eds. Pless V., Huffman W.C. and Brualdi R.A.), Elsevier, Amsterdam 1998,
871–961.

[13] VAN HOEIJ M., An algorithm for computing an integral basis in an algebraic function field, J. Sym-
bolic Computation 18 (1994), 353–363.

[14] VAN LINT J.H., Introduction to Coding Theory, Springer-Verlag, 1982.

[15] PINKHAM H., Séminaire sur les singularités des surfaces (Demazure-Pinkham-Teissier), cours donn é
au Centre de Math. de l’École Polytechnique, (1977-1978).

[16] TSFASMAN M.A. AND VLĂDUŢ S.G., Algebraic-geometric codes, Math. and its Appl. vol. 58,
Kluwer Academic Pub., 1991.

AMS Subject Classification: 14Q05, 14G50, 68W30, 94B27.

Antonio CAMPILLO, Departamento de Álgebra, Geometr ı́a y Topologia, Facultad de Ciencias,
Universidad de Villadolid, 47005 Villadolid, SPAIN
e-mail: campillo@cpd.uva.es

Jos é Ignacio FARŔAN, Departamento de de Matimatica Aplicada a la Ingenier ı́a, Universidad de
Villadolid, 47011 Villadolid, SPAIN
e-mail: ignfar@wmatem.eis.uva.es

Lavoro pervenuto in redazione il 16.04.2003.

